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a b s t r a c t

Lignin is the second most abundant natural polymer. Its use and targeted functionalisation
within biomass refinery processes, however, still needs to be further explored and devel-
oped. The oxidative functionalisation, and thus valorisation of lignin, is a very promising
way to go, since it holds the possibilities to yield highly functionalised, monomeric or olig-
omeric products that can serve as starting materials for other valorisation processes in the
chemical and pharmaceutical industries. Gaining a profound knowledge about the struc-
ture of lignin, being able to analyse structural features, and understanding the mechanisms
that guide the reactions leading to the oxidative derivatisation, depolymerisation and func-
tionalisation of lignin samples from different renewable sources are key requirements for
developing successful valorisation protocols for lignin. In this review, we wish to revisit,
and set into context, some important achievements in the field of oxidatively upgrading
lignin. We will focus on organometal catalyses (MTO, salen complexes, POMs), biomimetic
catalyses (porphyrins), and enzymatic catalyses (laccase, peroxidase) for upgrading lignin
and lignin model compounds. Details of mechanistic implications and means of potential
manipulations of reaction outcomes are discussed.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

The development and exploitation of renewable, non-
fossil-based resources has become increasingly important,
since the use of fossil-based resources is no longer justifiable
for practical, ecological, and socio-economic reasons. Many
technologies have been developed and successfully imple-
mented in order to end fossil-dependent energy production;
many of these technologies are based on the use of biomass
[1,2]. Biomass represents a readily available and renewable,
and thus versatile alternative resource, and research fo-
cused on exploring the possibilities to exploit this resource
is gaining momentum in light of the dwindling of our fos-
sil-based resources. Fuels obtained from biomass-refinery
processes are already replacing fossil-based fuels in every-
day life; the use of biomass components and derivatives
thereof, as substrates for the chemical industry that pro-
duces higher value applications, ranging from building
materials to pharmaceutical applications, is, however, still
in fledging stages [3].

Forest biomass comprises a rather complex mixture of
carbohydrates, aromatics, lipids, proteins, and a wide
range of smaller molecules such as vitamins, colourants
and odorants. New mechanical and chemical processes
are needed to obtain analytically pure and defined sub-
stances out of – or from – this mixture [4], allowing the
use of these substances to be used in downstream indus-
trial chemical transformations. Ideally, the biomass-de-
rived substances should be readily usable in already
established chemical processes that utilise other, already
commercially available substances for further derivatisa-
tion [5]. Today, biorefinery processes aiming at the valori-
sation of the lignocellulosic part of the biomass, which
consists of cellulose, lignin, and hemicellulose, produce,
in analogy to petroleum refinery processes, several prod-
ucts including fuel for energy production, and chemicals
[1–4]. From the viewpoint that an economically viable
biorefinery program comprises the use of all components
of the biomass in parallel processes that aim at the produc-
tion of both, fuels and fine chemicals [6], the lignin compo-
nent is currently still under-utilised [7].

Lignin, that is currently mostly obtained as ‘‘waste’’ in
paper and biofuel productions, but that could also be iso-
lated by more tailor-made processes with respect to the
specificities of further transformations within the biorefinery

cascades [3,8], is the second-most abundant renewable
polymer: it contributes as much as 30% of the weight,
and as much as 40% of the energy content of lignocellulosic
biomass [9]. Lignocellulosic biorefinery thus receives enor-
mous amounts of lignin, and the development of truly sus-
tainable and efficient biorefinery processes should aim at
the valorisation of lignin not only as energy, but also as a
resource for starting materials for the chemical industries
[10,11]. Noteworthy, lignin represents the only renewable
source of aromatic fine chemicals [12–14], and direct and
efficient conversion of lignin to discrete molecules or clas-
ses of lower-molecular weight aromatic, monomeric build-
ing blocks for polymer productions is a very interesting
future opportunity. The controlled breaking of carbon–car-
bon and carbon–oxygen bonds in lignin represents a very
selective depolymerisation that could produce a whole ser-
ies of monomeric, aromatic species [14]. Technologies that
rely on selective bond cleavages in lignin also have the po-
tential to yield new types of building blocks for block-poly-
mers [4,7]. Selective modifications of the polymer lignin
itself are suitable to transform it into a structural base
for complex co-polymers with various potential applica-
tions [15]. In the medicinal and pharmaceutical areas, po-
tential applications of lignin-derived substances could
comprise the use as building blocks for the fabrication of
microcapsules, or the exploition of the antioxidant features
of the polyphenolic structural features of lignin [16]. Exist-
ing and potential applications of lignin are summarised in
Fig. 1.

Several reviews have been written to cover and present
research on lignin, and on processes aiming at its valorisa-
tion [1,2,7,8]. The methods used for the valorisation of lignin
range from classical chemical approaches such as pyrolysis
(thermolysis) [17–20], hydrolysis [21,22], reduction
(hydrogenolysis) [23–25], or oxidation [26,27], to newer
biotechnological approaches [22]. In this review, we wish
to focus on methods and technologies aiming at the oxida-
tive upgrade of lignin via radical pathways, since the native
structure of lignin comprises several distinct functional
groups that can – in principle – be selectively further func-
tionalised via oxidation [28]. After briefly revisiting the most
important structural features of lignin, the most important
methods to isolate lignin, and the tools used characterise lig-
nin and the products obtained upon (oxidative) functionali-
sation, we will summarise important work in the field of
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oxidative lignin transformation using organometal-cata-
lysed, biomimetic, and enzymatic processes.

2. Structural aspects of lignin

Before revisiting (partially structure modifying) pro-
cesses and techniques for isolating and characterising lig-
nin, we wish to briefly summarise its most important
structural features, since this will ease further discussions.
Lignin, described by Payen in 1838, and chemically defined
by Schulze in 1865, is a hydrophilic substance present in
plant cell walls. It chemically, and physically links the other
matrix components of the cell walls, cellulose and hemicel-
lulose [29]. This linking results in increased impermeability,
mechanical strength, and rigidity of the plant cell walls; it
also gives the cells a greater resistance to microbial attacks.

The distribution of lignin within the cell walls is, how-
ever, not uniform; the concentration of lignin in the middle
lamella and the primary wall is higher than the concentra-
tion in the secondary wall [30]. Nonetheless, the majority
of the total amount of lignin present in the plant, 75–
85%, is located in the secondary wall, due to its consider-
ably larger volume. The amount of lignin present in the
plant varies from species to species [3,7], ranging from
20 ± 4% in hardwoods, to 28 ± 3% in softwoods and herba-
ceous angiosperms; monocots are less lignified (15 ± 4%).

Chemically, lignin (1) is seen as a highly complex pheno-
lic polymer, which generally shows plant-specific composi-
tions and linkage motifs [31,32]. Newer findings on milled
wood lignin samples suggest, however, that lignin exists
as linear oligomers (Fig. 2A), that presumably strongly inter-
act in such a way, that traditional analyses of the molecular
weights are biased and thus suggest higher molecular
weight polymeric units [33]. To the best of the current
knowledge, these lignin oligomers lack a defined primary

structure, but rather represent random phenyl-propanoid
(C9) polyphenols, which are mainly linked by arylglycerol
ether bonds between phenolic para-coumaryl alcohol (2)
(H-type), coniferyl alcohol (3) (G-type), and sinapyl alcohol
(4) (S-type) units [34,35]. Depending on the plant-type, one
of the different lignin-types dominants. Lignin of gymno-
sperms consists almost entirely of G-type lignin (G-lignin);
dicotyledonous angiosperms produce a mixture of G- and
S-type lignins (GS-lignin). All three types of lignin can be
found in quantities in monocotyledonous lignin (GSH-lig-
nin). Incomplete or modified monolignols accompany these
three main lignin types in woody materials [36].

The comparable richness in binding types of lignin is the
result of an interesting biosynthetic pathway (Scheme 1), in
which monolignol radicals are formed initially [37,38].

Coupling of two radicals in form of a recombination
reaction then forms a dehydrodimer that functions as a
new monomer. Lignin formation is thus not an organised
living radical polymerisation, but rather a series of poly-
merisation termination reactions involving ever-growing
oligomers, resulting in a polydisperse polymer with no ex-
tended sequences of regularly repeating units. The compo-
sition of this polymer is generally characterised by the
relative abundance of the H/G/S units, and by the distribu-
tion of different motifs of interunit linkages, which result
from the various coupling events. Eight different motifs
for interunit linkages are generally found (Fig. 2C); how-
ever, not all three lignin monomer units can undergo all
coupling modes. Coupling is generally favoured at the
b-position of the monolignol species, resulting in the for-
mation of arylglycerol-b-aryl ethers (b-O-40 motif, 1f),
phenylcoumarans (b-50 motif, 1g), pinoresinols (b-b0 motif,
1h), diphenylethane dimers (b-10 motif, 1i), and spirodie-
nones (SD motif, 1j). Dilignols and higher oligomers prefer-
entially couple at positions 4 and 5, yielding diaryl ethers
(4-O-50 motif, 1k) and biphenyls (5–50 motif, 1m). Further

Fig. 1. Existing and potential applications of lignin as renewable resource from biomass.
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coupling of these oligomers is possible under formation of
dibenzodioxocine units (5,50-a,b-O-40 (DBDO) motif, 1l).

Both the DBDO motif and the 4-O-50 motif could constitute
branching points in the lignin polymer [37–40]. However,

Fig. 2. (A) Representative structures of lignin biopolymers, (B) specific lignin types, and (C) main linkage motifs found in lignin and lignin extracts.

1154 H. Lange et al. / European Polymer Journal 49 (2013) 1151–1173
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in light of the new structural findings that indicate a linear
oligomeric structure rather a branched polymeric one, the
roles of those motifs will have to be revisited.

In order to study reactions and processes that would
allow a defined depolymerisation of lignin, model com-
pounds are used that represent the aforementioned bind-
ing motifs. The most common ones are shown in Fig. 3.

3. Methods for isolating lignin

Raw plant biomass has to be treated in order to separate
the valuable components of interest. A few rather general
treatments yield differently composed feed streams for
downstream processing facilities, and the processes run
in these facilities have to be adopted to local specificities

Scheme 1. Proposed biosynthetic pathway of lignin formation as described in Ref. 38 (C4H – cinnemate-4-hydroxylase; C3H – cinnemate-3-hydroxylase;
OMT – O-methyltransferase; F5H – ferulate-5-hydroxylase; 4CL – CoA-ligase; CCR - cinnamoyl co-enzyme A reductase; CCoA-3H – coumaroyl-co-enzyme A
3 hydroxylase; CCoA-OMT – coumaroyl-co-enzyme O-methyl transferase; CAD – cinnamyl alcohol dehydrogenase; SAD – short-chain alcohol
dehydrogenase; POD - peroxidase.

H. Lange et al. / European Polymer Journal 49 (2013) 1151–1173 1155
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such as the source of the biomass [3]. Since a more uniform
composition of the feed streams would be desirable from a
process point of view, treatment processes for biomass
should ideally account for, or be independent of the speci-
ficities of the biomass sources. Especially the inhomoge-
neous structural complexity of lignin represents a
veritable challenge in this respect.

A gold standard procedure for lignin isolation does not
exist. We thus wish to briefly present selected isolation
processes that are currently used in research and industry,
and outline the characteristics of the obtained lignin ex-
tracts. Knowing about the isolation method, and especially
knowing how it might affect the structure of the lignin in
the raw material, is crucial since isolated lignin represents
the only source for obtaining chemical information about
it, and for investigating the basic mechanisms of its micro-
biological degradation [35]. Table 1 contains an overview
of the characteristics of lignins obtained by selected

isolation techniques. The selected lignin types are the most
widely used ones.

3.1. Milled wood lignin (MWL)

This lignin is obtained by Björkman’s procedure [49]. Finely
milled wood is extracted with a neutral organic solvent (e.g.
1,4-dioxane) to remove extraneous components. Only minor
changes are supposed to occur in the structure of lignin during
this procedure, and the lignin obtained is thus considered to be
most representative of the lignin of the milled sample. MWL,
however, is not considered to be representative of the lignin
in the wood before the milling process.

3.2. Acidolysis lignin [50]

Lignin is extracted from plant tissues by a mild
acid hydrolysis (0.2 M HCl in aqueous 1,4-dioxane, room

Fig. 3. Typical model compounds mimicking different structural motifs in lignin. See main text for references.

Table 1
Overview comparing the (average) characteristics of various lignin extracts discussed in the main text.

Lignin type C9 molecular formula Monomer molecular
weight [Da]

Number-average molecular
weight (Mn) [Da]

Poly-
dispersity

Milled wood lignina C9H7.80O2.41(OCH3)0.95 198 2800–14200 3.7–12.9
Cellulolytic enzyme ligninb C9H8.02O2.82(OCH3)0.90 187 �1900 5.7–6.7
Enzymatic mild acidolysis

lignin (EMAL)b
C9H8.02O2.82(OCH3)0.90 187 �2000 �3

Kraft ligninc C9H8.5O2.1S0.1(OCH3)0.8(CO2H)0.2 180 1000–3000 2–4
Lignosulfonated lignin

(softwood)d
C9H8.5O2.5(OCH3)0.85 (SO3H)0.4 215–254 36000–61000 4–9

Lignosulfonated lignin
(hardwood)d

C9H7.5O2.5(OCH3)1.39 (SO3H)0.6 188 5700–12000 4–9

Organosolv lignine C9H8.53O2.45(OCH3)1.04 188 >1000 2.4–6.4
Pyrolysis ligninf C9H6.3�7.3O0.6�1.4(OCH3)0.3�0.8(OH)1�1.2 n.d. 300–600 2.0–2.2
Steam explosion ligning C9H8.53O2.45(OCH3)1.04 188 1100–2300 1.5–2.8

a Norway spruce wood [41].
b Isolated from milled Norway spruce wood [41].
c Norway spruce wood [35].
d Norway spruce wood and aspen wood as softwood samples, eucalyptus wood as hardwood sample [42,43].
e Norway spruce wood [44,45].
f Beech wood [46,47].
g Japanese white birch wood and larch wood [48].

1156 H. Lange et al. / European Polymer Journal 49 (2013) 1151–1173
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temperature). This lignin is reported to have only few car-
bohydrate impurities, while exhibiting a distribution of
bond motifs that is supposed to be minimally affected by
the isolation procedure and thus close to the natural one.
Modification to the original protocol have been reported
in which an alkaline treatment is used to isolate lignin ex-
tracts, termed mild acidolysis lignin [51]. Thioacidolysis
represents another modification, in which ethanethiol is
used instead of water. Higher yields, and less complex
monomer mixtures are obtained [52].

3.3. Cellulolytic enzyme lignin (CEL)

This lignin is obtained from MWL after treatment with a
commercially available cellulase–hemicellulase mixture to
remove carbohydrate impurities. However, the enzyme
mixture typically removes only up to 85–88% of the poly-
saccharides. Low number-average molecular weights (Mn)
of around 1900 Da are observed, together with a polydis-
persity around 6, and an estimated average monomer
molecular weight of 187 Da. Structurally, this lignin is sim-
ilar to the one present in the original samples.

3.4. Enzymatic mild acidolysis lignin (EMAL) [53]

EMAL is obtained from refined CEL processes, cleaving
lignincarbohydrate linkages using a mild acidolysis, while
leaving ether bonds within the lignin structure intact. After
an initial enzymatic hydrolysis, the solid remains are
washed with acidified water before being treated with a
dioxane/water mixture, containing 0.01 M hydrochloric
acid under an inert atmosphere. EMAL is characterised by
number-average molecular weights (Mn) similar to those
obtained for CEL (ca. 2000 Da), while exhibiting an im-
proved polydispersity (ca. 3). The estimated average mono-
mer molecular weight lies by 187 Da.

3.5. Kraft lignin [54,55]

Kraft lignin (1r, Fig. 4A) is readily available since it rep-
resents the residues of chemical pulping processes in paper
production. This lignin is precipitated from the ‘‘black li-
quor’’, by pH controlled precipitation. Kraft lignin is struc-
turally highly modified, as approximately 70–75% of the
hydroxyl groups become sulfonated during standard kraft
pulping procedures. Degradation results in low number-
average molecular weight (Mn) of about 1000–3000 Da,
with a polydispersity between 2 and 4, and an estimated
average monomer molecular weight of 180 Da. Kraft lignin
is soluble in alkali and in basic solution and in highly polar
organic solvents.

3.6. Sulfite lignin (lignosulfonate)

Lignosulfonate (1s, Fig. 4B) is the sulfonated lignin that
is removed from wood by sulfite pulping. Hardwood ligno-
sulfonate and softwood lignosulfonate are obtained from
waste pulping liquor concentrate by the Howard process
[56] after stripping and recovery of the sulphur. They exhi-
bit monomer molecular weights of 188 Da, and 215–
154 Da, respectively. The number-average molecular

weight (Mn) can vary from 1000 Da to 140,000 Da, with
the majority lying between 5000 Da and 20,000 Da. Ligno-
sulfonate is soluble in acidic and basic aqueous solutions,
and in highly polar organic solvents, but hydrolysis reac-
tions, and eventually excessive sulfonations can occur. Nei-
ther kraft lignin nor lignosulfonate are suitable for
studying the behaviours and the characteristics of natural
lignin. They are, however, important as industrial by-prod-
ucts, and their valorisation is subject to different studies.

3.7. Organosolv lignin

Organosolv lignin is obtained as a separate process
stream after the separation of wood components through

Fig. 4. Structure of kraft lignin (A), and lignosulfonate (B).
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treatment with organic solvents in the organosolv pulping
process [57]. The best known variant is the Allcel process
which uses ethanol or an ethanol–water mixture [58]. A
wide variety of solvents and combinations have been pro-
posed for organosolv pulping; many combinations include
acidic or alkaline aqueous components to enhance pulping
rates. Organosolv lignin can be easily separated from the
pulping solvents either by solvent removal and recovery,
or by precipitation with water accompanied by distillation
to recover solvent. Most organosolv lignin is insoluble in
acidic aqueous solutions, but will dissolve in basic solu-
tions, and in many polar organic solvents. Number-average
molecular weights are typically less than 1000 Da, and
polydispersity may range from about 2.4 to 6.4, with a cal-
culated monomer molecular weight of 188 Da.

3.8. Pyrolisis lignin

Pyrolytic processes (thermal decompositions occurring
in the absence of oxygen) can be used to produce a lignin
stream that can be used in biorefinery processes [46,47].
Pyrolytic processes require relatively high temperatures
(723 K); short vapour residence times of up to only two sec-
onds are characteristic. Char and gases are typical by-prod-
ucts; these are used within the process to meet energy
requirements within the overall process. There are no waste
streams other than flue gas and ash. The main disadvantage
lies in the high carbohydrate consumption required to fuel
the process. The largest difference between pyrolytic lignins
and the lignin in biomass is the very low average molecular
weights found for pyrolytic lignin indicating the high degree
of depolymerisation caused by the drastic conditions. On the
other hand, this finding suggests that pyrolysis may be use-
ful as a technology for the controlled molecular weight
reduction of lignin. Molecular weights of 600–1300 Da,
and number-average molecular weights of 300–600 Da
were reported for pyrolytic lignins. Pyrolisis lignin offers
unique opportunities to produce specific aromatic hydro-
carbons not available from other processes.

3.9. Steam explosion lignin

Steam explosion consists in biomass impregnation with
steam (180–230 �C) under high pressures (14–35 bar) at
short contact times (1–20 min) followed by rapid pressure
release [48,59]. The steam explosion process allows release
of individual biomass components, and the process has
generally been used as a method for preparing cellulose
pulp. Alkali washing or extraction with organic solvents al-
low recovery of hardwood lignins in yields of up to 90%.
Steam explosion lignin shows a lower molecular weight
and higher solubility in organic solvents than, for example,
kraft lignin.

4. Methods for characterising lignin, lignin extracts, and
lignin model compounds

Due to the structural variety that is inherent to biomass
lignin as such, as well as the structural changes that can be
caused by the various methods used to obtain lignin

extracts (vide supra), several methods for characterising
lignin samples were developed. Comprehensive overviews
have been published before [60,61]. Generally, character-
isation can be performed either directly using unmodified
lignin sample, or lignin extracts, or indirectly via chemical
modification of the samples and extracts. Instrument-
based analyses often benefits from chemical modifications
of the lignin samples of interest prior to analysis.

A purely qualitative analysis that aims at highlighting
the presence of the characteristic functional groups in the
lignin sample, is often possible based on direct colorimetric
reactions of the lignin sample. Using suitable reagents,
additional, or concomitant quantitative analyses are possi-
ble (e.g. DPPH assay [62]), both via direct and indirect
methods. One of the most prominent direct methods for
analysing lignin is the Klason method [63]: Following the
original protocol, after treatment of lignocellulosic mate-
rial with 72% sulfuric acid, the amount of acid-insoluble
lignin content of lignocellulose material is determined.
Indirect methods are, for example [50]: (i) the determina-
tion of the amount of consumed oxidant (depending on the
oxidant used, a qualitative result can be obtained simulta-
neously); (ii) the determination of the kappa number; (iii)
the nitrosation method.

Quantification of specific functional groups in a lignin
extract can be achieved using instrument-based methods,
after derivatising the functional groups using appropriate
reagents; examples are the esterification of hydroxyl
groups into phosphites to allow for 31P NMR-based
analyses (vide infra), or the esterification of the alcohol
functionalities into carboxylates to ease gel permeation
chromatographic analyses [64]. Gas chromatography,
alone or coupled with mass spectrometry, as well as size
extrusion chromatography are other routinely used analyt-
ical tools for qualitatively and quantitatively analysing lig-
nin, modified lignins, or lignin degradation products.

As mentioned before, structural information regarding
the lignin sample, the lignin extract, or their degradation
and valorisation products, can be obtained via nuclear mag-
netic resonance spectroscopy. Apart from two-dimensional
NMR experiments (e.g., HSQC experiments) [65], 31P NMR
spectroscopy proofed to be a versatile tool in lignin research
[66–69]. The different hydroxyl groups are simply converted
to the corresponding phosphites using 2-chloro-4,40,5,
50-tetramethyl-1,3,2-dioxaphospholane. This derivatisation
allows to simultaneously discriminate between aliphatic
and phenolic hydroxyl groups, as well as the 4-O-50 and
the 5–50 condensed forms (vide supra, Fig. 2C), diphenyl-
methoxy, and carboxylic acid groups. It also allows quantifi-
cation against an internal standard, such as cholesterol, by
running a specifically developed pulse-sequence. Another
advantage is that the phosphite derivatives are stable en-
ough to guarantee a great reproducibility of the results even
hours after the derivatisation was performed.

Noteworthy, powerful methods for characterizing lignin
are also useful with respect to the exploitation of woody
samples for archaeological studies, besides the well-known
radiocarbon dating technique for age determinations
[70–72]. Based on structural findings concerning the lignin
component, the origin of a woody sample can be narrowed
down, for example.
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5. Oxidative valorisation of lignin and lignin model
compounds

5.1. Organometal catalysed oxidation methods

5.1.1. Methyltrioxo rhenium (MTO)
MTO (17) is one of the simplest structures that can

serve to catalytically activate the truly oxidising species,
molecular oxygen or hydrogen peroxide [73,74]. Activation
of hydrogen peroxide happens via the formation of two
peroxorhenium intermediates, a mono-peroxo g2-complex
([MeRe(O2)O2] (18)), and a bis-peroxo g2-complex
([MeRe(O2)2O] (19)); both stability and reactivity of these
species highly depend on the reaction conditions [75].
The transfer of oxygen from these peroxo-complexes to
the substrate occurs via a concerted mechanism that in-
cludes a butterfly-like transition state, 20, which prevents
the formation of intermediate radical species
(Scheme 2A). MTO-activated hydrogen peroxide is able to
oxidise even challenging substrates such as activated phe-
nols like 21 or methoxybenzene species like 26
(Scheme 2C, D) via a rather complex cascade of bond-
breaking and bond formation steps [76–81]. Depending
on the substitution pattern of alkyl-substituted phenols,
different regioisomeric benzoquinones like 22 and 23 are
obtained, apart from conjugated diacids like 24, and bicy-
clic ethers like 25, both resulting from ring cleavage reac-
tions. The MTO-hydrogen peroxide system proved
suitable for oxidatively transforming lignin model com-
pounds like 30 [82], 8 [83], 13 [84], and 41 [85]
(Scheme 2E and H), and lignin samples [82]. Phenolic
model compound 30, resembling one of the most common
bonding patterns in lignin (4-O-50, vide supra), was con-
verted to the corresponding monoaromatic benzoic acid
derivative 31, phenyl methyl ketone derivative 32, syringol
(33), and unsaturated lactone 33, which indicate ring-
cleavage reactions [82]. Ring cleavage reactions were also
found in the MTO-catalysed oxidations of phenolic diphe-
nyl model 8.

Also neolignans [85] like 38 could be oxidatively trans-
formed, undergoing demethylation (39, 40, 41), oxidation
of the benzylic position (40), and ring opening reactions
(41) (Scheme 2G) [86,87].

In order to further model the complexity of the struc-
ture of lignin, a selected array of monomeric phenols and
dimeric neolignans, resembling the main bonding patterns
in native and technical lignins, were successfully studied
(not shown graphically) [82]. Phenolic and non-phenolic
monomeric model compounds, vanillyl alcohol, as well as
veratryl alcohol, were treated with an MTO / hydrogen per-
oxide mixture in acetic acid. Complex mixtures of products
were obtained, including both aldehyde and carboxylic
acid derivatives that must originate form oxidation of
side-chains. Benzoquinones and muconolactones, derived
from oxidative ring cleavage of the aryl groups were de-
tected in significative yields.

Various lignin samples (sugar cane lignin, red spruce
kraft lignin, hardwood lignin extract), that contained a rep-
resentative mixture of para-hydroxyphenyl–guaiacyl, gua-
iacyl–syringyl, as well as simple guaiacyl motifs (vide

supra) (Fig. 2), showed extensive modification of the poly-
meric structure when treated with MTO-activated hydro-
gen peroxide, including a high degree of oxidation of the
aliphatic side chain, aromatic ring-cleavages, and opening
of hexahydrofuro[3,2-b]furan motifs. These degradation
reactions are accompanied by an increase in functionalisa-
tion of the residual lignin polymers [67,68].

Although the oxidation of phenolic substrates can be
achieved under mild reaction conditions, the occurrence
of the benzoic acid derivatives, and the newly formed phe-
nols, indicate side reactions such as over-oxidation, and
hydroxylation of the aromatic ring.

Slightly superior results were obtained when MTO was
immobilised using polystyrene or poly(4-vinylpyridine)
beads: The polymer-supported heterogeneous catalysts,
namely (i) 2% and 25% cross-linked poly(4-vinylpyridine) /
MTO (PVP2/MTO and PVP25/MTO, respectively) (45); (ii)
2% cross-linked poly(4-vinylpyridine-N-oxide)/MTO
(PVPN2/MTO) (46);iii) MTO microencapsulated in 2%
cross-linked polystyrene (PS2/MTO) (47) (Scheme 2B).
These species oxidised both phenolic and non-phenolic lig-
nin model compounds, while exhibiting a superior lifetime,
and a handle – in form of the polymeric support – to tune
reactivity [88–90]. This tuning handle allowed to lower the
Lewis acidity of the MTO catalyst, which served to direct
reactivity toward the oxidation of aliphatic C–H-groups,
with concomitant Dakin reactions, rather than oxidation of
the aromatic rings in lignin and its models. Noteworthy,
the polymer-support also served to supress the formation
of over-oxidized products Scheme 2G shows the results ob-
tained in the polymer-supported MTO-hydrogen peroxide
effected oxidation of diphenyl lignin model 13 [90].

5.1.2. Salen complexes
Salen complexes of various transition metals ([M(salen)])

are widely used in organic chemistry to oxidise a great vari-
ety of substrates by activated molecular oxygen or hydrogen
peroxide [91]. Especially cobalt salen ([Co(salen)]) com-
plexes, which had been shown to be compatible with aque-
ous reaction media [92], were successfully used in various
studies on oxidative lignin transformations. The oxidation
proceeds mechanistically via the initial formation of a
phenoxy-radical, which reacts with molecular oxygen to
ultimately form oxidised lignin model compounds (EPR
studies, Scheme 3) [93–96]. Both conversions and yields
obtained in the [Co(salen)]-based oxidation reactions are
generally very high for a broad variety of substrates. Various
lignin model compounds, ranging from basic cynnamic
ester (48, Scheme 3A), to more complex phenolic and
non-phenolic phenylcoumaranes like 54 were oxidised
smoothly, producing benzoquinone derivatives, alkyl–
phenyl ketones, benzoic acid derivatives, as well as densely
functionalized phenoxyacrylaldehydes 53 and benzofuran
56 (Scheme 3B and C).

Recent studies have shown that varying the substitu-
tion pattern of the aromatic ring in the salen ligand can
serve as a handle to modify the reactivity of the [Co(salen)]
complex [97]: Studies on models of G- and S-type lignin
suggest that the yields of the corresponding benzoquinon-
es depend on, and vary with, the electronic and steric
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demand of the salen ligand. The sterical demand of the li-
gand thus bears the potential to control catalyst perfor-
mance in order to preferentially oxidise one type of
lignin in the presence of another.

The use of immidazolium-tagged salen ligands (IL-
salen) in cobalt salen-mediated oxidative transformations
of lignin model compounds has been reported as well
(Scheme 3D) [98]. The products obtained with the tagged
catalyst were shown to be the same as those obtained in

case of the non-tagged parent ligand system, with the
noteworthy exception of the benzoic acid derivatives,
which were no longer found. The latter finding underlines
the tuning possibility offered by the additional substitu-
ents on the salen ligands (vide supra).

5.1.3. Polyoxometalates (POMs)
Polyoxometalates can activate hydrogen peroxide and

molecular oxygen for the oxidative valorisation of lignin

Scheme 2. Oxidation of lignin model compounds using MTO-activated hydrogen peroxide. (A) Activation of hydrogen peroxide by MTO. (B) Structures of
polymer-supported and encapsulated MTO. (C)–(G) Exemplary reactions with various phenolic and non-phenolic lignin models, including the oxidation of a
neolignan compound (H).
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and its various model compounds, and the procedures
developed are reported as ‘‘green’’ alternatives for the
oxidative valorisation of lignin. [99–102] Keggin-type
POMs with the general formula [PM1

x M2
12�xO40] – M1 or

M2 stands for the catalytically active element (Scheme 4)
– were found to be best suited [103]. Accomplishments
in this field have just recently been reviewed in dedicated
articles, so that we will only briefly introduce the field here
[100]. While the use of POMs in lignin degradation initially
suffered from the fact that the regenerable POMs had to be
used in stoichiometric amounts, it soon became apparent
that it was possible to depolymerise lignin catalytically in
the presence of molecular oxygen, using Keggin’s HPA-5
POMs, such as [PMo7V5O40] (Scheme 4). The POM-based

oxidation proceeds via different pathways for phenolic
and non-phenolic substrates. Phenolic substrates like 60
react supposedly under formation of a phenoxy radical,
that is immediately further oxidised by a second POM
equivalent to form a cyclohexadienyl cation, leading to
the depolymerisation products shown in Scheme 4, mainly
quinones (62) and benzoic acid derivatives [104]. Both
phenolic and non-phenolic substrates were also shown to
react under successive oxidation of the benzylic position.
As observed for the immobilised MTO system, the hetero-
geneity of the POM-based system influences the mecha-
nism of the depolymerisation and the products that are
obtained when compared to, for example, non-POM vana-
dium catalysts [105].

Scheme 3. Oxidation of lignin model compounds using [Co(salen)] complexes. (A) Oxidation of cynnamic ester. (B) Oxidation of phenolic and non-phenolic
lignin model compounds for b-O-40 linkages. (C) Oxidation of phenolic and non-phenolic lignin models for b-50 linkages. (D) Oxidation of veratryl alcohol
using a IL-salen cobalt complex.

Scheme 4. Example for a Keggin HPA-5 POM-mediated oxidative valorisation of a phenolic lignin model compound.
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The effects of substitution pattern of the lignin
model substrates, the effects of solvents, and the effect of
additives on the reaction have been investigated: Notewor-
thy, the addition of aliphatic alcohols and radical scaveng-
ers can effectively reduce the amount of undesired
re-polymerisation of just-generated, lignin-based radical
monomers [106].

5.2. Biomometic oxidation methods

5.2.1. Metalloporphyrins
In nature, modification of lignin is mainly accom-

plished by enzymes such as laccase, lignin peroxidase
(LiP), and manganese dependent peroxidases (MnP),
which use molecular oxygen [107]. Before reviewing
studies on the oxidative upgrade of lignin using these en-
zymes (vide infra), we wish to summarise results obtained
by using biomimetic catalysts that can activate hydrogen
peroxide for the oxidative degradation of the complex lig-
nin structure.

Synthetic metalloporphyrins represent biomimetic sys-
tems for both LiP and MnP, since they can yield highly oxi-
dised metallo-oxo species similar to those found in LiP I,
and LiP II [108]. Highly functionalized porphyrins, bearing
aryl substituents in the meso-positions of the heme motif,
represent tunable catalyst systems: both the redox poten-
tial and the solubility of the complexes can be tuned by
carefully varying the nature of the meso-substituents. Sev-
eral tunable metal porphyrin catalysts were found to be
capable of oxidising lignin and lignin model compounds,
and the efforts in this field have been summarised before
[109,110]. Nevertheless, we wish to review some of the
most important aspects here as well, since these catalyst
systems exhibit an advantage over the enzyme-based vari-
ants employing the same reactive metal core: the metallo-
porphyrins are not as sensitive towards an excess of
hydrogen peroxide, and are thus potentially more interest-
ing with respect to industrial applications.

Anionic manganese and iron meso-tetra(2,6-dichloro-3-
sulphonatophenyl porphyrin chlorides (TDCSPPMnCl and
TDCSPPFeCl, respectively), anionic meso-tetra-4-sulphona-
tophenyl porphyrin chloride (TSPPMnCl), as well as cat-
ionic manganese meso-tetra(N-methylpyridinio)porphorin
pentaacetate 68 (TPyMePMn(MeCOO)5) (Scheme 5A) were
shown to effectively oxidise residual kraft lignin and lignin
model compounds yielding the usual degradation products
– benzoquinones, benzyl alcohols, and phenyl alkyl ke-
tones in acidic environments (pH 3–6) (Scheme 5B) [111].

All porphyrin catalysts produced comparable mixtures
of products, hinting at comparable reaction mechanisms
despite the different metal centres and porphyrin moieties.
The cationic manganese complex TPyMPMn(MeCOO)5

(68), however, performed best, and in general, manganese
complexes performed better than the corresponding iron
complexes. The water soluble manganese porphyrin deriv-
ative 68 distinguished itself through high yields of
products originating from oxidations of both the aromatic
ring and the side chains, as well as products indicative of
demethylation reactions; only low yields of undesired
products resulting from radical recombination reactions.

5.2.2. Immobilised metalloporphyrins
The major disadvantage of the (not easy to synthesise)

porphyrin complexes – with respect to large scale/indus-
trial applications – is their liability under the reaction con-
ditions typically used for lignin degradation processes. This
problem can be solved by developing a mimic of the poly-
peptide envelope that protects the active centre in natural
enzymes. One simple way to achieve such an envelope mi-
mic is to immobilise the porphyrin-based catalyst systems
on solid supports such as silica gel [112], naturally occur-
ring clays [111], or artificial polymers [113]. These immo-
bilisation methods, which also significantly ease recovery
of the catalysts, do not cause any loss in reactivity [111]
Clays from the smectite family proved to be very versatile
due to an inherent structural feature: two-dimensional
oxyanions are separated by layers of hydrated metal cat-
ions, which can be exchanged using simple ion-exchange
protocols [109,114]. For example, Montmorillonite-sup-
ported TPyMPMn(MeCOO)5 activated hydrogen peroxide
for the oxidative decomposition of lignin model compound
5 into the same small molecules that were obtained using
non-immobilised complex 68, namely products originating
from oxidation of the side chains, of the phenolic hydroxyl
groups, of the aromatic moieties and from cleavages of the
side chain (Scheme 5C). The identical compositions of the
product mixtures obtained for both the immobilised cata-
lyst and its free analogue suggest identical reaction mech-
anisms underlying the oxidations.

More recently, it has been reported that the porphyrin-
skeleton can be attached to typical ionic liquid cations such
as immidazolium derivatives, which allow solubilising the
porphyrin-based catalysts in ionic liquids [115], which
have been used before in studies on lignin degradation.
Unfortunately, more detailed results have not been pub-
lished yet.

5.2.3. Mediator-containing systems
The immobilisation of metalloporphyrins on the surface

of porous clays, despite all the advantages mentioned
above, reduces the accessibility of the active metal core
for bulkier substrates. In order to maintain high turnover
numbers, mediators can be used. These are ideally small
enough to easily diffuse through the pores of the clay to ac-
cess the activated metal core, to become activated, and to
subsequently diffuse back into the medium where they
can readily react with the bulkier substrates. The use of
meta-stable mediator systems is generally beneficial
with respect to the oxidative functionalisation and
depolymerisation of lignin, since they can readily diffuse
into / in between the polymeric structures of lignin. Immo-
bilised metalloporphyrin-mediator systems were shown to
oxidise phenols and lignins by side-chain oxidation/frag-
mentation and depolymerisation, as spectroscopically
(31P NMR spectroscopy) validated by decreasing intensities
of the signals corresponding to aliphatic hydroxyl groups,
and increasing intensities of signals corresponding to car-
boxyl groups [114]. Noteworthy, no products originating
from oxidative coupling reactions were observed. More de-
tailed mechanistic studies on the effects of the mediators
on the oxidative functionalisation of lignin are covered in
the following paragraphs.
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5.3. Enzyme-based oxidation methods

As indicated, in nature, lignin is selectively oxidised by
white-rot fungi that utilise a series of enzymes to
selectively oxidise lignin in the present of cellulose and
hemicellulose, which are enzymatically decomposed by
soft-rot fungi and/or red-rot fungi species [107]. The most
active lignin degrading enzymes are laccases, manganese
peroxidases, and lignin peroxidases. The use of lignolytic
enzymes in industrial processes has recently been dis-
cussed [116]. In this review, we will briefly summarisere-
sults that have been accumulated in literature on the
oxidative degradation of lignin by laccases and peroxi-
dases. We wish to highlight important mechanistic as-
pects, and to show possibilities of how to further
enhance the industrial exploitation of these enzymes.

5.3.1. Laccase
Laccase (EC 1.10.3.2) is a multicopper oxidase that oxi-

dises suitable substrates under concomitant reduction of
oxygen to water [117,118]. The thermally very stable en-
zyme – no denaturation is observed at temperatures up
to 60 �C – contains four copper atoms, organised in three
different copper centres, one type 1 copper centre (T1 site),
one type 2 copper centre (T2 site), and a coupled binuclear
type 3 copper centre (T3 site). The T2 and T3 sites form a
trinuclear copper cluster onto which molecular oxygen is
reduced [119]. The T1 copper atom oxidises the reducing
substrate and transfers electrons to the T2 and T3 copper
atoms. Within an outer-sphere electron-transfer mecha-
nism [120], a radical cationic species is initially generated
from a phenolic substrate. This radical cation undergoes
subsequent deprotonation to yield a phenoxy radical,

which initiates the depolymerisation of lignin following
an exo-depolymerisation mechanism [107,120–123]. The
variety of substrates that can be oxidised by laccases
mainly depends on the oxidation potential of the sub-
strates, and to a lesser extent on their steric demands.
Although different fungi produce laccases with different
redox potentials, ranging from E� = 0.43 V (tree laccase
from Rhus vernicifera) to 0.78 V (fungal laccase from Poly-
porus versicolor) [124], it was not yet possible, for example,
to find a laccase that is able to directly oxidise blocked phe-
nolic substrates.

Blocked phenolic substrates can, however, be indirectly
oxidised by laccases, when these are used in combination
with a radical mediator species, such as 1-hydroxybeno-
triazole (HBT, 80) [125], N-hydroxyacetanilide (NHA)
[126], violuric acid [126], or 2,20-azinobis-3-ethyl-benz-
thiazoline-6-sulfonate (ABTS) [127,128]. The use of these
mediators helps to improve the efficacy of laccase-based
depolymerisations of lignin for two reasons: Firstly, as
mentioned before, these mediators can readily diffuse into
the lignin fibres after being activated by the enzyme. Sec-
ondly, they can serve to alter the mechanism underlying
the enzymatically-induced depolymerisation cascades by
altering their starting point.

Mechanistic studies involving the mediator HBT (80) re-
vealed that laccase initially converts HBT to an oxybenzo-
triazolyl radical, which substracts a hydrogen atom from
either the phenolic or the benzylic position – semiemperi-
cal calculations (PM3) suggest a comparable spin density
for the two radical species – of phenolic and non-phenolic
lignin model compounds, respectively (Scheme 6) [129].
Oxidation thus does no longer occur via an electron
transfer process in these cases, but via a hydrogen atom

Scheme 5. Metalloporphyrin-mediated oxidative valorisation of lignin model compounds. (A) Various neutral and ionic metalloporphyrins. (B) Oxidation of
various lignin model compounds using TPyMePMn(MeCOO)5. (C) Oxidation of lignin model 5 using clay-supported TPyMePMn(MeCOO)5.
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abstraction process, which is potentially easier to control
(Vide infra for a more detailed discussion of the influence
of the radicals.) [130]. Vanillyl alcohol (78), and derivatives
thereof, were used as model compounds in comparative
studies aiming at elucidating the effects of radical media-
tors in the laccase-based modification of phenolic and
non-phenolic lignin subunits [131]: It was found that the
mediator effectively changes the composition of the prod-
uct mixture obtained upon oxidative treatments using the
enzyme mediator system. In laccase-only systems, prod-
ucts originating from oxidation of the alkyl side-chain oxi-
dation (49), as well as of oxidative coupling reactions (81
and 82) were obtained (Scheme 6). These products suggest
that laccases equally well oxidise side-chains (as indicated
by the decrease of aliphatic hydroxyl groups present in
lignin side chains) and aromatic rings of the lignin struc-
ture, as indicated by the increase of condensed phenolic
species. When HBT (80) is added, products originating
from oxidation of the aromatic rings, like ortho- and
para-benzoquinones 83 and 84, catechol 86, and muconic
acid derivative 85 were found in appreciable yields
(Scheme 6), beside products like 49, which are indicative
of oxidations of the side-chains. The formation of the prod-
ucts found upon addition of HBT cannot be explained on
the basis of the reaction of oxygen centred radicals such
as phenoxy radicals with molecular oxygen, since the addi-
tion of molecular oxygen to phenoxy radicals is slow (vide
infra) [132]; the addition of a superoxide anion to a phen-
oxy species is faster, and thus more likely to be the reason
for the formation of the observed product mixtures. The
additionally postulated benzyl radical would kinetically
be suitable to bind molecular oxygen, resulting in a peroxo
radical species that could decompose under formation of a
superoxide anion, which would then act as reaction part-
ner for the phenoxy radical present in the mixture.

5.3.2. Peroxidases
Manganese peroxidases represent the second class of

enzymes, that were shown to oxidatively depolymerise lig-
nin under concomitant reduction of molecular oxygen or
hydrogen peroxide to water [133]. Activation of molecular
oxygen or hydrogen peroxide is achieved via a two-step
process, in which an iron protoporphyrin IX activates the
oxidant first for the oxidation of the manganese co-factor
from Mn(II) to Mn(III) [134]. The Mn(III)-centre is subse-
quently chelated by carboxylic acid anions, and forms thus
a small, freely diffusible species – comparable to the acti-
vated mediator in the laccase-mediator system – that ulti-
mately oxidatively depolymerises lignin and lignin model
compounds [135,136]. The depolymerisation is initiated
by the formation of a phenoxy radical species via hydrogen
abstraction [133]. Different lignin model compounds,
mimicking the recalcitrant phenolic arylglycerol b-aryl
ether and diarylpropane motifs, could be cleaved success-
fully using MnP [135,136]. Condensed phenolic lignin
model compounds displaying 5–50, a-50, and diphenylme-
thane subunits were also efficiently oxidised by MnP
[137]. When 5–50 models were treated with MnP isolated
from white-rot fungus Lentinula edodes, products of oxida-
tions of the alkyl side-chain were detected; an effective
overall substrate conversion was observed [138]. The best

substrate conversion was found for the a-5 model com-
pound 2,40-dimethoxy-3,30-dimethoxy-5-methyl-diph-
enylmethane (9), when it was treated with MnP
(Scheme 7). The isolated products confirm the expected
oxidation of the alkyl side-chain, and they showed that
oxidative cleavage preferentially occurs at the carbon-
bridging position. The combined MnP results suggest that
the reactive manganese species is selectively attacking
methyl and methylene groups in para-position to the phe-
nolic OH-groups in lignin. As in case of laccase, an exo-
depolymerisation mechanism is assumed based on the
analyses of the residual lignin.

Peroxidases could also be used to catalyse the formation
of lignans. ‘‘Unnatural’’ dihydrobenzofuran lignans could
be synthesised via an oxidative cross-coupling protocol
using HRP. The construction of ‘‘unnatural’’ lignans, using
the very same enzymes that can also degrade natural lig-
nin, holds – in principal – the potential to develop all-
encompassing processes for the production of tailor-made
synthetic polymers from lignin monomers as renewable
resource [139].

5.3.3. Immobilised enzymes
The enzyme-based valorisation of lignin suffers from

the same drawbacks as the organometal-catalysed and
the biomimetic methods discussed earlier. Large scale
applications seem to be prohibitive since the need to re-
cycle the costly, active ingredient is compromised by a ra-
pid loss of activity of the enzymatic catalyst [140]. As for
the other methods (vide supra), a protecting immobilisa-
tion of the enzymes, should be suitable to solve both issues
simultaneously. Extensive reports exist in literature
detailing the immobilisation of laccase and other enzymes
[141–145], but although immobilisation indeed eases any
recycling process, a wide-spread application of these pro-
tocols is compromised by the fact that the supported en-
zymes still lose their activity too rapidly. A recently
developed process for the immobilisation and subsequent
protection of laccase, termed layer-by-layer (LbL) tech-
nique [146–150], relies on successive deposition of ultra-
thin layers of alternatingly charged polyelectrolytes on
various surfaces that were functionalized before with the
enzyme of choice, by conventional means (Scheme 8). For
example, laccase was immobilised on alumina particles
(via consecutive silanisation and crosslinking using glutyr-
aldehyde) [151], before it was protected by alternate layers
of poly(allylamine) hydrochloride and polystyrene sulfo-
nate [152]. The protected immobilised enzyme could be
used in numerous (>10) oxidation cycles in which it re-
tained 70–80% of its original activity.

The LbL-technique can also be used in order to create
hollow spheres, which can serve as containers for enzymes
(Scheme 9) [152]. Once the sphere, – comprised of three
alternatively charged layers of polyelectrolytes – has been
obtained after dissolving the core particle around which it
was initially built up, variation of the pH of the solution al-
lows opening and closing of pores within the capsule walls,
thus ultimately allowing loading of the enzyme at one pH,
and diffusion of substrates into the sphere at a different
pH; the latter conditions do not cause the pores to become
wide enough to accidentally free the enzyme. The laccase
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loaded into the capsules displayed an activity, and a stabil-
ity that was comparable to those found for the laccase that
was immobilised on the solid spheres using the LbL-
technique.

Both the LbL-coated, and the encapsulated laccase were
studied in the direct oxidation of lignin and lignin
model compounds [152]. The samples were found to be
much more efficiently oxidised by the supported and

Scheme 6. Comparison of product distributions obtained from the oxidative depolymerisation of lignin and phenolic lignin model compounds using laccase
and a laccase-HBT mediator system.
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encapsulated species than by the free enzymes: conver-
sions were found to double. A closer look at the product
mixture and the residual lignin revealed interesting differ-

ences in comparison to the product mixture obtained with
the free enzyme: (i) The number average molecular weight
of the residual lignin was decreased, probably due to

Scheme 7. Reaction of a a-50 motif model compound 9 with MnP.

Scheme 8. LbL-coating procedure for immobilising enzymes, e.g. laccase, on the surface of an alumina particle.

Scheme 9. Encapsulation procedure using the LbL-coating technique.
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hydrolysis reactions; (ii) NMR analyses suggested an in-
crease in both aliphatic and phenolic hydroxyl groups;
(iii) the soluble fractions were characterised by the pres-
ence of a significant amount of lower molecular weight
polymeric material and not only by oligomers. All these
findings suggest that the immobilised enzymes cause

endo-depolymerising hydrolytic processes, e.g., cleavage
of alkyl aryl ethers. As mentioned before, ree laccase, as
well as free peroxidase, were found to be exo-depolymeris-
ing enzymes. The oxidative decomposition of lignin results
here – via aromatic ring-cleavage, side-chain oxidations,
and demethylations – in low molecular weight fractions,

Scheme 10. Different pathways of the oxidative depolymerisation of lignin by co-immobilised laccase and HRP.
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under concomitant further polymerisation of the remain-
ing lignin polymer, as it has to be concluded from in-
creased average molecular weight numbers found for
residual lignin after exposure to laccase.

The LbL-technique is not only compatible with a
variety of enzymes [153,154], it also allows for the simul-
taneous immobilisation of multiple enzymes [155]. Inter-
estingly, this does not only serve to extend the range of

Scheme 11. Proposed paths leading to the oxidative decomposition of lignin model compound 94 via peroxo radicals.

Scheme 12. Proposed paths leading to the oxidative decomposition of lignin model compound 11 without peroxo radicals.
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the theoretically available electrochemical potential that
can be covered, thus potentially extending the substrate
range, but also seems to affect the mixture of depolymer-
isation products, the nature of the oligomers of residual
lignin, and, most noteworthy, the apparent overall mecha-
nism of the enzymatic depolymerisation [155]: When, for
example, laccase and HRP are immobilised simultaneously
on the same particles, both endo- and exo-polymerisation
products are obtained (Scheme 10).

6. Digression on the importance of the nature of
intermediate radical species and the reaction
mechanisms for the oxidative depolymerisation of
lignin

The desire to oxidatively functionalize lignin comes
with the burden that one has to deal with potentially
highly reactive species, which usually make it difficult to
control product selectivity. With exception of MTO, that
undergoes a concerted oxygen transfer mechanism (vide
supra), all of the above presented methods for an oxidative
valorisation of lignin run via intermediate oxygen-based
radicals of different types and reactivities, causing the for-
mation of a wide variety of products. This variety of prod-
ucts, which potentially represents a significant problem
with respect to the straightforward industrial applications
of suitable oxidative valorisation processes, is only partly
caused by the fact that the biopolymer lignin does not fol-
low a regular polymer pattern. This variety also originates
from a rather un-selective reactions of the initial oxygen-
based radical species. It is thus important to identify ways
to control the reactivity, or the type of the main oxygen-
based radical species, in order to ultimately control the
product formation upon oxidative lignin depolymerisation.
A series of mechanistic studies suggest that the product
mixture can be influenced (i) by carefully controlling the
pH of the reaction medium [156]; (ii) by controlling –
potentially via the use of mediators (vide supra) – whether
initially an oxygen-centred radical, for xample a phenoxy
radical, or a carbon-centred radical, for example a benzylic
radical is formed; and (iii) by controlling the atmosphere
under which the reactions are carried out (Scheme 11)
[157].

In the presence of oxygen, both the oxygen-based and
the carbon-centred radical will react with hydroperoxyl
or superoxide anion radicals to hydroperoxides, which in
turn can originate from reactions between phenolate struc-
tures with oxygen or hydrogenperoxides in the presence of
transition metal catalysts, from UV-radiation, or from reac-
tion with other radicals [156]. The intermediate hydroper-
oxides undergo further reactions that are depending on the
pH of the reaction mixture as well as the position of the
peroxo motif in the structure (Scheme 11). In acidic envi-
ronments, mainly dealkoxylations are observed. In basic
environments, the phenolic peroxide species undergo
mainly ring opening reactions [156]. Unfortunately, the
questions whether a benzylic radical would have formed
under the various conditions, and how it it could have re-
acted, has not been addressed in this study. This would
have been interesting with respect to newer studies on

the treatment of lignin model compounds with radical
species:

These studies suggest, that both the oxygen-centred
and the carbon-centred radicals can directly contribute to
the depolymerisation of lignin, and that the intermediate
peroxo-radical species is not as essential as originally
anticipated [157]. The alternative mechanistic pathway
leading to oxidised lignin ‘‘monomers’’ is shown in
Scheme 12. These findings hint at the fact, that it should
be possible to achieve a controlled oxidative lignin depoly-
merisation process that does not require the use of peroxo-
species.

Also the rough comparison of the number and nature
of different products generated upon depolymerising lig-
nin, or lignin model compounds, using organometalli cat-
alysts, biomimetic catalysts, or oxidative enzymes reveals
the necessity to focus on the underlying mechanism for
the development of lignin based products. If product
selectivity is less important, and the depolymerisation
as such is the main objective, an effective method for
the generation of free hydroxyl radicals should be chosen.
Selective oxidative oxidative valorisation of lignin, how-
ever, can only be achieved when no hydroxyl radicals
are present. In this case the formation of phenoxy radicals
and / or benzylic radicals will occur in the presence of
inorganic or biomimetic catalysts and oxidative enzymes.
Further improvements of the selectivity within oxidative
transformations of lignin are only possible by using trans-
formations, that work via concerted mechanisms in the
oxidation reactions, thus preventing the extensive forma-
tion of free radicals. The MTO-catalyzed oxidative valori-
sation of lignin is one example for such a process (vide
supra).

7. Conclusions

To date, lignin represents the main waste stream from
modern saccharification processes. As such its valorisation
is necessary in order to develop sustainable biorefinery
processes. Lignin constitutes a rich renewable source of
aromatic compounds. Its complex structure offers unique
routes to produce fine and bulk chemicals either by adjust-
ment of already developed petroleum processes or by new
technologies.

Catalysis plays a major role in the conversion of lignin,
and a considerable number of efforts have been devoted
to the development of catalytic routes for its specific oxi-
dation/functionalisation. Despite of this, a general
description of the chemical reactivity of lignin is still lack-
ing, mainly due to three fundamental issues: Lignin
sources are heterogeneous by nature. Different lignin
pre-treatments, often originally developed for pulping
and paper production purposes, provide fundamentally
different lignin streams with variable chemical character-
istics. Another factor responsible for the comparably slow
understanding of lignin reactivity relies on its structural
variability according to the plant source. The third factor
affecting a possible general understanding of lignin chem-
istry is the analytical challenge associated with its struc-
tural characterisation.
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The variable and unpredictable structure of lignin requires
the development of strategies aimed at controlling and tailor-
ing its multi-functionality, namely processes of selective oxi-
dation, reactive groups protection and functionalisation.

Inorganic catalysts, such as MTO, salen-complexes, or
POMs achieve an efficient degradation of lignin and lignin
model compounds; however, the aforementioned con-
certed radical mechanism is only given in case of MTO. Bio-
mimetic catalysts also offer suitable reactivities, but
reactions do not proceed in concerted mechanisms avoid-
ing free radical species. Neither do the enzymatic processes
that have been studies so far; these did prove to be very
effective for lignin degradation, though. More research ef-
forts are needed in order to exploit the initial findings pre-
sented in this and other reviews, and to develop robust
protocols that avoid free radical species.
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