ON THE UNITARITY OF STOCHASTIC EVOLUTIONS DRIVEN BY THE SQUARE OF WHITE NOISE

LUIGI ACCARDI
Centro Vito Volterra, Università di Roma Tor Vergata, Via di Tor Vergata, 00133 Roma, Italy

ANDREAS BOUKAS
American College of Greece, Aghia Paraskevi, Athens 15342, Greece

HUI-HSUNG KUO
Department of Mathematics, Louisiana State University, Baton Rouge, LA 70893-3418, USA

Received 20 April 2001
Communicated by T. Hida

Using the closed Ito's table for the renormalized square of white noise, recently obtained by Accardi, Hida, and Kuo in Ref. 4, we consider the problem of providing necessary and sufficient conditions for the unitarity of the solutions of a certain type of quantum stochastic differential equations.

1. Introduction

The renormalized square of white noise (or SWN) *-algebra is generated by operators B_f, B^+_f and N_f satisfying the commutation relations

$$[B_f, B^+_g] = 2c(f, g) + 4N_{fg}, \quad [N_f, B^+_g] = 2B^+_g, \quad [N_f, B_g] = -2B_f, \quad (1.1)$$

$$[B_f, B_g] = [B^+_f, B^+_g] = [N_f, N_g] = 0, \quad B_f \Omega = N_f \Omega = 0, \quad (1.2)$$

where $f, g \in L^2 \cap L^\infty(\mathbb{R})$, Ω is the vacuum vector, $c > 0$ comes from renormalization, and $(f, g) = \int_\mathbb{R} f(\tau) \overline{g(\tau)} d\tau$. It was shown in Ref. 2 that the quantum stochastic calculus associated with the SWN operators is included in the representation free calculus of Ref. 3 and satisfies the basic semimartingale inequalities. As shown in Ref. 3, this is sufficient to guarantee the existence and uniqueness theorem for stochastic differential equations with bounded coefficients, driven by the SWN. A similar result could also be established by using the representation of the SWN in

*E-mail: accard@volterra.mat.uniroma2.it
terms of usual quantum white noise as in Refs. 6 and 7. On the other hand, Accardi, Hida and Kuo in Ref. 4 proved that the SWN differentials

\[dB(t) = B^*_H(t) \frac{dN(t)}{N_H(t)}, \quad dB^+(t) = B^{**}_H(t) \frac{dN(t)}{N_H(t)} \]

satisfy weakly on the SWN exponential vectors the following closed table:

<table>
<thead>
<tr>
<th>[dB^+(t)]</th>
<th>[dN(t)]</th>
<th>[dB(t)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\alpha_+^x \delta^x + \beta_+^x \delta^x]</td>
<td>[\gamma_+^x \delta^x]</td>
<td>[\gamma_+^x \delta^x]</td>
</tr>
<tr>
<td>[\alpha_0^x \delta^x + \beta_0^x \delta^x]</td>
<td>[\gamma_0^x \delta^x]</td>
<td>[\gamma_0^x \delta^x]</td>
</tr>
<tr>
<td>[\alpha_-^x \delta^x]</td>
<td>[\beta_-^x \delta^x]</td>
<td>[\gamma_-^x \delta^x]</td>
</tr>
</tbody>
</table>

where

\[\alpha_+^x = 88k(\delta^x)^3, \quad \beta_+^x = 16k(\delta^x)^2, \quad \gamma_+^x = 88k(\delta^x)^3, \]
\[\alpha_0^x = 64k(\delta^x)^3, \quad \beta_0^x = 2 + 88k, \quad \gamma_0^x = 64k(\delta^x)^3, \]
\[\alpha_-^x = (2c - 32\delta^x)^2, \quad \beta_-^x = 16\delta^x, \quad \gamma_-^x = (4 - 64\delta^x)^2, \]
\[+ 128(\delta^x)^3, \quad \gamma_-^x = (4 - 64\delta^x)^2, \]
\[\alpha_0^x = 64k(\delta^x)^3, \quad \beta_0^x = 80k, \quad \gamma_0^x = 64(\delta^x)^3, \]
\[\alpha_0^x = 32k(\delta^x)^2, \quad \beta_0^x = 40k, \quad \gamma_0^x = 32(\delta^x)^2, \]
\[\alpha_0^x = 64k(\delta^x)^2, \quad \beta_0^x = 2(\delta^x)^2 + 80k, \quad \gamma_0^x = 64(\delta^x)^2, \]
\[\alpha_-^x = 128(\delta^x)^3, \quad \beta_-^x = 160(\delta^x)^2, \quad \gamma_-^x = 128(\delta^x)^3, \]
\[\alpha_0^x = 64k(\delta^x)^2, \quad \beta_0^x = 80k, \quad \gamma_0^x = 64(\delta^x)^2, \]
\[\alpha_-^x = 8k(\delta^x)^2, \quad \beta_-^x = 160k, \quad \gamma_-^x = 8k(\delta^x)^2, \]

where \(k = \frac{1}{16k(\delta^x)^3}, \) \(\delta^x \) and \(\delta^x \) are the Hida derivative and its adjoint and, for an analytic function \(F(x, y) = \sum_{m,n \geq 0} a_{m,n} x^m y^n \) and any operators \(M \) in the algebra generated by \(B_H \) and \(N_H \), the sesquilinear form \(MF(\delta^x, \delta^x) \) is defined by

\[MF(\delta^x, \delta^x)(\psi(f), \psi(g)) = \sum_{m,n \geq 0} a_{m,n} f^*(x)^m g(x)^n(\psi(f), M(\psi(g))) \]

(1.4)

Similarly

\[MF(\delta^x, \delta^x)(\psi(f), \psi(g)) = \sum_{m,n \geq 0} a_{m,n} f^*(x)^m g(x)^n(\psi(f), M(\psi(g))) \]

(1.5)

where \(\psi(f), \psi(g) \) are SWN exponential vectors. Notice that, by construction,

\[MF(\delta^x, \delta^x) = F(\delta^x, \delta^x) M \]

in the sense of equality of sesquilinear forms. Moreover, \(\delta^x, \delta^x = 0 \). We denote by \(F \) the adjoint form of \(F \). By avoiding test functions \(f, g \) for which the denominator vanishes we can extend definition (1.4) to more general rational functions \(F(\delta^x, \delta^x) \), for example of the form \(F(\delta^x, \delta^x) = 1/\delta^x \delta^x \). This possibility will be used freely in the following, in particular in the example of Sec. 4.

It is therefore natural to combine the above-mentioned results and to try to obtain the unitarity conditions for stochastic differential equations driven by the square of white noise. Since the SWN Itô table involves operators of the form (1.4), (1.5), it is also natural to expect that the coefficients of an equation, admitting a unitary solution, will depend on such “operators”. This means that, as already discussed in Ref. 1, such equations must be interpreted as ordinary differential equations on sesquilinear forms and only a posteriori one has to prove that these quadratic forms are induced by unitary operators.

In this note we derive these unitarity conditions. However we prove, by providing a counterexample, that the SWN differentials (1.3) are not linearly independent on the algebra generated by the sesquilinear forms (1.4), (1.5). This implies that, without additional information, one cannot conclude that the sufficient conditions for unitarity, deduced from the SWN Itô table in Sec. 2 below, are also necessary.

In fact we are able, by explicit calculations, to determine the form-coefficients of the stochastic equations satisfied by the SWN analogue of the Poisson process (which includes the SWN Weyl operators). These processes are unitary by construction, but we prove that their coefficients do not satisfy the sufficient conditions of Sec. 2. Finally we construct an example of an equation which satisfies the above-mentioned sufficient conditions.

2. Unitarity Conditions for Evolutions Driven by the SWN

Let \(H_0 \) be a complex separable Hilbert space and let \(S = \text{span} \{ \psi(f) \} \) and \(\mathcal{E} = H_0 \otimes S \). We consider stochastic evolutions of the form

\[dU(t) = (A(t) + B(t) + C(t) + D(t))dN(t) \]

(2.1)

and its adjoint

\[dU^+(t) = (A^*(t) + B^*(t) + C^*(t) + D^*(t))dN(t) \]

(2.2)

with initial conditions

\[U(0) = U^+(0) = I, \quad 0 \leq t \leq t_0 < +\infty, \]

where the solution \(U = [U(t), 0 \leq t \leq t_0 < +\infty] \) is defined as a sesquilinear form on \(\mathcal{E} \times \mathcal{E} \), for each \(t \) the coefficients \(A(t), B(t), C(t) \) and \(D(t) \) are, in general, finite linear combinations of elements of the form \(R(t) \otimes F(\delta^x, \delta^x) \) where \(R(t) \) is a bounded linear operator on \(H_0 \) and \(F(\delta^x, \delta^x) \) as above, and for \(X \in \{ E, B^*, N \} \) we define \(dX = I \otimes dX \) where \(I \) is the identity on \(H_0 \) and the \(dX \) on the right is defined on \(S = \text{span} \{ \psi(f) \} \) in the standard way.

The above form of the coefficients is suggested by the SWN Itô table. For such coefficients the stochastic differentials (1.3) are not linearly independent in the sense
that the equation
\[A_1(t) \otimes \alpha_1(\delta^t, \delta_t)dt + A_2(t) \otimes \alpha_2(\delta^t, \delta_t)dB(t) + A_3(t) \otimes \alpha_3(\delta^t, \delta_t)dB^+(t) + A_4(t) \otimes \alpha_4(\delta^t, \delta_t)dB^-(t) = 0 \] (2.3)
meant in the sense of sesquilinear forms, does not imply
\[A_i(t) \otimes \alpha_i(\delta^t, \delta_t) = 0 \] (2.4)
for all \(t \) and \(i = 1, 2, 3, 4 \). To see this let \(A_1(t) = A_2(t) = A_3(t) = A_4(t) = I \) for all \(t \) and, assuming that, for each \(i = 1, 2, 3, 4 \),
\[\alpha_i(\delta^t, \delta_t) = \sum_{n,k=0}^{\infty} a_i^{n,k} \delta^n_t \delta^k_t, \]
choose \(a^{n,k}_3 = a^{n,0}_3 = \delta^{n,k}_3 = 0 \) for all \(n, k = 0, 1, \ldots \), and for all \(n, k = 1, 2, \ldots \)
choose \(a^{n-1,k}_2 + 2a^{n,k}_3 - a^{n-1,k-1}_2 = 0 \), for example
\[a^{n,k-1}_2 = \frac{1}{n!(k-1)!}, \]
\[a^{n-1,k}_3 = \frac{1}{(n-1)!k!}, \]
\[a^{n-1,k-1}_4 = -\frac{1}{2} \left(\frac{1}{n!(k-1)!} + \frac{1}{(n-1)!k!} \right). \]
Then, using (1.4), (1.5) and Proposition 2.1 of Ref. 2 to compute the matrix elements, we see that (2.3) is satisfied but (2.4) is not.

To obtain unitarity conditions for \(U \) we start with
\[U(t)U^*(t) = U^*(t)U(t) = I, \quad U(0) = U^*(0) = I \] (2.5)
which are equivalent to
\[d(U(t)U^*(t)) = dU(t)U^*(t) + U(t)du(t) + du(t)U^*(t) = 0 \] (2.6)
and
\[d(U^*(t)U(t)) = dU^*(t)U(t) + U^*(t)du(t) + du^*(t)U(t) = 0 \] (2.7)
and then using the Itô table and equating coefficients of the time and noise differentials to zero we obtain:

Theorem 2.1. If for each \(t \)
\[A + \mathcal{A}^* + \mathcal{B}^* \mathcal{C} + \mathcal{B}^* \mathcal{C}^* + \mathcal{B}^* \mathcal{D}^* \mathcal{A}_0 + \mathcal{C}^* \mathcal{A}_0 + \mathcal{D}^* \mathcal{A}_0 + \mathcal{D}^* \mathcal{A}_0 + \mathcal{D}^* \mathcal{D}_0 = 0, \] (2.8)
\[B + C = 0, \] (2.9)

then the solution \(U = \{ U(t) : 0 \leq t \leq t_0 < +\infty \} \) of the initial value problem (2.1) is unitary.

It should be pointed out that in conditions (2.8)-(2.14), \(\alpha_2', \beta_2', \gamma_2', \epsilon, \epsilon' \in \{+, -\} \) stand for \(I \otimes \alpha_2', I \otimes \beta_2', I \otimes \gamma_2', \) respectively, where \(I \) is the identity on \(H_0 \).

For a detailed exposition of how existence, uniqueness and unitarity of solutions of quantum stochastic differential equations driven by nonlinear noise can be formulated in the language of sesquilinear forms, we refer to Ref. 1.

3. Examples of Unitary SWN Stochastic Equations

In this section, we obtain the quantum stochastic differential equation (QSDE) satisfied by the SWN Weyl operator. It will be seen that it is a QSDE of the type considered in Sec. 2 above. For \(t \geq 0, \lambda, \kappa \in \mathbb{R} \) and \(s \in \mathbb{C} \) with \(s + i + k \neq 0 \) let \(A(t) = \lambda t + zB(t) + sB^+(t) + kN(t) \) and consider \(U(t) = e^{A(t)} \). Notice that \(A(t) \) can either be viewed as acting on the noise space only, or, by looking at e.g. \(zB(t) \) as \(I + B(t) \) on the tensor product of an initial Hilbert space and the noise space. Computing the differential of \(U(t) \) we find
\[dU(t) = d(e^{A(t)}) = \]
\[= e^{A(t+dt)} - e^{A(t)} = \]
\[= e^{A(dt)}e^{A(t)} - e^{A(t)} \]
by the commutativity of \(A(dt) \) and \(A(t) \).
On the Unitarity of Stochastic Evolutions Driven by the Square of White Noise

\[e^{iA(t)}[e^{iA(t)} - I] = U(t) \prod_{n=1}^{\infty} \left(\frac{(i\alpha A)^n}{n!} \right). \]

(3.1)

With \(\alpha, \beta, \gamma, i, j \in \{+,-,0\} \) as in Sec. 1, let

\[\alpha = z^2 \alpha^- + z \bar{k} \alpha^0 + z \bar{x} \alpha_+ + (z \bar{x})^2 \alpha^0 + z \bar{x} \bar{x} \alpha^- + k \bar{x} \alpha^0 + k \bar{x} \bar{x} \alpha^- + k^2 \alpha^0, \]
\[\beta = z^2 \beta^- + z \bar{x} \beta^0 + z \bar{x} \bar{x} \beta^- + (z \bar{x})^2 \beta^0 + z \bar{x} \bar{x} \beta^- + k \bar{x} \beta^0 + k \bar{x} \bar{x} \beta^- + k^2 \beta^0, \]
\[\gamma = z^2 \gamma^- + z \bar{x} \gamma^0 + z \bar{x} \bar{x} \gamma^- + (z \bar{x})^2 \gamma^0 + z \bar{x} \bar{x} \gamma^- + k \bar{x} \gamma^0 + k \bar{x} \bar{x} \gamma^- + k^2 \gamma^0, \]
\[\alpha_1 = \alpha^0 + \alpha^0, \quad \beta_1 = \beta^0 + \beta^0, \quad \gamma_1 = \gamma^0 + \gamma^0 + \gamma^0, \]
\[\alpha_2 = \alpha^0 + \alpha^0, \quad \beta_2 = \beta^0 + \beta^0, \quad \gamma_2 = \gamma^0 + \gamma^0 + \gamma^0. \]

Using Itô’s table we obtain

\[(\lambda dt + z dB(t) + z dB^t(t) + k dN(t)) (\alpha_1 dt + \beta_1 dB^t(t) + \gamma_1 dN(t)) = (z + \bar{x} + k)((\alpha_1 + k \alpha_2) dt + (\beta_1 + \beta_2) dB^t(t) + (\gamma_1 + \gamma_2) dN(t)). \]

Thus

\[dA(t) = \lambda dt + z dB(t) + z dB^t(t) + k dN(t), \]
\[(dA(t))^2 = \alpha dt + \beta dB^t(t) + \gamma dN(t) \]

and by repeated use of (3.2) we find that for \(n \geq 3 \), in standard matrix notation with \((1 \times 1)\) matrices identified with their entries,

\[(dA(t))^n = (z + \bar{x} + k)^{n-2} \left(\begin{array}{c} \beta \gamma \beta_1 \beta_2 \gamma_1 \gamma_2 \end{array} \right) \]
\[\times \left[\begin{array}{c} (\alpha_1) dt + (\beta_1) dB^t(t) + (\gamma_1) dN(t) \end{array} \right]. \]

(3.5)

By (3.3)-(3.5), (3.1) implies that

\[dU(t) = U(t) \left((\lambda - \frac{\alpha}{2} + M_0) dt + iz dB(t) + (i \bar{x} - \frac{\beta}{2} + M_3) dB^t(t) \right) \]
\[+ \left(i k - \frac{\gamma}{2} + M_2 \right) dN(t), \]

(3.6)

\[U(0) = I, \]

where the \((1 \times 1)\) matrices \(M_0, M_3, M_2, M_4 \) are defined by

\[M_0 = M(\alpha_1), \quad M_3 = M(\beta_1), \quad M_2 = M(\gamma_1), \quad M_4 = M(\gamma_2) \]

and the \((1 \times 2)\) matrix \(M \) is defined by

\[M = \left(\begin{array}{c} (z + \bar{x} + k)^{-2} \left(\begin{array}{c} \beta_1 \gamma_1 \\ \beta_2 \gamma_2 \end{array} \right) \\
-1 - i(z + \bar{x} + k) \left(\begin{array}{c} \beta_1 \gamma_1 \\ \beta_2 \gamma_2 \end{array} \right) \right) \left(\begin{array}{c} (z + \bar{x} + k)^{-2} \\
2 \end{array} \right) \left(\begin{array}{c} \beta_1 \gamma_1 \\ \beta_2 \gamma_2 \end{array} \right)^{-3}. \]

With the exponential and the inverse defined weakly on the exponential vectors. We note that the coefficients of (3.6) do not satisfy the unitarity conditions of Theorem 2.1 which therefore are not necessary. This is due to the linear dependence of the SWN differentials. By suppressing the tensor product notation, the above work transfers word by word to show that if \(E(t) = \lambda \otimes \mathfrak{t} \otimes z \otimes B(t) \otimes \bar{z} \otimes B^t(t) + k \otimes N(t) \), where \(\lambda, k, z \) and its dual \(\bar{z} \) are commuting operators (such that \(z + \bar{z} + k \) is invertible and \(\lambda, k \) are self-adjoint) acting on an initial Hilbert space, then \(U(t) = e^{iE(t)} \) also satisfies (3.6).

4. The Sufficient Conditions: An Example

We will show how one can obtain an example of coefficients \(A, B, \mathcal{C}, \mathcal{D} \) satisfying the unitarity conditions of Theorem 2.1. In what follows we use small letters for sesquilinear forms on \(S \) derived from analytic functions as described in (1.4), (1.5) and capital letters for operators on \(H_0 \). Let the coefficients \(\mathcal{C} \) and \(\mathcal{D} \) in Theorem 2.1 be of the form

\[\mathcal{C} = L \otimes k, \]
\[\mathcal{D} = W \otimes m, \]

where \(m = m. \) Then (2.9) and (2.8) imply respectively

\[B = -L^* \otimes \bar{k}, \]

(4.3)

\[A + A^* = (L^2)^2 \otimes k^2 \alpha^- + L^3 \otimes k^2 \alpha_+ - L^2 \otimes k \alpha^- - LL^* \otimes k \alpha^- \]
\[+ L^* W \otimes k m \alpha^0 + W L \otimes k m \alpha^0 + L^* W \otimes k m \alpha^0 - W L^* \otimes k m \alpha^0 \]
\[- W L^* \otimes k m \alpha^0 - W W^* \otimes m^2 \alpha^0. \]

(4.4)

Replacing (4.4) in (2.12) and using \(\alpha_0 = \alpha_5, \alpha_0 = \alpha_5, \) we obtain

\[[L^*, L] \otimes k \alpha^- + [L^*, \Re W] \otimes 2 k m \alpha^0 + [\Re W, L] \otimes k m \alpha^0 \]
\[+ [W, W^*] \otimes m^2 \alpha^0 = 0 \]

(4.5)

which is satisfied if

\[[L^*, L] = [L^*, \Re W] = [\Re W, L] = [W, W^*] = 0, \]

