We consider a finite region of a lattice of weakly interacting geodesic flows on manifolds of negative curvature and we show that, when rescaling the interactions and the time appropriately, the energies of the flows evolve according to a non linear diffusion equation. This is a first step toward the derivation of macroscopic equations from a Hamiltonian microscopic dynamics in the case of weakly coupled systems.

Dolgopyat, D., Liverani, C. (2011). Energy transfer in a fast-slow Hamiltonian system. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 308(1), 201-225 [10.1007/s00220-011-1317-7].

Energy transfer in a fast-slow Hamiltonian system

LIVERANI, CARLANGELO
2011-11-01

Abstract

We consider a finite region of a lattice of weakly interacting geodesic flows on manifolds of negative curvature and we show that, when rescaling the interactions and the time appropriately, the energies of the flows evolve according to a non linear diffusion equation. This is a first step toward the derivation of macroscopic equations from a Hamiltonian microscopic dynamics in the case of weakly coupled systems.
nov-2011
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Dolgopyat, D., Liverani, C. (2011). Energy transfer in a fast-slow Hamiltonian system. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 308(1), 201-225 [10.1007/s00220-011-1317-7].
Dolgopyat, D; Liverani, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
cmp-2011.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 367.68 kB
Formato Adobe PDF
367.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/101594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact