The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions.

Amaro Seoane, P., Aoudia, S., Audley, H., Auger, G., Babak, S., Baker, J., et al. (2013). The Gravitational Universe [Tutorial].

The Gravitational Universe

BASSAN, MASSIMO;
2013-05-24

Abstract

The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions.
Tutorial
24-mag-2013
submitted to the European Space Agency on May 24th, 2013 for the L2/L3 selection of ESA's Cosmic Vision program
Rilevanza internazionale
Settore FIS/05 - ASTRONOMIA E ASTROFISICA
English
Gravitation; space; gravitational waves; eLISA
http://arxiv.org/abs/1305.5720
Amaro Seoane, P., Aoudia, S., Audley, H., Auger, G., Babak, S., Baker, J., et al. (2013). The Gravitational Universe [Tutorial].
Amaro Seoane, P; Aoudia, S; Audley, H; Auger, G; Babak, S; Baker, J; Barausse, E; Barke, S; Bassan, M; Beckmann, V; Benacquista, M; Bender, P; Berti, E; Binétruy, P; Bogenstahl, J; Bonvin, C; Bortoluzzi, D; Brause, N; Brossard, J; Buchman, S; Bykov, I; Camp, J; Caprini, C; Cavalleri, A; Cerdonio, M; Ciani, G; Colpi, M; Congedo, G; Conklin, J; Cornish, N; Danzmann, K; de Vine, G; Debra, D; Dewi Freitag, M; Di Fiore, L; Diaz Aguilo, M; Diepholz, I; Dolesi, R; Dotti, M; Fernández Barranco, G; Ferraioli, L; Ferroni, V; Finetti, N; Fitzsimons, E; Gair, J; Galeazzi, F; Garcia, A; Gerberding, O; Gesa, L; Giardini, D; Gibert, F; Grimani, C; Groot, P; Guzman Cervantes, F; Haiman, Z; Halloin, H; Heinzel, G; Hewitson, M; Hogan, C; Holz, D; Hornstrup, A; Hoyland, D
Altro
File in questo prodotto:
File Dimensione Formato  
13eLISA_WhiteBook_bw.pdf

accesso aperto

Dimensione 8.77 MB
Formato Adobe PDF
8.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/101317
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact