In this paper we prove a homogenization theorem for interfacial discrete energies defined on an a-periodic Penrose tiling in two dimensions. A general result on the homogenization of surface energies cannot be directly adapted to this case; the existence of the limit interfacial energy is therefore proved by showing some refined "quasi-periodic" properties of the tilings.
Braides, A., Solci, M. (2011). Interfacial energies on Penrose lattices. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 21, 1193 [10.1142/S0218202511005295].
Interfacial energies on Penrose lattices
BRAIDES, ANDREA;
2011-01-01
Abstract
In this paper we prove a homogenization theorem for interfacial discrete energies defined on an a-periodic Penrose tiling in two dimensions. A general result on the homogenization of surface energies cannot be directly adapted to this case; the existence of the limit interfacial energy is therefore proved by showing some refined "quasi-periodic" properties of the tilings.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
M3AS_2105_P1193.pdf
non disponibili
Licenza:
Copyright dell'editore
Dimensione
674.5 kB
Formato
Adobe PDF
|
674.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.