The Maximum principle in control theory provides necessary optimality conditions for a given trajectory in terms of the co-state, which is the solution of a suitable adjoint system. For constrained problems the adjoint system contains a measure supported at the boundary of the constraint set. In this paper we give a representation formula for such a measure for smooth constraint sets and nice Hamiltonians. As an application, we obtain a perimeter estimate for constrained attainable sets.

Cannarsa, P., Castelpietra, M., Cardaliaguet, P. (2008). Regularity properties of attainable sets under state constraints, 76, 120-135 [10.1142/9789812776075_0006].

Regularity properties of attainable sets under state constraints

CANNARSA, PIERMARCO;
2008-01-01

Abstract

The Maximum principle in control theory provides necessary optimality conditions for a given trajectory in terms of the co-state, which is the solution of a suitable adjoint system. For constrained problems the adjoint system contains a measure supported at the boundary of the constraint set. In this paper we give a representation formula for such a measure for smooth constraint sets and nice Hamiltonians. As an application, we obtain a perimeter estimate for constrained attainable sets.
2008
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Maximum principle; Interior sphere property; Perimeter
Cannarsa, P., Castelpietra, M., Cardaliaguet, P. (2008). Regularity properties of attainable sets under state constraints, 76, 120-135 [10.1142/9789812776075_0006].
Cannarsa, P; Castelpietra, M; Cardaliaguet, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PMC-Crd-Cst_INdAM.pdf

accesso aperto

Dimensione 224.63 kB
Formato Adobe PDF
224.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/102815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact