We have generated unique asymmetric liposomes with phosphatidylserine (PS) distributed at the outer membrane surface to resemble apoptotic bodies and phosphatidic acid (PA) at the inner layer as a strategy to enhance innate antimycobacterial activity in phagocytes while limiting the inflammatory response. Results show that these apoptotic body-like liposomes carrying PA (ABL/PA) (i) are more efficiently internalized by human macrophages than by nonprofessional phagocytes, (ii) induce cytosolic Ca(2+) influx, (iii) promote Ca(2+)-dependent maturation of phagolysosomes containing Mycobacterium tuberculosis (MTB), (iv) induce Ca(2+)-dependent reactive oxygen species (ROS) production, (v) inhibit intracellular mycobacterial growth in differentiated THP-1 cells as well as in type-1 and -2 human macrophages, and (vi) down-regulate tumor necrosis factor (TNF)-α, interleukin (IL)-12, IL-1β, IL-18, and IL-23 and up-regulate transforming growth factor (TGF)-β without altering IL-10, IL-27, and IL-6 mRNA expression. Also, ABL/PA promoted intracellular killing of M. tuberculosis in bronchoalveolar lavage cells from patients with active pulmonary tuberculosis. Furthermore, the treatment of MTB-infected mice with ABL/PA, in combination or not with isoniazid (INH), dramatically reduced lung and, to a lesser extent, liver and spleen mycobacterial loads, with a concomitant 10-fold reduction of serum TNF-α, IL-1β, and IFN-γ compared with that in untreated mice. Altogether, these results suggest that apoptotic body-like liposomes may be used as a Janus-faced immunotherapeutic platform to deliver polar secondary lipid messengers, such as PA, into phagocytes to improve and recover phagolysosome biogenesis and pathogen killing while limiting the inflammatory response.

Greco, E., Quintiliani, G., Santucci, M.b., Serafino, A., Ciccaglione, A., Marcantonio, C., et al. (2012). Janus-faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 109(21), E1360-E1360-8 [10.1073/pnas.1200484109].

Janus-faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection

GRECO, EMANUELA;SANTUCCI, MARILINA BENEDETTA;SARMATI, LOREDANA;ANDREONI, MASSIMO;FRAZIANO, MAURIZIO
2012-05-22

Abstract

We have generated unique asymmetric liposomes with phosphatidylserine (PS) distributed at the outer membrane surface to resemble apoptotic bodies and phosphatidic acid (PA) at the inner layer as a strategy to enhance innate antimycobacterial activity in phagocytes while limiting the inflammatory response. Results show that these apoptotic body-like liposomes carrying PA (ABL/PA) (i) are more efficiently internalized by human macrophages than by nonprofessional phagocytes, (ii) induce cytosolic Ca(2+) influx, (iii) promote Ca(2+)-dependent maturation of phagolysosomes containing Mycobacterium tuberculosis (MTB), (iv) induce Ca(2+)-dependent reactive oxygen species (ROS) production, (v) inhibit intracellular mycobacterial growth in differentiated THP-1 cells as well as in type-1 and -2 human macrophages, and (vi) down-regulate tumor necrosis factor (TNF)-α, interleukin (IL)-12, IL-1β, IL-18, and IL-23 and up-regulate transforming growth factor (TGF)-β without altering IL-10, IL-27, and IL-6 mRNA expression. Also, ABL/PA promoted intracellular killing of M. tuberculosis in bronchoalveolar lavage cells from patients with active pulmonary tuberculosis. Furthermore, the treatment of MTB-infected mice with ABL/PA, in combination or not with isoniazid (INH), dramatically reduced lung and, to a lesser extent, liver and spleen mycobacterial loads, with a concomitant 10-fold reduction of serum TNF-α, IL-1β, and IFN-γ compared with that in untreated mice. Altogether, these results suggest that apoptotic body-like liposomes may be used as a Janus-faced immunotherapeutic platform to deliver polar secondary lipid messengers, such as PA, into phagocytes to improve and recover phagolysosome biogenesis and pathogen killing while limiting the inflammatory response.
22-mag-2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/19 - MICROBIOLOGIA GENERALE
Settore MED/07 - MICROBIOLOGIA E MICROBIOLOGIA CLINICA
English
Con Impact Factor ISI
Macrophages; Leukemia, Monocytic, Acute; Animals; Apoptosis; Calcium; Humans; Disease Models, Animal; Mice; Cell Line, Tumor; Immunity, Innate; Reactive Oxygen Species; Mice, Inbred BALB C; Liposomes; Phosphatidylserines; Tuberculosis, Pulmonary; Adult; Bronchoalveolar Lavage Fluid; Middle Aged; Antitubercular Agents; Phagocytosis; Male; Mycobacterium tuberculosis; Isoniazid
Greco, E., Quintiliani, G., Santucci, M.b., Serafino, A., Ciccaglione, A., Marcantonio, C., et al. (2012). Janus-faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 109(21), E1360-E1360-8 [10.1073/pnas.1200484109].
Greco, E; Quintiliani, G; Santucci, Mb; Serafino, A; Ciccaglione, A; Marcantonio, C; Papi, M; Maulucci, G; Delogu, G; Martino, A; Goletti, D; Sarmati,...espandi
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PNAS published.pdf

accesso aperto

Descrizione: articolo principale
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/100309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 57
social impact