We study the Brill-Noether theory of the normalizations of singular,irreducible curves on a K3 surface. We introduce a singular Brill-Noether number rho_sing and show that if Pic(K3) = Z[L], there are no linear series of degree d and dimension r on the normalizations of irreducible curves in |L|, provided that rho_sing < 0. We give examples showing the sharpness of this result. We then focus on the case of hyperelliptic normalizations, and classify linear systems |L| containing irreducible nodal curves with hyperelliptic normalizations, for rho_sing < 0, without any assumption on the Picard group.

Flamini, F., Knutsen, A., Pacienza, G. (2007). Singular curves on a K3 surface and linear series on their normalizations. INTERNATIONAL JOURNAL OF MATHEMATICS, 18(6), 671-693 [10.1142/S0129167X0700428X].

Singular curves on a K3 surface and linear series on their normalizations.

FLAMINI, FLAMINIO;
2007-01-01

Abstract

We study the Brill-Noether theory of the normalizations of singular,irreducible curves on a K3 surface. We introduce a singular Brill-Noether number rho_sing and show that if Pic(K3) = Z[L], there are no linear series of degree d and dimension r on the normalizations of irreducible curves in |L|, provided that rho_sing < 0. We give examples showing the sharpness of this result. We then focus on the case of hyperelliptic normalizations, and classify linear systems |L| containing irreducible nodal curves with hyperelliptic normalizations, for rho_sing < 0, without any assumption on the Picard group.
2007
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
http://www.citebase.org/linked_fulltext?format=application%2Fpdf&identifier=oai%3AarXiv.org%3Amath%2F0505266
Flamini, F., Knutsen, A., Pacienza, G. (2007). Singular curves on a K3 surface and linear series on their normalizations. INTERNATIONAL JOURNAL OF MATHEMATICS, 18(6), 671-693 [10.1142/S0129167X0700428X].
Flamini, F; Knutsen, A; Pacienza, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
FlaminiIntJMat.pdf

solo utenti autorizzati

Licenza: Creative commons
Dimensione 363.23 kB
Formato Adobe PDF
363.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/10084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact