The distorted spin-dependent spectral function of a nucleon inside an A = 3 nucleus is introduced as a novel tool for investigating the polarized electron scattering off polarized 3He in the semi-inclusive DIS regime (SiDIS), going beyond the standard plane-wave impulse approximation. This distribution function is applied 3⃗ ′2 to the study of the spectator SiDIS, He(e⃗,e H)X, to properly take into account the final-state interaction between the hadronizing quark and the detected deuteron, with the final goal of a more reliable extraction of the polarized parton distribution g1(x) inside a bound proton. Our analysis allows one to single out two well-defined kinematical regions where the experimental asymmetries could yield very interesting information: the region where the final-state effects can be minimized, and therefore the direct access to the parton distributions in the proton is feasible, and the one where the final-state interaction dominates, and the spectator SiDIS reactions can elucidate the mechanism of the quark hadronization itself. The perspectives of extending our approach (i) to the mirror nucleus, 3H, for achieving a less model-dependent flavor decomposition and (ii) to the asymmetries 3⃗′ measured in the standard SiDIS reactions, e⃗ + He → e + h + X, with h a detected fast hadron, with the aim of extracting the neutron transversity, are discussed.

Kaptari, L., Del Dotto, A., Pace, E., Salmè, G., Scopetta, S. (2014). Distorted spin-dependent spectral function of an A=3 nucleus and semi-inclusive deep inelastic scattering processes. PHYSICAL REVIEW. C, NUCLEAR PHYSICS, 89, 035206-1-035206-18 [10.1103/PhysRevC.89.035206].

Distorted spin-dependent spectral function of an A=3 nucleus and semi-inclusive deep inelastic scattering processes

PACE, EMANUELE;
2014-03-27

Abstract

The distorted spin-dependent spectral function of a nucleon inside an A = 3 nucleus is introduced as a novel tool for investigating the polarized electron scattering off polarized 3He in the semi-inclusive DIS regime (SiDIS), going beyond the standard plane-wave impulse approximation. This distribution function is applied 3⃗ ′2 to the study of the spectator SiDIS, He(e⃗,e H)X, to properly take into account the final-state interaction between the hadronizing quark and the detected deuteron, with the final goal of a more reliable extraction of the polarized parton distribution g1(x) inside a bound proton. Our analysis allows one to single out two well-defined kinematical regions where the experimental asymmetries could yield very interesting information: the region where the final-state effects can be minimized, and therefore the direct access to the parton distributions in the proton is feasible, and the one where the final-state interaction dominates, and the spectator SiDIS reactions can elucidate the mechanism of the quark hadronization itself. The perspectives of extending our approach (i) to the mirror nucleus, 3H, for achieving a less model-dependent flavor decomposition and (ii) to the asymmetries 3⃗′ measured in the standard SiDIS reactions, e⃗ + He → e + h + X, with h a detected fast hadron, with the aim of extracting the neutron transversity, are discussed.
27-mar-2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/04 - FISICA NUCLEARE E SUBNUCLEARE
English
Con Impact Factor ISI
PACS number(s): 13.40.−f, 24.85.+p, 25.10.+s, 25.30.Fj
Kaptari, L., Del Dotto, A., Pace, E., Salmè, G., Scopetta, S. (2014). Distorted spin-dependent spectral function of an A=3 nucleus and semi-inclusive deep inelastic scattering processes. PHYSICAL REVIEW. C, NUCLEAR PHYSICS, 89, 035206-1-035206-18 [10.1103/PhysRevC.89.035206].
Kaptari, L; Del Dotto, A; Pace, E; Salmè, G; Scopetta, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PhysRevC.89.035206.pdf

accesso aperto

Descrizione: PRC89
Dimensione 707.8 kB
Formato Adobe PDF
707.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/101044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact