We prove in this paper that the von Neumann algebras associated to the free non-commutative groups are stably isomorphic, i.e. that they are isomorphic when tensorized by the algebra of all linear bounded operators on a separable, infinite dimensional Hilbert space. This gives positive evidence for an old question, due to R.V. Kadison (see also S. Sakai's book on W*-algebras), whether the von Neumann algebras associated to free groups are isomorphic or not.

Radulescu, F. (1993). Stable equivalence of the weak closures of free groups convolution algebras. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 156(1), 17-36 [10.1007/BF02096731].

Stable equivalence of the weak closures of free groups convolution algebras

RADULESCU, FLORIN
1993-01-01

Abstract

We prove in this paper that the von Neumann algebras associated to the free non-commutative groups are stably isomorphic, i.e. that they are isomorphic when tensorized by the algebra of all linear bounded operators on a separable, infinite dimensional Hilbert space. This gives positive evidence for an old question, due to R.V. Kadison (see also S. Sakai's book on W*-algebras), whether the von Neumann algebras associated to free groups are isomorphic or not.
1993
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Radulescu, F. (1993). Stable equivalence of the weak closures of free groups convolution algebras. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 156(1), 17-36 [10.1007/BF02096731].
Radulescu, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
euclid.cmp.1104253515.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/100648
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 12
social impact