Cell Cycle

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/kccy20

T538 phosphorylation, Pin-ing p63-Itch stability

Akram Aliana \& Rami I Aqeilanbc

a Faculty of Biology; Technion - Israel Institute of Technology; Haifa, Israel
b The Lautenberg Center for General and Tumor Immunology; Department of Immunology and Cancer Research-IMRIC; Faculty of Medicine; Hebrew University of Jerusalem; Jerusalem, Israel
c Human Cancer Genetics Program; Ohio State University Comprehensive Cancer Center; Columbus, OH USA

Accepted author version posted online: 15 Jan 2015.

To cite this article: Akram Alian \& Rami I Aqeilan (2015) T538 phosphorylation, Pin-ing p63-Itch stability, Cell Cycle, 14:4, 469-470

To link to this article: http://dx.doi.org/10.1080/15384101.2015.1006553

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
T538 phosphorylation, Pin-ing p63-Itch stability

Akram Alian1,* and Rami I Aqeilan 2,3 1 Faculty of Biology; Technion – Israel Institute of Technology; Haifa, Israel; 2The Lautenberg Center for General and Tumor Immunology; Department of Immunology and Cancer Research-IMRIC; Faculty of Medicine; Hebrew University of Jerusalem; Jerusalem, Israel; 3Human Cancer Genetics Program; Ohio State University Comprehensive Cancer Center; Columbus, OH USA; *Correspondence to: Akram Alian; Email: alian@tx.technion.ac.il; Rami I Aqeilan; Email: ramiaq@mail.huji.ac.il; http://dx.doi.org/10.1080/15384101.2015.1006553

p63 is known as a regulator of cell cycle and apoptosis in response to genotoxic insults and for its function in regulation of epithelial morphogenesis. Melino and colleagues now demonstrate that phosphorylation of a conserved threonine (T538) regulates p63 stability and degradation mediated by WW domain containing proteins, Itch and Pin1.

WW domains are protein modules that mediate protein-protein interactions through recognition of proline-rich peptide motifs and phosphorylated serine/threonine-proline (S/T)P sites.1 p63, a member of the p53 family of transcription factors and known to play a crucial role in regulating transcription of genes with distinct biological functions in regulating epithelium development and differentiation, metastasis and chemosensitivity,2,3 contains a (T/S)PPxYP motif which equates to a class IV WW target domain, (T/S)P, followed by a class I WW domain target, PPxY. Indeed p63 is a known target of Class I WW domains interacting with Itch, an ubiquitin E3 ligase, which via its WW2 domain mediates the proteasomal degradation of p63.4,5 More recently, it has been shown that Pin1, a prolyl-peptidyl cis/trans isomerase protein which targets Class IV WW domains, modulates p63 protein stability by inhibiting p63 proteasomal degradation.6

In their latest study, Melino and colleagues7 elucidate aspects of p63 stability mediated by the WW domain-containing proteins Itch and Pin1, proposing a twofold regulation mechanism: whereas phosphorylation of threonine (T538) within the (T/S)PPxYP motif of p63 increases its binding affinity to the Itch WW domain, a post phosphorylation cis/trans switch catalyzed by Pin1 prolyl-isomerase regulates the final outcome of this interaction.7 This further extends on previous observations that E3 ligases prefer the trans conformation (reviewed in8) showing that the more relaxed trans conformer is indeed favorable for Itch binding. This is likely a consequence of the favorable local structural and chemical complementarity with the WW binding trench (Fig. 1). To maintain steady states of p63 levels in the cell, Melino and colleagues7 proposed that the cis/trans equilibrium and consequent stability of the Itch-p63 interaction might be regulated by Pin1, which catalyzes the formation of the Itch-unfavorable cis conformation.

The twofold post phosphorylation conformational switch mechanism observed by Melino et al.7 is unlikely limited to the Itch-p63 interaction and could also be true for other WW domain interacting partners. Indeed, it has recently been shown that Pin1 directly binds to and stabilizes p63 inhibiting proteasomal degradation mediated by the E3 ligase WWP1.6 Pin1 specifically interacts with T538P and disrupts p63α-WWP1 interaction.6

Figure 1. The local structural configuration of the cis isomer, with the phosphate group twisted away from favorable interactions with the WW domain to favor self-interactions with the peptide’s own amides, restrains Itch binding leading to p63 stabilization against subsequent ubiquitylation. The trans conformation exposes the negatively charged phosphate group for stabilizing interactions with a conserved basic arginine complement within the WW domain.
Likewise, Pin1 binding to phosphorylated p53 or p73 family members has been shown to stabilize both proteins by inhibiting p53 binding to E3 ligase MDM2 or increasing p73 acetylation by p300 (reviewed in \(^8\)). This study also highlights the essentiality of tightly regulating p(S/T)P motifs involved in pivoting the disastrous switch between normal and pathologic cellular signaling. Considering that the human proteome is highly enriched with (S/T)P motifs,\(^9\) it is fair to presume that Pin1, implicated in regulation of cell proliferation, transformation, and tumor growth, interacts with many other phospho-(S/T)P motif containing proteins in order to modulate their function.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
The authors are grateful to Dr. Ailie Marx for critical reading of the manuscript.

Funding
The Aqeilan lab is supported, in part, by funds from the Israel Science Foundation (ISF 12-542).

References
8. Lu KP, Zhou XZ. Nat Rev Mol Cell Biol 2007; 8:904-16; PMID:17878917; http://dx.doi.org/10.1038/nrm2261