We present an investigation of the statistics of velocity gradient related quantities, in particular energy dissipation rate and enstrophy, along the trajectories of fluid tracers and of heavy/light particles advected by a homogeneous and isotropic turbulent flow. The refined similarity hypothesis (RSH) proposed by Kolmogorov and Oboukhov in 1962 is rephrased in the Lagrangian context and then tested along the particle trajectories. The study is performed on state-of-the-art numerical data resulting from numerical simulations up to Reλ∼400 with 20483 collocation points. When particles have small inertia, we show that the Lagrangian formulation of the RSH is well verified for time lags larger than the typical response time τp of the particle. In contrast, in the large inertia limit when the particle response time approaches the integral time scale of the flow, particles behave nearly ballistic, and the Eulerian formulation of RSH holds in the inertial range.

Benzi, R., Biferale, L., Calzavarini, E., Lohse, D., Toschi, F. (2009). Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 80(6) [10.1103/PhysRevE.80.066318].

Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame

BENZI, ROBERTO;BIFERALE, LUCA;
2009-01-01

Abstract

We present an investigation of the statistics of velocity gradient related quantities, in particular energy dissipation rate and enstrophy, along the trajectories of fluid tracers and of heavy/light particles advected by a homogeneous and isotropic turbulent flow. The refined similarity hypothesis (RSH) proposed by Kolmogorov and Oboukhov in 1962 is rephrased in the Lagrangian context and then tested along the particle trajectories. The study is performed on state-of-the-art numerical data resulting from numerical simulations up to Reλ∼400 with 20483 collocation points. When particles have small inertia, we show that the Lagrangian formulation of the RSH is well verified for time lags larger than the typical response time τp of the particle. In contrast, in the large inertia limit when the particle response time approaches the integral time scale of the flow, particles behave nearly ballistic, and the Eulerian formulation of RSH holds in the inertial range.
2009
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI
English
Benzi, R., Biferale, L., Calzavarini, E., Lohse, D., Toschi, F. (2009). Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 80(6) [10.1103/PhysRevE.80.066318].
Benzi, R; Biferale, L; Calzavarini, E; Lohse, D; Toschi, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
a137(1).pdf

accesso aperto

Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/101009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 44
social impact