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Abstract We present a general scheme for analyzing the
performance of a generic localization algorithm for multi-
lateration (MLAT) systems (or for other distributed sensor,
passive localization technology). MLAT systems are used
for airport surface surveillance and are based on time dif-
ference of arrival measurements of Mode S signals (replies
and 1,090 MHz extended squitter, or 1090ES). In the paper,
we propose to consider a localization algorithm as composed
of two components: a data model and a numerical method,
both being properly defined and described. In this way, the
performance of the localization algorithm can be related to
the proper combination of statistical and numerical perfor-
mances. We present and review a set of data models and
numerical methods that can describe most localization algo-
rithms. We also select a set of existing localization algorithms
that can be considered as the most relevant, and we describe
them under the proposed classification. We show that the
performance of any localization algorithm has two compo-
nents, i.e., a statistical one and a numerical one. The statis-
tical performance is related to providing unbiased and min-
imum variance solutions, while the numerical one is related
to ensuring the convergence of the solution. Furthermore, we
show that a robust localization (i.e., statistically and numer-
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ically efficient) strategy, for airport surface surveillance, has
to be composed of two specific kind of algorithms. Finally,
an accuracy analysis, by using real data, is performed for the
analyzed algorithms; some general guidelines are drawn and
conclusions are provided.

Keywords Localization algorithms - Multilateration -
Time difference of arrival - Airport surface surveillance -
Air traffic control

1 Introduction

A Multilateration (MLAT) system detects, locates, and iden-
tifies cooperating targets by receiving and processing suitable
signals emitted by on-board transponder devices, accord-
ing to the Secondary Surveillance Radar (SSR) international
standards (e.g., the Mode A/C and Mode S signals). The com-
plete description of such systems is beyond the scope of this
paper, and the interested reader can refer to the international
standards [1,2] and to the technical literature [3-5]. These
systems were initially conceived for airport traffic surveil-
lance, including both aircrafts and some surface vehicles car-
rying onboard equivalent equipment called “non-transponder
device.” Later, they were extended to air traffic around one
or more airports, with the name of Wide Area Multilateration
(WAM).

In MLAT systems, receiving stations are placed in some
strategic locations around the area to be covered. The system
uses the Mode A/C- and Mode S-based transmissions, i.e.,
the spontaneous Mode S squitter, the asynchronous transpon-
der replies, as well as the responses to interrogations elicited
by the system itself. The received signals are sent to the Cen-
tral Processing Subsystem (CPS) where the transponder (i.e.,
the target) position is calculated [1,2]. In the standard ver-
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Fig. 1 MLAT system description

sion of MLAT systems, the localization is based on the time
difference of arrival (TDOA) principle, as shown in Fig. 1.

The TDOA principle consists in relating the unknown
target position, i.e., § = [x,y, 717, being T the transpose
operator, with a set of known parameters, i.e., the TDOA
measurements. They are the time of arrival (TOA) differ-
ences between the ith receiving station and a reference one
(normally designated as the number 1). The resulting func-
tion geometrically represents an hyperboloid, and it can be
expressed as follows:

—— 1
TDOA;1 (0) = - (16 — #ill — 116 — F11D) + ni1,
i=2,..., Ny ey

where the superscript” denotes that is an estimated quantity,
% = [xi, yi, z;]" is the ith station position, n; | is a TDOA
random noise term, which generally is assumed to be zero
mean Gaussian distributed [6], c is the speed of light, and N
is the total number of receiving stations. The TDOA mea-
surement (estimated) in (1) can be also defined as the range
difference measurement as follows:

m;1 (0) = cTDOA; | = (r; —r1) +n; 1, ()
where r; = ||@ — 9;||. Finally, in order to obtain a numerical

data concerning 0, a localization algorithm manipulates the
set of measurements in the form of (2) to construct and to
solve a system of equations, whose solution is an inverse
problem that can be generally expressed as follows:

Go +n =m, 3

where G is the coefficient matrix of the resulting inverse
problem, n is the measurement additive noise vector, and
m is the noiseless range differences vector. Thus, the aim
of a localization algorithm is to set both the matrix G and
the unknown transponder position vector @ and to obtain
a numerical value for @ that fits (3), under the additive
noise n.

It is well known that the position accuracy of MLAT sys-
tems depends on three elements, namely (1) the measure-
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ments accuracy, (2) the spatial distribution of the stations
(also called system geometry) that is quantified by the Dilu-
tion of precision (DOP) parameter, and (3) the localization
algorithm used to convert the TOA/TDOA measurements
space [i.e., the set of measurements in (1)] into the posi-
tion one, referenced to the Cartesian space (x, y, z) [7-9]. It
is generally assumed that the MLAT position errors can be
modeled by an unbiased Gaussian distribution with a given
variance, where the measurements accuracy and the geomet-
rical effects (i.e., as quantified by the DOP) set its minimum
variance values [9]. Nevertheless, this limit only represents
the best case for the system accuracy that can be achieved
with the corresponding measurements and system geometry.
In this sense, the fact that the operational system (regard-
less of the hardware implementation quality) reaches or not
this limit depends on the overall efficiency of the localization
algorithm.

Generally, the localization algorithms are classified into
two families: (1) open form (sometimes also called itera-
tive) and (2) closed form (sometimes also called direct). In
this classification, a localization algorithm is an entity that
reconstructs the target position, given a set of TDOA mea-
surements. The interested reader may see [7,10,11] and the
references therein for some guidelines in MLAT systems,
and [12] for an equivalent comparison for Global Position-
ing System (GPS) geolocation algorithms. However, really
(as we describe later), alocalization algorithm is composed of
a data model, which mathematically relates the unknown and
known parameters, by a system of equations, and a numerical
method to solve that system of equations. Hence, it is clear
that different data models can be used along with different
numerical methods (in fact in the recent years some works
[11,13-16] about this combination have been presented).

For this reason, one of the purposes of this paper is to pro-
pose an additional, wider, and fully compatible classification
for any localization algorithm. This classification is based on
aproposed scheme that defines a localization algorithm as the
pair composed by the data model and the numerical method.
In the same sense, an aim of this paper, after the analysis of
the most representative data model and numerical methods
in the open literature, was to provide general conclusions
and guidelines for applying them for MLAT surveillance. In
fact, following the proposed framework, the efficiency of any
localization algorithms can be divided in two components:
the first one is the statistical efficiency, which provides the
measurement about the bias and variance of the position error
distribution, and the second one is the numerical efficiency,
which is related to the possibility to provide a valid numerical
value (i.e., one obtained with convergence of the solution) for
the target position, regardless of the statistical characteristics
of it. It is clear that to achieve a suitable statistical efficiency,
the numerical one must be ensured. Normally when the DOP
[17] of the system presents good (i.e., limited) values, the
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analysis of the different localization algorithms is not critical
as most of them approximately reach the theoretical accuracy
with the same performance. However, when the DOP either
has large (or very large) values or rapidly changes (e.g., like
in airport surface because of the closeness of the receiving
stations), the overall efficiency of the localization algorithm
plays an important role on the system accuracy, which has to
be deeply analyzed and characterized.

Several works can be found in the literature regarding the
theoretical analysis (i.e., for the analysis of the lower, theo-
retical bounds of accuracy) of the MLAT systems [7-9], but
no general work was found, which analyzes the performance
of the various localization algorithms.

Last, to better understand the powerful of the classifica-
tion proposed, also some real TOA/TDOA data, recorded
from the airport surface movement of a vehicle equipped
with a “non-transponder device,” have been used to test
the most representative localization algorithms in the lit-
erature. Furthermore, the vehicle was also equipped with
a Differential Global Positioning System (DGPS) receiver,
thus supplying highly accurate position data, which is taken
as the true target position. Thus, the error distributions, for
every analyzed algorithm, are obtained. Finally, the general
guidelines about the localization algorithms performance are
provided.

This paper is organized as follows: The general frame-
work, the data model, and numerical methods descriptions

Fig. 2 General framework for
localization algorithms

Data Model

are provided in Sect. 2, while the corresponding simulation
and results, and the numerical analysis are shown in Sect. 3.
Finally, the conclusions and general guidelines about the per-
formed analysis are provided.

2 A general scheme for localization algorithms

In the frame of the localization problem in MLAT systems,
as described in Sect. 1, the target position is a set of values
that satisfies a set of equations, in the form of Egs. (2) and
(3). Localization algorithms are generally composed of a data
model and of a numerical method. The data model explic-
itly relates the unknown target position to the set of known
parameters by constructing a numerical inverse problem. The
numerical method aims to solve the resulting inverse prob-
lem. Finding a general scheme is useful for understanding all
the localization algorithms, to develop a general classifica-
tion for them, to facilitate an equivalent comparative analysis
among them, and to identify the advantages and disadvan-
tages of each of these. An exhaustive literature search and
posterior processing have allowed us to select and to compare
the most relevant and representative localization algorithms
using the scheme proposed in Fig. 2.

A localization algorithm starts by establishing a char-
acteristic equation relating the unknown target position 0,
the measurements m, the position ¥; of the MLAT stations,

Characteristic Equation
f0.m.9,2(0)), i=1,2,3,...

Open Form

Closed Form

Statistical
Approach

) (

Algebrazc
Approach

Numertcal
Approach

Inverse Problem
GO=m

(i) (o) () (o)
TR

Solution to Inverse Problem
D=solution(G,f)
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and (optionally) a derived parameter of the target position
0, which is denoted in Fig. 2 as g (). Then, the charac-
teristic equation is expressed according to its correspond-
ing data model. Furthermore, the data model is processed,
and some approximations, if applicable, are introduced to
set up an inverse problem. This inverse problem, as shown
in Eq. (3), is generally composed of a coefficient matrix
G, which mainly contains the information about the sys-
tem geometry, of a unknown position vector §, and a known
TDOA measurement vector m (note that, we have intro-
duced the additive noise term into the noiseless measure-
ment vector). Likewise, different pairs of coefficient matrix
and measurement vector will result in different localization
problems, i.e., every localization algorithm is, in principle,
characterized by its own coefficient matrix G and measure-
ment vector m. Finally, the inverse problem can be solved
by any of the available numerical methods, and thus, the
solution for the target position @ is obtained. A localiza-
tion strategy includes (1) a coefficient matrix, (2) a mea-
surement vector, and (3) a numerical method. In this sense,
the best localization algorithm, for a given scenario, is the
one that best fits to the particular conditions of such a sce-
nario with the best choice of the several component of the
algorithm.

Every localization algorithm can be classified in this pro-
posed scheme that is more accurate than the classical one that
(1) only define a localization algorithm as a unique entity
always in the sense of least squares, without taking into
account the data model and the numerical algorithms, and
(2) only classifies the algorithms only as open and closed
form. Both points do not take into account the most relevant
characteristics that set the algorithms performance. In this
new classification scheme, all the assumptions, the hypothe-
sis, and the performance limitation becomes clear for every
particular algorithms.

Furthermore, depending on the localization scenario, the
right combination of data model and numerical method
can be chosen; for example, in the case of airport sur-
face surveillance, the main constraints [1] are as follows:
(1) the high requested accuracy and (2) the bad geometry
that produces ill-conditioning of the inverse problem to be
solved.

The following subsections describe the most representa-
tive data models and numerical methods, their mathematical
background, and the different localization algorithms that
belong to each of them and to understand their possible per-
formance and limitation.

2.1 The data model
The characteristic equation, which was used before but not

formally defined, is very useful to explain the proposed clas-
sification of any localization algorithm. Basically, a charac-

@ Springer

teristic equation relates the unknowns to the measurements
collected by a set of receiving stations and their positions.
In this sense, when this relationship is transformed into a
vector-matrix form [see (3) or Fig. 1], for a set of N sta-
tions, it is called data model. Therefore, the data model rep-
resents the basic form for the particular inverse problem as
constructed by any localization algorithm. The data models
used by the different localization algorithms can be classi-
fied as (1) statistical, (2) numerical, and (3) algebraic. In
the following, the main characteristics of each of these are
described.

2.1.1 The statistical approach-based models

This class of models assumes certain statistical hypothe-
ses about the measurements and the target position and a
set a probabilistic model that relates to each other. Most of
them are based on the maximum likelihood (ML) principle
[18] due to the asymptotic consistency and efficiency of the
ML estimators (MLE). Concerning the measurement error
distributions, Gaussian distributions are generally assumed
[6,7,9]. To solve this kind of highly nonlinear models,
linear approximations and iterative numerical methods are
required. Consequently, a reasonable a-priori estimation of
the solution is needed and the convergence is not always
guaranteed, see [16] for a complete analysis of this problem.
The statistical approach algorithms are commonly classified
as open-form algorithms. On the other hand, if the statistical
hypotheses are satisfied by the measured data, these models
provide optimum estimators, i.e., estimators that are in prac-
tice unbiased and with covariance matrix very close to its
Cramer—Rao Lower Bound (CRLB) [9].

The statistical approach-based models require at least of
n + 1 stations for a n-dimensional localization. Moreover,
they provide a unique solution and introduce only linear
noise terms in the resulting inverse problem. The latter is
very important for wide area multilateration (WAM), where
the measurement noise due to propagation losses is consid-
erably large [9].

The typical problem that is solved by the localization algo-
rithms using this kind of data models is the maximization of
the likelihood function defined as follows:

A(9)

_ 1 3 -m®) N@ ! -m )]
@7)"T det (N (9))?
)

where m (@) describes the exact range differences asin Eq. (2)
without the random noise term, N () is the covariance matrix
of the measurement errors, and det () denotes the determi-
nant. Thus, the likelihood function is maximized by mini-
mizing the following nonlinear function:
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0@® = (h—m@®) N@® " (h—m@) (5)

It is the most general statistical data model considered here.
The algorithms to treat with this kind of models commonly
use a Taylor series approximation of the function m () to
obtain a linear relation that allows the construction of a lin-
ear inverse problem. This linear approximation is generally
expressed as follows:

m (§) =m (60) +J (6 — 60) . (6)

where J is the Jacobian differential matrix of m (9) (see [7,
11] for details), and @ is the required previous estimation of
the solution, also called starting point. The convergence of
the localization algorithms initially depends on the starting
point quality, although the numerical method that is used can
work with relatively poor accuracy for the starting points
[11].

The most relevant localization algorithms that uses this
kind of data models are those described in [19], which was
statistically described and analyzed in [7], and the ones pro-
posed in [11] and [16]. The main difference in these algo-
rithms is that the ones in [7,19] set the problem in the sense
of least squares (LS), while the one in [11] set the problem in
the sense of Tikhonov regularization, and the one in [16] in
the sense of the singular value decomposition (SVD)-based
regularization. The algorithms proposed in [11,16] allows
convergence even in the large DOP values situations.

2.1.2 The numerical approach-based models

These models set a mathematical function that relates the
unknown target position, the measurements, and a parame-
ter formally derived from the target position (e.g., the target
distance from one station). The resulting models are linear
in one unknown given the other one. Then, they assume cer-
tain numerical approximations between the target position
and its derived parameter in order to simplify the solution.
The most common assumed approximation is that of mutual
independence between them. These numerical approxima-
tions are independent of the statistical distributions of the
measurement errors. Most of them are based on setting an
error function whose squared norm is minimized. These mod-
els can be solved by direct optimization and do not require
any previous estimation of the solution; for this reason, the
algorithms based on them are commonly classified as closed-
form algorithms. Furthermore, normally, the computational
cost required to solve this kind of models is less than that
required for the statistical approach-based ones. On the other
hand, the solutions provided by them are generally biased and
not optimum in the statistical sense.

This kind of data model, depending on the numerical
assumptions, can require n + 1 or n + 2 receiving stations
for n-dimensional localization. Moreover, some of them can

provide two possible solutions for the target position as they
set a quadratic data model. Thus, these ones require an addi-
tional procedure to choose one of the two possible solutions.
Likewise, this data model always introduces quadratic noise
terms in the resulting inverse problem.

The typical error function € that is set by this kind of data
model can be, in a general sense, expressed as follows:

e =§ — 2R, — 2S0, @)

where § is a known vector that depends on the range differ-
ence measurements and on the station positions, R; is the
unknown target range with respect to a reference point (see
Fig. 1), S is a known matrix that may depend on both the
range difference measurements and on the station positions
(i.e., it is the matrix that contains the information about the
system geometry), and @ is the unknown target position. The
error function vector € in (7) is linear in R, given @ and vice
versa.

The most representative algorithms using this kind of
models are the one by Smith and Abel [20], the one by Fried-
lander [21], the one by Schau and Robinson [22], and the one
by Chan an Ho [23]. They are a suitable representation of the
most of the algorithms of this class. For example, the Smith
and Abel algorithm [20] mathematically solves (7) to obtain
Ry as a function of § and then uses this solution, again into
(7), to obtain the corresponding solution for §. These two
solutions are obtained by minimizing the square root of €.
The Friedlander algorithm assumes € = 0 and multiplies the
resulting problem by a matrix that contains the measurement
vector m (@) in its null space, thus eliminating the term R
from (7). The Schau and Robinson algorithm also assumes
e = 0, obtains two possible solutions for R; by using an
auxiliary quadratic equation that, in some sense, depends on
(7), and finally obtain two possible solutions for by solving
(7) in the sense of LS. The Chan and Ho algorithm solves (7)
in the same sense of Smith and Abel, but it jointly estimates
R and . Due to the dependence of these two parameters,
Chan and Ho implement a quadratic correction that updates
the squares of the target position components. This algorithm
also provides two possible solutions.

2.1.3 The algebraic approach-based models

These models use neither statistical assumptions nor numeri-
cal approximations, but, rather, they algebraically manipulate
the hyperbolic equations (2) to directly set an inverse problem
that linearly relates the unknown target position to the known
parameters (i.e., the measurements and the station positions).
These models are very simple as only geometric relations are
used. By contrary, they normally require more stations and
introduce quadratic and cubic noise terms into the inverse
problem. Like the numerical approach-based models, they
do not require any previous estimation of the solution and
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can be solved by direct optimization; hence, the algorithms
that use these models are also classified as closed-form algo-
rithms. The solutions provided by them are also biased and
not optimum in the statistical sense. For this reason, in the
literature, this kind of algorithms is classified into the same
group of those ones that use a numerical data model. How-
ever, as we will show later, the performance provided by
the algebraic data model is better than the one provided by
the numerical data models. On the other hand, most of them
require the lowest computational resources for solving the
resulting inverse problem.

This kind of data model can require n 4 1 or n 4 2 sta-
tions for n-dimensional localization, and as the numerical
approach-based models, they can provide one or two possi-
ble solutions for the target location, calling for an additional
procedure to choose one of them. An advantage of this kind
of data models above to the numerical ones is that because of
the lack of numerical assumptions, these models can provide
higher accuracies with a smaller number of stations.

These algorithms are computationally the simplest. The
typical algebraic data model can be expressed, in general
sense, as follows:

Ax+By+Cz=D ®)

where (x, y, z) are the components of the target position 9,
and A, B, C, and D are coefficients that depends on the mea-
surements and on the positions of a set of stations. Differ-
ent set of coefficients A, B, C, and D means different local-
ization algorithms. The most relevant algorithms using this
data model are the one by Schmidt [24], the one by Geyer
and Daskalakis [25], and the one only published in the open
license website Wikipedia® [26]. Particularly, the Geyer and
Daskalakis [25] algorithm is a practical implementation of
the Bancroft algorithm [27], which was originally proposed
for GPS and that is based on TOA measurements rather than
TDOA or range differences. It is the only one that set a data
model something different than that of Eq. (8).

2.2 Numerical methods

The resulting linear inverse problem G§ = m [see (3) or
Fig. 1], and obtained by any data model, must be numeri-
cally solved. In addition to the fact that the matrix G and the
measurement vector m, for every particular localization algo-
rithm, can take a particular form, the numerical efficiency of
every particular solution strongly depends on the numerical
method used to solve that inverse problem. As commented
before, most numerical method suited to solve the resulting
linear inverse problem belongs to the least-squares family,
i.e., use the pseudoinverse matrix [28]. Moreover, among the
models based on the statistical approach (that require iterative
procedures because the nonlinearities involved), the Gauss—
Newton method [19] is the most commonly used. However,
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the latter can be also seen as an iterative solution in the sense
of least squares. In the following, the most relevant numerical
methods, found in the literature, are shortly described.

The least-squares method solves the following residual
error norm minimization problem:

6 = argmin [ Go — i’ ©)

The solution § provided by (9) is known to be the minimum
residual norm when solved by the pseudoinverse matrix [28].
However, this solution is not always numerically stable, and
hence, it does not always provide acceptable accuracies. As a
matter of fact, in many operational conditions, the coefficient
matrix G has some linearly dependent rows, i.e., the corre-
sponding DOP parameter takes large values. This situation
has been analyzed in [9, 16].

Other robust numerical methods do exist and have been
recently implemented for the MLAT localization problem.
These algorithms include the Tikhonov regularization, the
SVD, and the total least-squares (TLS) regularization. They
are intended to provide numerical stable solutions and solve
a modified version of the residual error norm in Eq. (9).

The Tikhonov regularization solves a linear combination
of the residual error norm in (9) and an auxiliary norm called
“smoothed” norm, as follows:

brithonon = argmin {[Go —|” + 22 [LoI} . (10)

where A and L are called regularization parameter and matrix
of Tikhonov, respectively, and the term || L@ is the smoothed
norm. The regularization parameter and the matrix must be
previously estimated. The authors in [11] provide and simple,
but efficient procedure for that estimation in MLAT localiza-
tion.

The SVD-based regularization, specifically the Truncated
SVD (T-SVD), solves an equivalent minimization problem
to (9) but by using a modified (truncated) version of matrix
G, as follows:

I

fr—svp = arg mein |Gro—nh|”, (11)
where Gy, is the modified version of G, and k is known as the
“truncation parameter.” The matrix Gy is obtained by filter-
ing out the n — k last singular values [28] of matrix G, where
n is the number of columns of matrix G (i.e., the number of
target coordinates to be estimated). Thus, if the correct trun-
cation parameter k is estimated, then the modified matrix Gy
is numerically stable and does not contain linearly dependent
rows, allowing a suitable numerical solution to the problem
in Eq. (11). A procedure to obtain the truncation parameter
and the corresponding modified matrix Gy is described in
[16] for MLAT localization.

The TLS-based regularization, specifically the Truncated
TLS (T-TLS), assumes that also the coefficient matrix G is
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perturbed by some errors and, under this assumption, solves
the following LS problem:

Or-TLS
= argmin, ” (G, m], g — [é, fﬁ’] ”F subject to m’ = G@
(12)

where G is the perturbed coefficient matrix, m’ is the equiv-
alent perturbed version of the measurement vector, |||
denotes de Frobenius norm of a matrix [28], kTr—_TLs is the
corresponding T-TLS truncation parameter, and the matrix
[G, ﬁl] kro1Ls is a modified version of matrix [G, ﬁl]. The
notation [A, b] means that the vector b extents the matrix A
to the right in one column. Some particular application of
T-TLS method, for some numerical data model-based algo-
rithms, can be found in [13,14]. The corresponding proce-
dures depend on some parameters that are not explicitly pro-
vided; thus, no equitable comparison can be achieved.

3 Simulation and results

In order to help us to compare the various localization algo-
rithms, the company ERA A.S. has provided us with a record
of TDOA measurements of one of its operational systems, the
MLAT system installed at Tallinn airport (Tallinn, Estonia).
This is a particular localization problem for surface surveil-
lance. The system is composed of fourteen receiving stations,
and the record of TDOA measurements was taken through
the entire airport surface following the requested procedures
by the European regulatory bodies [1]. The record contains
more than 4000 register (with an average period of 1 s), where
each register contains set of TDOA measurements. More-
over, the company above mentioned has provided highly
accurate position reference data, simultaneously recorded
with a GPS receiver with differential correction capabilities
(DGPS). These data are used to calculate the 2D error of the
various analyzed localization algorithms. The system layout
and the reference position data are depicted in Fig. 3. This
data set has been chosen because of some critical environ-
mental situations during its collection.

Fig. 3 Tallinn MLAT system
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In this scenario, also considering the main constrains cited
in Sect. 2, we are looking for statistically (not biased) and
numerically (always converging) efficient algorithm. Follow-
ing the general scheme that we propose, the best choice is
the combination of a statistical approach (usually not biased)
along with a regularized numerical method (e.g., Tikhonov or
T-SVD), to manage the numerical instability of the solution
due to the not suitable geometry conditions.

To validate this statement, we have simulated the localiza-
tion algorithms by Schmidt [24], Foy [19], Smith and Abel
[20], Friedlander [21], Schau and Robinson [22], Chan and
Ho [23], the application of Bancroft by Geyer and Daskalakis
[25], and the Wikipedia® [26]. All of these algorithms use
the least-squares numerical method.

Moreover, we also have simulated the particular applica-
tions of Tikhonov and T-SVD regularization methods to the
statistical approach proposed by the authors in [11] and [16].

For the localization algorithms using a statistical app-
roach-based model, which require for a starting point, we
have used the one provided by the Schau and Robinson algo-
rithm. Moreover, for those algorithms that require choosing
one of the two possible solutions (i.e., the Schau and Robin-
son algorithm, the Chan and Ho, and the Bancroft), we have
used the same selection procedure.

To evaluate the accuracy of the above-mentioned algo-
rithms, we followed the indication of the regulatory body,
and we have calculated the target position through the entire
path depicted in Fig. 3 and obtained, for each of them, the
corresponding 2D (x, y) error against the DGPS reference
position data. Then, the standard deviation and mean of each
error distribution are obtained, as described in [1,2]. These
values are shown in Table 1.

As we can see from Table 1, all the localization algo-
rithms solved in the sense of LS provide very large values of
standard deviation and mean, significantly much greater than
the requested one for surface surveillance [1]. In this sense,
the Schmidt, Friedlander, and Wikipedia algorithms provide
the smallest values of standard deviation and mean (385 and
37m, respectively). Then, the Smith and Abel, Schau and
Robinson, and Bancroft algorithms provide greater values.
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Table1 Standard deviation and mean for the error distribution of every
localization algorithm

Model Algorithm o (m) Mean (m)
A Schmidt 385.93 39.74
S Foy NaN NaN

N Smith and Abel 614.66 67.16
N Friedlander 385.15 36.67
N Schau and Robinson 616.26 108.62
N Chan and Ho 737.49 876.57
A Bancroft 456.06 97.61
A Wikipedia 384.66 35.38
S Statistical + Tikhonov 61.79 12.57
S Statistical + T-SVD 65.03 12.75

Values in meters (N numerical, S statistical, A algebraic). NaN not a
number

The Foy algorithm is the one with the greatest error values,
providing no useful average performance mainly due to lack
of convergence (i.e., NaN: Not a Number), through the entire
path. Regarding the Chan and Ho algorithm, which provides
the largest value of mean (with the exception of Foy algo-
rithm), the reason is its low capability of jointly obtaining the
target range and the target position. In this case, when this
algorithm applies the quadratic correction [23], as the target
range is highly inaccurate (in some cases negative), this cor-
rection also leads to a highly inaccurate positions. We have
found that if only the first solution of this algorithm (i.e.,
before the quadratic correction), for target position, is taken
as the final one, it presents an equivalent performance as
Smith and Abel algorithm. We do not show these additional
results because our objective was to analyze the complete
algorithm and its main improvement, which basically is the
quadratic correction of the first target position estimation.
The main reason for the large values of standard deviation
and mean is the conditioning of the localization problem for
this scenario, a surface movement scenario with the stations
close to each other.

Finally, the localization algorithms solved in the sense
of Tikhonov and T-SVD provide the best values of stan-
dard deviation and mean. This algorithms use a statistical
approach-based models as Foy algorithm does. It is clear how
these numerical methods allow the convergence of such sta-
tistical model and then, in agreement with the theory, provide
the most statistically efficient solutions (minimum standard
deviation and mean).

Moreover, as requested in [1], during the measurements
recording, the surface vehicle must stop in some particular
points of the airport, and measurements are recorded for a
certain period. This step permits knowing the general system
accuracy, through time, in those points, as several trials are
performed. In this paper, we present the results for two of
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Table2 Standard deviation and mean for the error distributions at point
A

Model Algorithm o (m) Mean (m)
A Schmidt 4451 30.93
S Foy 6.7 94

N Smith and Abel 61.9 14.23
N Friedlander 21.9 20.71
N Schau and Robinson 335 103.19
N Chan and Ho 839 1005
A Bancroft 178 98

A Wikipedia 22.23 21.51
S Statistical 4+ Tikhonov 5.5 7.7

S Statistical + T-SVD 44 6.7

Values in meters (N numerical, S statistical, A algebraic)

Table3 Standard deviation and mean for the error distributions at point
B

Model Algorithm o (m) Mean (m)
A Schmidt 11.06 20.10
S Foy 6.48 12.52
N Smith and Abel 15.49 18.82
N Friedlander 16.01 22.71
N Schau and Robinson 834 194

N Chan and Ho 842 1135
A Bancroft 220.54 135.92
A Wikipedia 9.94 15.16
S Statistical + Tikhonov 2.5 9.16

S Statistical + T-SVD 33 9.88

Values in meters (N numerical, S statistical, A algebraic)

these points, which are depicted in Fig. 3 as A and B. The
corresponding standard deviations and means are shown in
Tables 2 and 3, respectively.

From Tables 2 and 3, we can observe roughly the same
ranking of algorithms for these particular analyses. Further-
more, for all the analyzed algorithms, the standard deviation
and means are smaller than the corresponding values for the
entire path. This analysis as at fixed target position is use-
ful to set some more remarks. First, the algebraic approach-
based models (i.e., the Schmidt and Wikipedia algorithms)
approximately provide the best accuracy values among the
closed-form algorithms (i.e., among the numerical and alge-
braic approach-based models). This behavior is strongly con-
nected with the fact that they do not make any assumption, nor
statistical neither numerical. From the numerical approach-
based model algorithms, those that directly provide only one
solution (i.e., Smith and Abel, and Friedlander algorithms)
also provide acceptable accuracy values, while those ones
that provide two possible solutions, i.e., which solve a kind
of quadratic problem, are highly dispersed. Then, the statisti-
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cal approach-based models algorithms provide the most sta-
tistically efficient solutions for airport surface surveillance.
Moreover, for these particular points (A and B), the Tikhonov
and T-SVD applications provide the best results among the
analyzed algorithms. The reason for this superior perfor-
mance is that these algorithms have the statistical efficiency
of the statistical approach-based models, and the numerical
robustness of the regularization techniques, which basically
ensure the convergence under a larger number of situations.
Note that, for the statistical approach-based models, we use,
as the starting point, the solution provided by Schau and
Robinson algorithm, which presents large standard deviation
an mean values.

Finally, it has to be explained that, in the Central Process-
ing Subsystem (CPS) of any MLAT system, there is always
implemented a set of tracking algorithms [29], which signif-
icantly reduce the standard deviation of the “rough” output
of an MLAT localization algorithm. However, this paper was
not aimed to carry out the performance analysis of those
tracking algorithms but, rather, to analyze the performance
of the sole localization algorithms. In fact, the more accurate
the data of these algorithms are, the more accurate the results
of the tracking algorithms.

4 Conclusions

We have proposed a general scheme to understand and to
compare standard and novel [11,16] localization algorithms
for MLAT. In this framework, a localization algorithm is
characterized by a data model and a numerical method. For
the data models, we propose three different approaches that
encompass the most of localization algorithms in the litera-
ture. This classification is fully compatible with the current
one, which only classifies the algorithms as open- or closed-
form algorithms.

We have tested all the described localization algorithms
for a real data scenario. In this application (airport surface
surveillance), we have found that the statistically optimal
solutions are provided by the algorithms using a statistical
approach-based model, as long as the statistical hypotheses
are met and the algorithm convergence is reached. How-
ever, the convergence of these algorithms when solved in the
sense of least squares is not always guaranteed. We have also
shown the novel result that the corresponding convergence
can be guaranteed when using regularization techniques like
Tikhonov or T-SVD, as proposed from the authors. For
this application, the first one (Statistical + Tikhonov) shows
always the best results.

Concerning the algorithms that use a numerical approach-
based model, they are by definition no statistically opti-
mal, but some of them provide better convergence and
a low computational cost. However, they may need suit-

able geometrical conditions to obtain satisfactory results.
Regarding the algorithms that use an algebraic approach-
based model, they also are not statistically optimal. How-
ever, due to their nature, they provide a stable performance.
Moreover, they also need a greater minimum number of
stations.

In general, there is no “superior” algorithm that provides
the best performance under any scenario or any situation
(i.e., from short range, 2D localization to long range, 3D
localization, and with different layout). Therefore, a previous
analysis of the algorithms performance is always advisable.
Likewise, in order to obtain the most efficient localization
strategy, it is advisable to use the combination of a statisti-
cal approach-based model algorithm (that is, an open-form
algorithm) along with an algebraic approach-based model
algorithm (a closed-form algorithm).
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