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Summary

Objective: To determine whether it is possible to predict Class  III treatment outcomes on the 
basis of a model derived from a combination of computational analyses derived from complexity 
science, such as fuzzy clustering repartition and network analysis.
Methods: Cephalometric data of 54 Class  III patients (32 females, 22 males) taken before 
(T1, mean age 8.2 ± 1.6  years) and after (T2, mean age 14.6 ± 1.8  years) early rapid maxillary 
expansion and facemask therapy followed by fixed appliances were analysed. Patients were 
classified at T1 on the basis of high membership grade into three main dentoskeletal fuzzy cluster 
phenotypes: hyperdivergent (HD), hypermandibular (HM), and balanced (Bal) phenotypes. The 
prevalence rate of successful and unsuccessful cases at T2 was calculated for the three clusters 
and compared by means of Fisher’s exact test corrected for multiple testing (Holm–Bonferroni 
method).
Results: Unsuccessful cases were 9 out of 54 patients (16.7%). Once patients were framed into their 
cluster membership, the individualized pre-treatment prediction of unsuccessful cases was largely 
differentiated: HD and HM patients showed a significantly greater prevalence rate of unsuccessful 
cases than Bal patients (0% in Bal cluster, 28.6% in HM cluster, and 33.3% in HD cluster). Network 
analysis captured some noticeable interdependencies of Class  III patients, showing a more 
connected interactive structure of cephalometric data sets in HM and HD patients compared with 
Bal patients. The results were confirmed after minimizing the geometrical connections between 
cephalometric variables in the model.
Conclusions: Fuzzy clustering repartition can be usefully used to estimate an individualized risk of 
unsuccessful treatment outcome in Class III patients.

Introduction

Our understanding of malocclusions and how best to treat them is 
hampered by the complexity of the craniofacial system in which they 
are manifested (1–3). Treatment outcomes for Class III malocclusion 

patients are dependent on multiple factors including growth char-
acteristics, facial morphology, environmental factors, direction and 
magnitude of corrective forces, treatment timing and duration, 
and patient’s compliance (4–6). While several studies (7–10) have 
been useful to understand Class  III growth patterns, the different 

European Journal of Orthodontics, 2014, 1–11
doi:10.1093/ejo/cju038

 The European Journal of Orthodontics Advance Access published September 4, 2014
 by Paola C

ozza on Septem
ber 9, 2014

http://ejo.oxfordjournals.org/
D

ow
nloaded from

 

mailto:lorenzo.franchi@unifi.it?subject=
http://ejo.oxfordjournals.org/


uncontrollable variables that can affect the co-morphologies of 
craniomaxillary and mandibular complexes in this dentoskeletal 
imbalance make statistical studies, as well as the individual growth 
trajectory, largely unachievable. Therefore, the prediction of treat-
ment success or failure in a single patient based on few morphomet-
ric determinants is problematic (11). Additional confounding factors 
in the prognosis of Class III malocclusion reside into the coexistence 
of various types of skeletal patterns and progression in the same 
patient: owing to different co-occurrence of characteristics, each 
child will exhibit his/her own particular phenotypic combination of 
unbalanced features (3).

Facial growth and development is a strictly controlled biological 
process, in which atypical growth begins when the biological bal-
ance is disturbed. Recently, researchers have developed the ability of 
addressing to a more holistic diagnostic perspective inspired by com-
plexity science, by developing models made up of interacting crani-
ofacial components (3,6,12–15). Class III craniofacial pattern can be 
considered as a complex biological nonlinear system, a collection of 
components whose actions are interconnected so that one compo-
nent’s action changes the context for other components (12-15). In 
complex biological systems (e.g. the brain, the immune system, the 
cell, and the ecosystems), the richness of interactions makes that the 
whole system is greater than the sum of its parts, due to cooperation 
phenomena between structures, connectivity, and mutual empower-
ment. These systems must be analysed in their entirety as a coherent 
unit: it is the pattern that matters, not the identity of the components 
(15). Macroscopic collective behaviours, such as ‘emergent order’, 
‘self organization’, and ‘criticality’, originate from a network of local 
phenomena such as evolutionary preferential attachment (16), con-
vergence toward attractors (17), competitive or cooperative behav-
iours, and others (18,19).

Each orthodontic patient exhibits the convergence of disparate 
clinical and radiological features pertaining to Class  I, II, and III 
malocclusions. Therefore, a possible approach to a growing patient 
with a malocclusion refers to a probabilistic many-valued logic 

called fuzzy logic (20). Fuzzy clustering analysis allows the assign-
ment and quantification of the individual membership grade to a 
specific cluster (for instance, the predominant Class III malocclusion 
features) and also the identification of a minor membership grade to 
other clusters (for instance, minor Class I malocclusion features in 
the same patient) (3).

Recently, fuzzy clustering approach has been able to correctly 
define the individual evolutionary craniofacial pattern (‘growth 
strategy’) and the linearity/randomness of the craniofacial trajectory 
during the Class III growth process (3).

Recent advancements in complexity science have made available 
further computational tools of analysis of large data sets in problems 
involving multiple interacting agents, reducing a biological and/or 
medical system in a simplified representation that captures the struc-
ture of co-occurrences between components, allowing the huge quan-
tity of factors to be examined simultaneously. Such patterns of local 
and global interconnection are called networks (16,17). The network’s 
inference allows to derive information on the identity and the state of 
the elements of a system, their functional relationships, and it extracts 
biological insight and prediction in complex biological processes.

Through networks, the growing craniofacial system can be mod-
elled as an aggregate structure of a variety of agents in which the 
clinical (radiographic, functional, etc.) characteristics can be trans-
formed into nodes, and the relationships between these nodes are 
referred to as links (19). Each component of the network can be 
regarded as a processing unit of information. In the simple network 
shown in Figure 1, at first glance, some nodes appear to have more 
links with other nodes (B, I, and L). A more accurate analysis reveals 
that a very critical role is played by node F, which is a crucial inter-
mediary node. Most of the information circulating in the system 
must flow from this node. If node F is removed, the network is dis-
assembled into three groups of nodes that are no longer connected. 
Thus, node F plays a control role (intermediation, or ‘betweenness’) 
among the other network nodes, though it does not have a high cen-
trality score (number of links of the node or ‘degree’).

Figure 1. A simple Network.
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Transferring the network approach to orthodontics (in network 
analysis each node represents a cephalometric parameter, and the 
value of the link is the strength of the correlation between the nodes) 
can enable the identification of some general rules governing the pro-
gression of the craniofacial system (3,21).

As these analyses have been able to deepen the relevance of crani-
ofacial components in influencing the growth process (3,20), and as 
the poor treatment response to Class III malocclusion often reflects a 
condition that includes a growth disorder, the aim of this study was 
to determine whether it would be possible to predict the treatment 
outcomes in a group of 54 Class III growing patients on the basis of 
a model derived from fuzzy clustering repartition. Furthermore, the 
capability of the network analysis to identify sites of dentoskeletal 
imbalance and self-corrective combinations during treatment was 
analysed.

Subjects and methods

Subjects
The first step of the current investigation was to collect cephalo-
metric data on a large cross-sectional sample of untreated Class III 
subjects (both males and females) in order to identify Class III phe-
notypic groups at different chronologic ages by using fuzzy cluster 
analysis. This analysis was described already in a previous study (3) 
in which it was used to evaluate craniofacial growth in a sample of 
untreated Class III female subjects.

Pre-treatment lateral cephalometric records of 514 (241 males 
and 273 females) Class III Caucasian patients (including 54 treated 
patients), collected from the Department of Orthodontics of the 
University of Florence, Italy, and from the Graduate Orthodontic 
Program at the University of Michigan, Ann Arbor, Michigan were 
analysed. All subjects were enrolled previously in large descriptive 
estimates of craniofacial growth in Class III malocclusion (7,9) and 
in two clinical studies (22,23). The age ranged from 7  years and 
1 month to 10 years and 11 months.

To be included in this study, the subjects had to satisfy all of the 
following criteria:

1. Caucasian ancestry;
2. no orthopedic/orthodontic treatment prior to cephalogram;
3 diagnosis of Class  III malocclusion based on anterior crossbite, 

accentuated mesial step relationships of the primary second 
molars, permanent first molar relationship of at least one-half cusp 
Class III, a negative Wits appraisal (<−2 mm), and ANB angle less 
than 0;

4. no congenitally missing or extracted teeth; and
5. no craniofacial syndromes.

Cephalometric analysis
The 514 subjects were examined separately in four age groups at 
7 years (100 subjects, 35 males and 65 females), 8 years (168 sub-
jects, 80 males and 88 females), 9 years (146 subjects, 74 males and 
72 females), and 10 years (100 subjects, 52 males and 48 females) 
of age.

A cephalometric analysis comprising 22 variables (10 linear and 
12 angular; Table  1) was performed. The data contained in each 
cephalogram were entered into cephalometric software (Dentofacial 
Planner Plus™, Version 2.5, Toronto, Ontario, Canada). A standard-
ized enlargement factor (8%) was applied to all linear cephalometric 
measurements. The error of the method for the cephalometric meas-
urements was evaluated by repeating the measures in 30 randomly 
selected cephalograms (Dahlberg’s formula). Error was on average 
0.8 degree for angular measures and 0.9 mm for linear measures.

Fuzzy clustering
Clustering is the process of partitioning a finite collection of n ele-
ments into class or clusters so that items in the same class are as 
similar as possible through minimization of intracluster variance. In 
‘hard’ clustering, data are divided into distinct clusters, where each 
data element belongs to exactly one cluster; in ‘fuzzy’ clustering, 

Table 1. Cephalometric variables

Cephalometric variable Definition

S–N (mm) Antero-posterior length of the cranial base
NSAr (degrees) Saddle angle
S–Ar (mm) Distance from point sella to point articulare
SNA (degrees) Antero-posterior position of the maxilla to the anterior cranial plane
Co–A (mm) Midfacial length as distance from point condylion to point A
SNB (degrees) Antero-posterior position of the mandible to the anterior cranial plane
Co–Gn (mm) Mandibular length as distance from point condylion to point gnathion
ANB (degrees) Antero-posterior relation of the maxilla to the mandible
Wits (mm) Wits appraisal
SN–Pal. Pl. (degrees) Inclination of the palatal plane in relation to anterior cranial base
SN–Mand. Pl. (degrees) Inclination of the mandibular plane in relation to the anterior cranial base
Pal. Pl.–Mand. Pl. (degrees) Inclination of the palatal plane in relation to the mandible plane
ArGoMe (degrees) Gonial angle
N–Me (mm) Anterior face height
Co–Go (mm) Mandibular ramus height, distance between point condylion and point gonion
Go–Pg (mm) Distance between point gonion and point pogonion
Overjet (mm) Distance measured along the occlusal plane from the incisal edge of the maxillary cen-

tral incisor to th most facial aspect in the incisal third of the mandibular central incisor
Overbite (mm) Vertical distance between incisal edges of the maxillary and mandibular central incisors
U1–Pal. Pl. (degrees) Angle between the axis of the maxillary central incisor and the palatal plane
FMIA (degrees) Angle between Frankfort horizontal and the axis of the mandibular central incisor
IMPA (degrees) Angle between the axis of the mandibular central incisor and the mandibular plane
Interincisal angle (degrees) Angle between the axes of the maxillary and the mandibular central incisors
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analysis elements can belong to more than one cluster. Fuzzy cluster 
analysis is able to divide the subjects into classes and allows the indi-
vidual membership grade to be assigned to a specific main charac-
teristic (‘winner cluster’) and also to identify the minor membership 
grade with the other characteristics (20). A  subject belonging, for 
example, to a cluster of hyperdivergence can share some character-
istics with a subject belonging to a cluster of mandibular progna-
thism. Fuzzy clustering algorithms measure the degree of belonging 
for each orthodontic feature vector in a cluster. Each feature vector 
may be assigned to multiple clusters with some degree of sharing, 
as measured by the membership function, to make more informed 
decisions about the timing and type of orthodontic interventions (3).

The output of fuzzy cluster analysis gives values representing 
the membership grade to individual cluster. These membership lev-
els indicate the strength of the association between data elements 
and a particular cluster (20,24). The analysis was performed on 
the Class  III cross-sectional sample by using the KNIME software 
(KNIME Desktop version 2.7.4 available at http://www.knime.org). 
After having subjected combinations of three to six variables to clus-
ter analysis, the following five parameters provided the best pheno-
typic grouping of patients: Co–A, Co–Gn, gonial angle (ArGoMe), 
palatal plane to mandibular plane, and overjet. The fuzzy algorithm 
converts the input value (‘crisp inputs’, i.e. the 22 cephalometric var-
iables) in a fuzzy membership function. All subsequent applications 
of the fuzzy inference is not supervised by the operator. The output 
is determined by the KNIME software on the basis of the maximum 
‘degree of truth’ in asserting the membership grade of the subjects 
to the clusters (20).

In fuzzy clustering, every point has a degree of belonging to clus-
ters, as in fuzzy logic, rather than belonging completely to just one 
cluster. Thus, points on the edge of a cluster may be in the cluster 
to a lesser degree than points in the center of cluster. Any point x 
has a set of coefficients giving the degree of being in the kth cluster 
wk(x). With fuzzy c-means, the centroid of a cluster is the mean of all 
points, weighted by their degree of belonging to the cluster:

 c
w x x

w x
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m
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m

x
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The degree of belonging, wk(x), is related inversely to the distance 
from x to the cluster center as calculated on the previous pass. It also 
depends on a parameter m that controls how much weight is given 
to the closest center.

Fuzzy cluster analysis defined three clinical clusters: subjects with 
increased mandibular dimensions [hypermandibular (HM) cluster], 
subjects with increased maxillomandibular divergence [hyperdiver-
gent (HD) cluster], and subjects with intermediate characteristics 
between the first two (balanced or Bal cluster).

Fuzzy cluster membership was then evaluated in a subsample of 
54 Class III patients (22 males and 32 females) treated consecutively 
with Rapid Maxillary Expansion and Facial Mask (RME/FM) ther-
apy followed by comprehensive preadjusted edgewise therapy. This 
treated sample was collected from the Department of Orthodontics 
of the University of Florence, of the University of Rome Tor Vergata, 
and from the Graduate Orthodontic Program at the University of 
Michigan. All patients previously were enrolled in clinical studies 
(22,23).

Inclusion criteria for the treated sample were the same as those 
used for the cross-sectional untreated sample. For each patient of 
the treated group, fuzzy cluster membership was calculated before 

therapy (T1, mean age 8.2 ± 1.6 years) when the pre-treatment lateral 
cephalogram was taken (treated group: 7 years, 13 subjects, 4 males 
and 9 females; 8 years, 13 subjects, 3 males and 10 females; 9 years, 
15 subjects, 8 males and 7 females; 10 years, 13 subjects, 7 males and 
6 females). All 54 patients were re-evaluated with a lateral cephalo-
gram at the end of the second phase treatment with fixed appliances 
(T2, mean age 14.6 ± 1.8  years). Details about the Class  III treat-
ment protocols used in this sample have been described previously 
(22, 23). On the lateral cephalograms at T2, an evaluation of suc-
cessful or unsuccessful outcome was carried out. Unsuccessful treat-
ment was defined as the concurrent presence of Class III permanent 
molar relationship and negative overjet, as reported previously (25). 
The majority of the subjects showed a prepubertal stage of skeletal 
development (Cervical Stage, CS 3), with only 2% showing a post-
pubertal stage of skeletal development (CS 4) (26). Male and female 
patients were pooled according to the results of Baccetti et al. (25), 
and Kim et al. (27). In these studies, no significant gender differences 
were identified either during early Class  III growth processes (28) 
or in treatment response (25). In the sample analysed in the current 
study, no gender differences were found in fuzzy clustering reparti-
tion (data available on request from the authors).

Network analysis and module detection
In order to extrapolate the information present in the whole correla-
tion matrix and sort out relevant features, a cut-off to the correla-
tion values was used to consider only the most significant relations 
(16). The choice of filtering the correlation values at |rxy| > 0.60 
reduced the complexity of the system and permitted the identifica-
tion of many characteristics simply by visual inspection. Network 
analysis can deepen the entanglement of the elementary components 
(‘nodes’ or ‘vertices’) or interactions (‘links’ or ‘arches’) of a system 
(Cytoscape 3.0, available at www.cytoscape.org) (17). In network 
analysis, a source of mistake could be related to the choice of filter-
ing the correlation values at |rxy| > 0.60. Possibly, this decision could 
remove some biologically meaningful correlations. Furthermore, 
when two variables have reference points in common, they will be 
correlated, even though all the reference points vary independently 
(29). As such, the correlations between cephalometric measurements 
can be misleading, being potentially due to topographical (geomet-
ric) rather than biological factors. In order to circumvent the pos-
sible invalid networks, we performed a subsequent network analysis 
after deleting common topological cephalometric landmarks and 
reducing the filtering of correlation values at |rxy| > 10. Moreover, to 
further deepen the biological meaning of cephalometric correlations, 
we analysed two topological network indexes, the ‘betwenness’ and 
‘stress’ metrics. Betweenness is a node centrality index. In biologi-
cal terms, betweenness indicates the relevance of a characteristic as 
functionally capable of holding together binding characteristics. The 
betweenness of a node reflects the amount of control that this node 
exerts over the interactions of other nodes that lie inside a network. 
The stress of a node in a biological network can indicate the cru-
cial role to maintain the coherence of the system. In a biological 
system, stress indicates the nodes heavily involved in growth and/
or biomechanical communications between components (13,16). 
Betweenness and stress metrics can be calculated using Cytoscape 
3.0 (www.cytoscape.org).

‘Modularity’ refers to the relative degrees of connectivity in sys-
tems. A ‘module’, or a ‘community’, is a unit whose components are 
tightly integrated internally but relatively independent from other 
modules (15). Variables within modules are highly mutually corre-
lated: these interactions between parts generate covariation among 
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morphological traits. Positive correlations between quantitative 
traits suggest that they will simultaneously increase (or decrease) in 
size and shape (15,17). The modules can be obtained using the R 
function ‘walktrap.community {igraph}’.

Statistical analysis
Descriptive statistics (mean, standard deviation, minimum, and 
maximum) was calculated for each cephalometric variable in the 
four age groups for both the cross-sectional sample and the treated 
group at T1. Individual winner cluster membership was computed 
for both the cross-sectional sample and the treated sample in the 
four age groups. The prevalence rate of successful and unsuccessful 
cases were calculated for the three clusters (Bal, HM, and HD) and 
compared by means of Fisher’s exact test corrected for multiple test-
ing (Holm–Bonferroni method).

Results

Descriptive statistics and statistical comparison (independent sample 
t tests) between a cohort of 73 untreated Class III 8-year-old female 
subjects (derived from Auconi et al. (3)) and 155 untreated 8-year-
old Class III male and female subjects (derived from the untreated 
sample analysed in the current study). No significant differences were 
found for any of the cephalometric variables between the two groups 
when divided into Balanced, Hyperdivergent, and Hypermandibular 
clusters (Supplementary Table 1).

Descriptive statistics for each cephalometric variable in the four 
age groups for both the cross-sectional sample and the treated group 
at T1 are reported in Tables 2 and 3, respectively. Individual win-
ner cluster membership for both the cross-sectional sample and the 
treated sample at T1 in the four age groups is reported in Table 4. It 
is interesting to note that the Class III growth process involves a pro-
gressive shift from a higher prevalence of Bal to a higher prevalence of 
HM subjects (Table 4). Table 5 summarizes the results of early RME/
FM treatment obtained in a cohort of 54 Class  III patients. At the 
end of treatment, unsuccessful results were observed in 9 out of 54 
patients (16.7%). Once the patients were placed into the correct win-
ner cluster membership, unsuccessful treatment outcome for Bal, HM, 
and HD patients was highly differentiated: 0% for Bal patients (0 out 
of 25 patients), 28.6% for HM patients (4 out of 14 patients), and 
33.3% for HD patients (5 out of 15 patients), respectively. The preva-
lence rate of unsuccessful Class III patients in both the HD and HM 
groups were significantly greater than in the Bal group. Supplementary 
Table 2 summarizes the method’s classification power in terms of sen-
sitivity, specificity, and positive and negative predictive power.

In the attempt to deepen the reason for the marked difference 
of the treatment effect in Bal, HD, and HM patients, we used tools 
from statistical physics to develop a theoretical framework for char-
acterizing the structure of dentoskeletal interactions between the 54 
patients. Network analysis (module repartition) of Bal, HD, and HM 
treated patients at T1 is reported in Figure 2. In Figure 2A, module 
repartition of Bal patients exhibits a balanced subdivision between 
cephalometric characteristics. The Bal network is completely divided 
into four modules, without links between such modules. The high 
covariance of cephalometric characteristics within each module 
conveys morphological integration between skeletal (top left) and 
dentoalveolar (bottom) characteristics. Figure  2B and 2C report 
the module repartition of cephalometric variables of HD and HM 
patients, respectively. Network topology of HD and HM patients 
shows a highly interlinked cohesive module structure between ceph-
alometric characteristics.

Figure  3A reports the network topology of 20 HM and HD 
successfully treated patients, while Figure  3B reports the network 
topology of 9 HM and HD unsuccessfully treated patients. The dis-
tances among the circles have the same magnification. The topology 
of modules is highly differentiated: the unsuccessful patients exhibit 
a more interlinked structure (i.e. more numerous and stronger cor-
relations between circles) than the successful patients. In the unsuc-
cessful group, there are several nodes with a high number of links 
(high ‘degree’): Co–A, Co–Gn, Go–Pg (nine links each); ArGoMe, 
and SNB (eight links each); Co–Go (seven links); etc.

Inferring network models from orthodontic data allows to 
understand the most influential morphological correlations that lead 
to dentofacial deformities. However, according to Halazonetis (29), 
the correlations between cephalometric characteristics may be at 
least in part misleading, as potentially related to topographical (i.e. 
geometrical) rather than biological factors. With the aim of extract-
ing more consistent biological meaning from the topology of cepha-
lometric correlations, we performed an additional network analysis 
of cephalometric data on 9 unsuccessful and 20 successful Class III 
patients based on seven topologically distant vertices that did not 
share geometric relationships (Supplementary Figure  1A and 1B). 
Compared with unsuccessful patients, successful patients exhibited 
different correlation coefficients between skeletal and dentoalveolar 
compensatory components (see, for example, the correlation coef-
ficients between variables Go–Pg and IMPA in successful and in 
unsuccessful patients).

In Supplementary Table  3, the betweenness and stress scores 
observed in 20 successful and 9 unsuccessful Class  III patients, 
related to IMPA, ArGoMe, overjet, and SN, were reported. In a bio-
logical system, these network metrics reflect the amount of control 
that a node exerts over the interactions of other nodes of the sys-
tem. The nodes pertaining to unsuccessful patients exhibited higher 
betweenness and stress scores than those observed in successful 
patients.

Discussion

Class  III malocclusion can exist with any combination of skeletal 
and dental components and with any number of morphospatial dis-
harmony and aberration of the craniofacial complex (30). As ortho-
dontists, we know that our therapeutic decisions on patients with 
Class III malocclusion are based on assumptions concerning future 
growth that may or may not be correct. The emergence of a maloc-
clusion during the growth process behaves as a complex nonlinear 
system involving a great number of variables and systems of vari-
ables (2,4). Ultimately, changes of the general state of a biological 
system can be linked to the organizational level, i.e. to the specific 
mechanisms of reaction and to latent, often undervalued, ties pre-
sent inside it. The growth of craniofacial system is never formalized 
into well-defined, closed categories, separated from each other. It is 
not easy to accept the idea that craniofacial development is shaped 
by forces that we do not understand or do not control. We have to 
deal with multiple or fragmented truths. Fuzzy Logic allows to deal 
with the dimensions of complementarity, vagueness, and uncertainty, 
which characterize many diagnosis and therapeutic decisions. There 
are two factors that can determine the variability of Class III treat-
ment outcome: the type of growth that will occur in the future, and 
the possibility that treatment can influence the type of growth.

As RME/FM therapy has a limited influence on facial skeletal com-
ponents, it is important to clarify in advance the pattern of interactions 
between growing craniofacial components that can be used to predict 
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which cases will respond successfully to treatment (11,23,25). Some 
authors found no measurable improvement of the skeletal pattern dur-
ing expansion/protraction treatment, at most a dentoalveolar compen-
sation (31,32), while others observed only a weak forward movement 
of the maxilla and backward rotation of the mandible (23,33). Perhaps 
these conflicting treatment results could be due to the lack of assign-
ment of each patient into the appropriate clinical frame of reference.

Fuzzy cluster repartitions is able to reduce the variability in 
Class III facial growth direction: recently, patients with high mem-
bership rate to HD, HM, and Bal phenotypes have been associated 
to linearity of growth progression within the limits of cluster char-
acteristics (‘dominant evolutionary strategy’) (3). Our data from 
the whole cohort of 54 Class III treated patients showed that early 
RME/FM treatment leads to an overall unsuccessful outcome of 
16.7% when evaluated at the end of comprehensive treatment with 
fixed appliances. This prevalence rate of unsuccessful cases is lower 
than that reported by previous studies (25%) (22,25,33). A possible 
explanation could be related to the larger sample size of patients 
analysed in the current investigation. However, and most impor-
tantly, when patients were subdivided according to the membership 
to individual fuzzy cluster (on the basis of only five skeletal param-
eters), a large difference in prevalence rates of unsuccessful patients 
was found: the prevalence rates of unsuccessful cases in Bal, HM, 
and HD patients were 0%, 28.6%, and 33.3%, respectively.

A high winner cluster indicates a dominant behaviour in which 
each node of the system is influenced by the behaviour of many other 
nodes who made the same choice (3). While the ‘hard’ cluster analysis 
express the main craniofacial characteristic, fuzzy clustering repartition 

detects major and minor phenotypic characteristics for each patient, 
assigning the membership grade to each characteristic (3). For instance, 
if a patient expresses 60% Bal, 5% HM, and 35% HD characteristics, 
then the a priori probability of unsuccessful treatment can be calculated 
by summing the products: (0.60 × 0.0) + (0.05 × 0.28) + (0.35 × 0.33).

During the treatment process, each combination between crani-
ofacial variables can introduce new boundaries. Hypothetically, the 
different treatment outcomes in Bal, HD, and HM patients could be 
interpreted from the network of the craniofacial interactions. The 
networks of components of a biological system exhibit topological 
structures, and these structures affect the way in which the system’s 
components behave (13,15). Computational tools from statisti-
cal physics offer a very insightful way of extracting simple rules 
of interaction, from which a large variety of growth patterns may 
occur. Network analysis can collect, analyse, visualize, and interpret 
biological structures by considering the position of each component 
in the context of the network topology (16). This framing allows 

Table 5. Class III patients: successful and unsuccessful treatment 
outcome for each phenotype and statistical comparisons Fisher’s 
test corrected for multiple testing (Holm–Bonferroni method)

Bal versus HD S US Fisher’s Exact test; P = 0.004*
 Bal 25 0
 HD 10 5
HD versus HM S US Fisher’s Exact test; P = 1.000 

(NS) HD 10 5
 HM 10 4
Bal versus HM S US Fisher’s Exact test; P = 0.012*
 Bal 25 0
 HM 10 4

HD = Hyperdivergent; HM = hypermandibular; S= successful; US= unsuc-
cessful; NS = not significant.

*Statistically significant.

Table 4. Number of subjects for each fuzzy cluster in the total sam-
ple (untreated and treated groups) and in the treated group at T1

Fuzzy cluster

Total sample

7 years 8 years 9 years 10 years

Bal 42 60 55 32
Hyperdivergent 25 57 45 33
Hypermandibular 33 51 46 35
Total 100 168 146 100

Treated group at T1
Bal 9 5 6 5
Hyperdivergent 1 6 5 3
Hypermandibular 3 2 4 5
Total 13 13 15 13
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to highlight the critical components of the system (‘hubs’), areas 
of mutual influences between the system components (‘between-
ness’), and the central role of regulation of each node (‘degree’) (16). 
Transferring this ‘wiring diagram’ to orthodontics could allow the 
formalizing of empirical knowledge already available to the practic-
ing orthodontist. In this work, a particularly relevant clinical prob-
lem was to define possible scenarios of craniofacial evolution that 
make sense in terms of predicting the future in a given malocclu-
sion and to define how the observed topological network properties 
could be related to the individual response to treatment.

A network of interactions is called modular if it is subdivided into 
relatively autonomous, internally highly connected subnetworks, 
that is, ‘modules’ or ‘communities’ (34,35). Modules are small build-
ing blocks of large networks: it is widely believed that these features 
play a very important role in the function of a network. They have 
many implications for functionality in terms of robustness and tol-
erance to perturbations (35). Developmental interactions between 
parts in a module generate covariation among morphological traits 
because they transmit variation to the different traits jointly. As high 
correlated traits frequently evolve together, the ‘morphological inte-
gration’ has became a more descriptive concept applying to groups of 
correlated phenotypic characters (35). Recently, Hidalgo et al. (36) 
have proposed the use of network analysis to integrate different clin-
ical, radiographic, and functional data sets as a viable path toward 
elucidating the origin and progression of some diseases: patients 
diagnosed with pathological conditions that have more highly con-
nected disease networks tend to progress sooner and get worse than 
those affected by less-connected diseases. Moreover, networks have 
revealed that diseases such as obesity, asthma, lipodystrophy, and 

glioblastoma may not be as independent of each other as medical 
practitioners currently consider them to be (37).

As a whole, it should be emphasized that network representa-
tion of the complexity of the biological systems only provides an 
overview of the system under investigation. Furthermore, as already 
mentioned, cephalometric landmarks are established relative to each 
other, thus the correlations between measurements may be, at least in 
part, due to purely geometric factors (38). The fundamental purpose 
of network analysis is not to decipher the biological form or form 
changes, but rather to capture information to probe the structure of 

a

b

Figures 3. (A) Network analysis and module repartition of cephalometric 
parameters of 20 successfully treated Class  III patients (HM + HD) before 
orthodontic treatment. (B) Network analysis and module repartition of 9 
unsuccessfully treated Class III patients (HM + HD) before orthodontic treatment. 
The network of unsuccessful patients shows a highly interlinked structure. In 
biological terms, structures with many interconnections are considered to 
be particularly resistant to perturbations. The red lines indicate inter-module 
correlations while the black lines describe intra-module correlations. 

Figures 2. Network analysis of 54 Class  III patients before orthodontic 
treatment, after fuzzy clustering repartition. (A) Module repartition of 
cephalometric parameters of the 25 Class III Bal patients. Network topology 
exhibits a balanced sharing of four modules. (B) Module repartition of 15 
hyperdivergent (HD) patients. (C) Module repartition of 14 hypermandibular 
(HM) patients. The topology of HD and HM modules reveals a more compact 
structure: most cephalometric features are strictly interrelated. In HD and 
HM patients there are several nodes working as bridges among modules. 
PP: palatal plane; MP: mandibular plane. The red lines indicate inter-module 
correlations while the black lines describe intra-module correlations.
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dentoskeletal interaction (21). The most relevant aspect of network 
analysis is the ability to highlight the critical components of the sys-
tem (hubs), and the relevance of a node to be functionally capable 
of holding together regulatory nodes (betweenness and stress) (16).

The visualization of the underlying structure of Class III maloc-
clusion through module repartition could mitigate one of the main 
problematic characteristics of this dentoskeletal imbalance, the 
phenotypic heterogeneity, and address some missing links between 
Class III dentofacial deformities, craniofacial growth, and response 
to treatment. In this study, module analysis of the craniofacial com-
ponents showed that the patterns of morphological co-depend-
ence between Bal, HD, and HM patients are highly differentiated 
(Figure  2A–C). Class  III patients diagnosed with malocclusion 
that have more tightly connected modules (HD and HM patients) 
showed significantly greater prevalence rates of unsuccessful cases 
(Figure 3A and 3B). These data offer an explicative hypothesis of 
the great difference of the treatment effects among Bal, HD, and 
HM patients. In network metrics, the ‘degree’ corresponds to the 
number of nodes adjacent to a given node, where adjacent means 
directly connected. Nodes with high degree (highly connected nodes) 
are called hubs: these nodes hold together several nodes with lower 
degree. In biological terms, the degree allows an immediate evalu-
ation of the cohesive strength and the regulatory relevance of the 
node (16). In this study, Class III unsuccessful patients exhibited sev-
eral highly connected nodes (Co–A, Co–Gn, Go–Pg: nine links each, 
ArGoMe and SNB: eight links each, Co–Go: seven links, etc.), while 
in successful patients only interincisal angle and Co–Gn are the most 
connected nodes (five links each). While at least in part the inter-
actions between craniofacial characteristics are purely geometric in 
nature (Supplementary Figure 1A and 1B), densely connected struc-
tures are known to be related to robustness and to scarce sensibility 
to perturbations (15, 34), thus displaying a very high homeostasis 
of the system. Hypothetically, the observed marked differences in 
the treatment effects shown by Bal, HM, and HD subjects could be 
related, at least in part, to the more interlinked topology of the regu-
latory interactions of HM and HD patients (in a complex biological 
system, too many influences among the components paradoxically 
reinforce, and sometime paralyze, the system) (18). The poor skel-
etal and dentoalveolar treatment effects observed in HD and HM 
patients could be interpreted through a similar logical paradigm: 
while the under-connected nodes of Bal patients facilitate the mech-
ano-transduction of facemask-protraction forces (the mechanisms 
by which cells convert mechanical stimulus into chemical activity), 
the dense HM and HD interactive arrangement oppose the treat-
ment forces. The high betweenness and stress scores observed in the 
unsuccessful patients between non-geometrically related cephalo-
metric variables (Supplementary Table 3) confirm these assumptions, 
as both metrics indicate a strict control over the craniofacial interac-
tions. Hypothetically, low stress and betweenness scores observed 
in successful cases could be linked to the fragility toward the treat-
ment forces carried on the nodes that act as a fulcra of connection. 
Finally, the difference observed between successful and unsuccessful 
non-geometrically related craniofacial features in the correlations 
between skeletal and incisal proclination/retroclination characteris-
tics (Supplementary Figure 1A and 1B, see, for example, the strength 
of correlations between Go–Pg and IMPA in successful and unsuc-
cessful patients) might be related to the relevance of self-corrective 
dentoalveolar processes in influencing the Class III successful treat-
ment outcomes.

Although treatment outcome in patients with Class III maloc-
clusion may be unpredictable in details, analyses from statistical 

physics make the general shape of the changing forms of crani-
ofacial organization relatively predictable and simple, so improv-
ing the interpretation of quantitative, patient-specific information, 
driving to detection of subsets of patients that are poor candidates 
for orthopedic treatment. On the basis of the conceptual framing 
emerging from this study, the prediction of the effects of treat-
ment on dentofacial deformities of Class III patients can be related 
to the individualized structure of cephalometric characteristics, as 
highlighted by fuzzy clustering repartition.

Conclusions

The results of this study showed that the individual cluster member-
ship evaluated before treatment in Class  III patients by means of 
fuzzy clustering repartition can be used effectively to predict treat-
ment outcomes of RME and facial mask therapy followed by fixed 
appliances. HD and HM patients showed a significantly greater 
prevalence rate of unsuccessful cases than Bal patients. The network 
analysis of craniofacial features of these patients provided a hypo-
thetical conceptual descriptive framework of the observed differ-
ences in outcome.

Supplementary material
Supplementary Figures and Tables are available at European Journal 
of Orthodontics online.
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