We study the generation of analytic semigroups in the L-2 topology by second order elliptic operators in divergence form, that may degenerate at the boundary of the space domain. Our results, that hold in two space dimensions, guarantee that the solutions of the corresponding evolution problems support integration by parts. So, this paper provides the basis for deriving Carleman type estimates for degenerate parabolic operators.

Cannarsa, P., Sforza, D. (2008). A stability result for a class of nonlinear integrodifferential equations with L1 kernels. APPLICATIONS OF MATHEMATICS, 35, 395-430.

A stability result for a class of nonlinear integrodifferential equations with L1 kernels

CANNARSA, PIERMARCO;SFORZA, DANIELE
2008-01-01

Abstract

We study the generation of analytic semigroups in the L-2 topology by second order elliptic operators in divergence form, that may degenerate at the boundary of the space domain. Our results, that hold in two space dimensions, guarantee that the solutions of the corresponding evolution problems support integration by parts. So, this paper provides the basis for deriving Carleman type estimates for degenerate parabolic operators.
2008
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
degenerate parabolic equation; weighted Sobolev spaces; normal trace theorem; Hardy type inequality
Cannarsa, P., Sforza, D. (2008). A stability result for a class of nonlinear integrodifferential equations with L1 kernels. APPLICATIONS OF MATHEMATICS, 35, 395-430.
Cannarsa, P; Sforza, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
F_longIFIP_CanSfo.pdf

accesso aperto

Dimensione 238.13 kB
Formato Adobe PDF
238.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/102818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact