Carbonation of specific types of minerals and anthropogenically derived products, such as cement or lime binders, is a well known naturally occurring process which exerts several significant effects on alkaline materials, including specifically: CO2 uptake by formation of a solid and thermodynamically stable carbonate phase, pH decrease and modifications of the leaching behaviour of the material, besides variations of some of its physical and mechanical properties. Since the kinetics of this reaction is very slow at ambient conditions, to exploit some of the above mentioned effects of chemical weathering for developing specific engineered processes, such as waste chemical stabilization and CO2 mineral storage, carbonation processes carried out under selected and controlled operational conditions have been developed, in order to significantly increase the kinetics of the reactions involved. Depending on the application of the process and the selected material, different operating conditions have been employed and several process routes have been tested. The main objective of this doctoral thesis was to investigate the accelerated carbonation process applied both to minerals and industrial residues in order to gain new insight on the key reaction mechanisms for each type of material. Regarding accelerated carbonation of minerals, the effects of the presence of high pressure CO2 (up to 100 bar) and salinity on olivine dissolution kinetics at 120 °C in a stirred flow-through reactor were specifically investigated, in order to assess whether these parameters may exert an enhancing or inhibiting effect on the kinetics of Mg dissolution. Batch carbonation experiments on humidified material (with liquid to solid ratios < 1 l/kg) at mild operating conditions (temperature of 30-50 °C and CO2 pressure of 1-10 bar) were specifically carried out on waste incineration residues such as bottom ash (BA) and air pollution control (APC) residues, as well as on stainless steel slag. The objectives of this study were essentially threefold: to assess the CO2 storage capacity achievable for each type of industrial residue correlating it to the particle size and to the chemical composition of the samples; to study the influence of the main operational parameters (temperature, pressure and liquid to solid ratio) on reaction kinetics; and finally to investigate the effects of carbonation on the mineralogy and leaching behaviour of the residues. The study on olivine dissolution kinetics showed that, under all the examined operating conditions (pH range 3-8), the only factor governing the specific dissolution rate was the pH of the solution. Hence CO2 pressure and salinity appeared to influence olivine dissolution kinetics only indirectly, by affecting the final pH of the solution. This is a significant finding, since it implies that carbonate precipitation, which occurs in presence of high pressure CO2 at pH values above 6, and olivine dissolution could theoretically be carried out in the same reactor without inhibition effects on Mg dissolution kinetics. As for the effects of accelerated carbonation on the leaching behaviour of the studied alkaline residues, significant results were obtained in particular for the BA and APC residues; for both types of materials, accelerated carbonation showed to exert a strong immobilization effect on Pb, Zn and Cu, which were among the critical elements in terms of heavy metal leaching for both types of untreated residues. For APC ash, chemical speciation modelling indicated a change in the solubility-controlling minerals from the untreated to the carbonated ash. For the latter, metal release was found to be clearly controlled by a number of carbonate minerals, indicating the potential of the carbonation process to convert the initial metal-containing minerals into generally less soluble carbonate forms, with positive implications on the environmental behaviour of the ash. Significant CO2 uptakes were achieved in particular for the APC ash (250 g/kg residue); however, owing due to the meagre quantities of this material generated in incineration plants compared to CO2 emissions, accelerated carbonation of this type of industrial residues, as well as of bottom ash, does not appear to be a feasible process for CO2 storage. Accelerated carbonation of stainless steel slag instead, appears to be an interesting technique for carrying out mineral storage of carbon dioxide in industrial facilities using part of the waste streams generated in the same plant, although more severe operating conditions than those used in this work should be applied in order to increase the CO2 uptake of the slag.
Le reazioni di carbonatazione di specifiche tipologie di minerali e materiali di diversa origine, come ad esempio malte cementizie o calce, costituiscono un ben noto processo naturale che produce una serie di significativi effetti sugli stessi materiali alcalini, ed in particolare: lo stoccaggio di CO2 mediante la formazione di una fase carbonatica solida e termodinamicamente stabile, la riduzione del pH e modifiche del comportamento alla lisciviazione del materiale, oltre alla variazione di alcune proprietà fisiche e meccaniche. Dato che le cinetiche di reazione sono in genere molto lente in condizioni naturali, per sfruttare alcuni dei sopradetti effetti dell’invecchiamento chimico, come la stabilizzazione chimica di alcune tipologie di residui e lo stoccaggio minerale di CO2, sono stati investigati e sviluppati specifici processi di carbonatazione accelerata selezionando e controllando le condizioni operative in modo tale da incrementare significativamente le cinetiche di reazione. In funzione dell’applicazione del processo e della tipologia di materiale selezionato, sono state sperimentate diverse condizioni operative e differenti tipologie di trattamento (gas-solido, ad umido, ecc.). Il principale obiettivo della presente tesi di dottorato è stato quello di studiare sperimentalmente i processi di carbonatazione accelerata applicati sia a minerali che a residui industriali, così da ottenere nuove indicazioni relative ai meccanismi fondamentali influenzanti il processo per ogni tipologia di materiale analizzato. Lo studio del processo di carbonatazione accelerata di minerali ha riguardato in particolare gli effetti della presenza di CO2 ad alta pressione (fino a 100 bar) e di alcuni sali sulla cinetica di dissoluzione dell’olivina a 120 °C in un reattore agitato a flusso continuo per analizzare se queste sostanze esercitino un effetto positivo o al contrario limitante nei confronti della cinetica di dissoluzione del Mg. Esperimenti di carbonatazione in modalità batch su materiale umidificato (con rapporti liquido/solido <1 l/kg) sono stati eseguiti in condizioni operative blande (temperatura di 30-50 °C e pressione di CO2 pari a 1-10 bar) su residui di incenerimento di rifiuti solidi, in particolare scorie di fondo e ceneri volanti, e su scorie della produzione di acciaio inossidabile. Gli obiettivi di questo lavoro sono stati essenzialmente: la stima della capacità di sequestro ottenibile per ogni tipologia di residuo industriale correlata alla dimensione granulometrica e alla composizione chimica del campione; lo studio dell’influenza dei principali parametri operativi (temperatura, pressione e rapporto liquido solido) sulla cinetica di reazione; e ad ultimo l’analisi degli effetti della carbonatazione sulla mineralogia ed il comportamento alla lisciviazione dei residui. Lo studio della cinetica di dissoluzione dell’olivina ha mostrato che, per tutte le condizioni operative esaminate (pH variabile tra 3 e 8), l’unico fattore controllante il tasso specifico di dissoluzione è risultato essere il pH della soluzione. Dunque la pressione parziale dell’anidride carbonica e la salinità hanno mostrato di influenzare la cinetica di dissoluzione solo indirettamente, variando il valore finale del pH della soluzione. Questo risultato appare significativo, poiché implica che la precipitazione dei carbonati, che ha luogo in presenza di CO2 ad elevata pressione e valori di pH maggiori di 6, e la dissoluzione dell’olivina potrebbero essere teoricamente essere eseguiti nello stesso reattore, senza effetti di inibizione sulla cinetica di dissoluzione del magnesio. Per quanto concerne gli effetti della carbonatazione accelerata sul comportamento alla lisciviazione dei residui alcalini esaminati, significativi risultati sono stati ottenuti in particolare per i residui di incenerimento; per entrambi i materiali, la carbonatazione accelerata ha mostrato di esercitare un importante effetto di immobilizzazione nei confronti di Pb, Zn e Cu, i quali sono risultati essere elementi critici in termini di rilascio per entrambe le tipologie di residui tal quali. Per le ceneri volanti, i risultati ottenuti dalla modellazione geochimica dei dati ricavati dai test di lisciviazione condotti a pH variabile hanno mostrato una variazione nelle fasi minerali controllanti la solubilità di vari elementi tra campioni tal quali e campioni carbonatati. Per le ceneri trattate con CO2, il rilascio di metalli è risultato chiaramente controllato da una varietà di fasi carbonatiche, indicando la potenzialità di questo processo di convertire le iniziali fasi minerali contenenti i metalli in fasi carbonatiche meno solubili, con positive implicazioni per il comportamento ambientale di questa tipologia di residui. Significativi sequestri di CO2 sono stati ottenuti in particolare per le ceneri volanti (250 g/kg residuo); comunque, data l’esiguità dei quantitativi di questo materiale rispetto alle emissioni complessive di CO2 generate tipicamente negli impianti di incenerimento, il processo di carbonatazione su questa tipologia di residui, come sulle scorie di fondo, non risulta essere un processo efficace per lo stoccaggio di CO2. La carbonatazione accelerata di scorie di acciaieria è risultata invece una tecnica potenzialmente molto interessante per il sequestro minerale dell’anidride carbonica generata dallo stesso impianto industriale, per quanto condizioni operative più severe rispetto a quelle adottate nel presente studio dovrebbero essere applicate per incrementare il sequestro di CO2.
Costa, G. (2009). Accelerated carbonation of minerals and industrial residues for carbon dioxide storage [10.58015/costa-giulia_phd2009-08-07].
Accelerated carbonation of minerals and industrial residues for carbon dioxide storage
COSTA, GIULIA
2009-08-07
Abstract
Carbonation of specific types of minerals and anthropogenically derived products, such as cement or lime binders, is a well known naturally occurring process which exerts several significant effects on alkaline materials, including specifically: CO2 uptake by formation of a solid and thermodynamically stable carbonate phase, pH decrease and modifications of the leaching behaviour of the material, besides variations of some of its physical and mechanical properties. Since the kinetics of this reaction is very slow at ambient conditions, to exploit some of the above mentioned effects of chemical weathering for developing specific engineered processes, such as waste chemical stabilization and CO2 mineral storage, carbonation processes carried out under selected and controlled operational conditions have been developed, in order to significantly increase the kinetics of the reactions involved. Depending on the application of the process and the selected material, different operating conditions have been employed and several process routes have been tested. The main objective of this doctoral thesis was to investigate the accelerated carbonation process applied both to minerals and industrial residues in order to gain new insight on the key reaction mechanisms for each type of material. Regarding accelerated carbonation of minerals, the effects of the presence of high pressure CO2 (up to 100 bar) and salinity on olivine dissolution kinetics at 120 °C in a stirred flow-through reactor were specifically investigated, in order to assess whether these parameters may exert an enhancing or inhibiting effect on the kinetics of Mg dissolution. Batch carbonation experiments on humidified material (with liquid to solid ratios < 1 l/kg) at mild operating conditions (temperature of 30-50 °C and CO2 pressure of 1-10 bar) were specifically carried out on waste incineration residues such as bottom ash (BA) and air pollution control (APC) residues, as well as on stainless steel slag. The objectives of this study were essentially threefold: to assess the CO2 storage capacity achievable for each type of industrial residue correlating it to the particle size and to the chemical composition of the samples; to study the influence of the main operational parameters (temperature, pressure and liquid to solid ratio) on reaction kinetics; and finally to investigate the effects of carbonation on the mineralogy and leaching behaviour of the residues. The study on olivine dissolution kinetics showed that, under all the examined operating conditions (pH range 3-8), the only factor governing the specific dissolution rate was the pH of the solution. Hence CO2 pressure and salinity appeared to influence olivine dissolution kinetics only indirectly, by affecting the final pH of the solution. This is a significant finding, since it implies that carbonate precipitation, which occurs in presence of high pressure CO2 at pH values above 6, and olivine dissolution could theoretically be carried out in the same reactor without inhibition effects on Mg dissolution kinetics. As for the effects of accelerated carbonation on the leaching behaviour of the studied alkaline residues, significant results were obtained in particular for the BA and APC residues; for both types of materials, accelerated carbonation showed to exert a strong immobilization effect on Pb, Zn and Cu, which were among the critical elements in terms of heavy metal leaching for both types of untreated residues. For APC ash, chemical speciation modelling indicated a change in the solubility-controlling minerals from the untreated to the carbonated ash. For the latter, metal release was found to be clearly controlled by a number of carbonate minerals, indicating the potential of the carbonation process to convert the initial metal-containing minerals into generally less soluble carbonate forms, with positive implications on the environmental behaviour of the ash. Significant CO2 uptakes were achieved in particular for the APC ash (250 g/kg residue); however, owing due to the meagre quantities of this material generated in incineration plants compared to CO2 emissions, accelerated carbonation of this type of industrial residues, as well as of bottom ash, does not appear to be a feasible process for CO2 storage. Accelerated carbonation of stainless steel slag instead, appears to be an interesting technique for carrying out mineral storage of carbon dioxide in industrial facilities using part of the waste streams generated in the same plant, although more severe operating conditions than those used in this work should be applied in order to increase the CO2 uptake of the slag.File | Dimensione | Formato | |
---|---|---|---|
tesi dottorato Giulia Costa_final bis.pdf
accesso aperto
Licenza:
Copyright degli autori
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.