(4.6)
where \([x, y] = xy - yx\) and \(\text{Re}\) denotes the real part. Returning to (4.4) we notice that if
\[
L = L^* \quad (4.7)
\]
and \(k\) is chosen so that \(\bar{k} \alpha_0^- = k \alpha_0^+\), i.e.
\[
\frac{k}{\bar{k}} = \frac{\alpha_+^-}{\alpha_+^+} \quad (4.8)
\]
then
\[
A + A^* = L^2 \otimes k^2 \left(\frac{\partial \beta}{\partial k} \right)^2 \beta_0^- + \alpha_+^+ - \left(\frac{\partial \beta}{\partial k} \right) (\alpha_+^- + \alpha_+^+) - WW^* \otimes m^2 \alpha_0^0 \quad (4.9)
\]
If \(A, B, C, D\) satisfy (4.1)–(4.3) and (4.9), then conditions (2.8) and (2.9) are satisfied. Replacing (4.1)–(4.3) and (4.9) in (2.10) and using the fact that
\[
\beta_0^- = \beta_0^+, \quad (4.10)
\]
\[
\frac{k^2 \beta^-}{k^2 \beta^+} = 1, \quad (4.11)
\]
\[
\frac{k \beta_0^-}{k \beta_0^+} = 1, \quad (4.12)
\]
\[
k^2 \beta_0^- - k^2 \beta_0^+ = k \beta_0^+ - k \beta_0^+, \quad (4.13)
\]
(2.10) becomes
\[
(LW^* + WL) \otimes m(k^2 \beta_0^- - k^2 \beta_0^+) + WW^* \otimes m^2 \beta_0^0 = 0 \quad (4.14)
\]
which is satisfied if we choose \(m, L, W\) so that
\[
m = \frac{k^2 \beta^-}{k^2 \beta^+}, \quad (4.15)
\]
\[
LW^* + WL = WW^*. \quad (4.16)
\]
An easy computation shows that indeed \(m = m\).

Using (4.15), dividing by \(k\) and then using (4.8), (4.20) implies
\[
k = \frac{\alpha_0^- \gamma^- + \alpha_0^+ \gamma^+ - \gamma^- - \gamma^+}{\gamma^- - \gamma^+} \left(\frac{\partial \beta}{\partial k} \right)^2 \gamma_0^- - \frac{\partial \beta}{\partial k} \left(\frac{\partial \beta}{\partial k} \right)^2 \gamma_0^0 + \frac{2 \alpha_0^- \alpha_0^+ \gamma^- \gamma^+}{\gamma^- - \gamma^+} \quad (4.22)
\]
and by (4.15)
\[
m = \frac{(-1 + 4\Theta)(1 + 4\Theta)^2}{16\Theta(1 + 2\Theta + 8\Theta^2)} \quad (4.23)
\]
Using (4.22) and (4.23), (4.9) implies
\[
A + A^* = L^2 \otimes c(a(\partial_0, \partial_0^+)), \quad (4.24)
\]
where
\[
a(\partial_0, \partial_0^+) = \frac{(1 + 4\Theta)^2(-1 + 4\Theta + 64\Theta^2)}{32\Theta(1 + 2\Theta + 8\Theta^2)^2}. \quad (4.25)
\]
Moreover, (4.10) implies that
\[
\text{Re}W = 2WW^* \quad (4.26)
\]
from which, using \([W, W^*] = 0\), we obtain
\[
(\text{Im}W)^2 = \frac{2(\text{Re}W)^2}{2} = L^2 - 4L^4 \quad (4.27)
\]
which implies
\[
\text{Im}W = (L^2 - 4L^4)^{1/2} \quad (4.28)
\]
provided that
\[
L^2 - 4L^4 \geq 0. \quad (4.29)
\]
We may now prove the following:

Theorem 4.1. Let \(L, H\) be self-adjoint operators in \(H_0\) such that \(L^2 \leq 1/4\), let \(a(\partial_0, \partial_0^+), k(\partial_0, \partial_0^+), m(\partial_0, \partial_0^+)\) be sesquilinear forms on \(S\) defined by (4.25), (4.22), (4.23), and let \(h(\partial_0, \partial_0^+)\) be a sesquilinear form on \(S\) such that \(h = h\). Then the solution \(U = U(t): 0 \leq t \leq t_0 < +\infty\) of the initial value problem
\[
dU(t)/dt = (L^2 \otimes c(a(\partial_0, \partial_0^+)) + iH \otimes h(\partial_0, \partial_0^+))dt - L \otimes k(\partial_0, \partial_0^+)dB(t) + L \otimes (k(\partial_0, \partial_0^+))dB^*(t) + (2L^2 + i(L^2 - 4L^4)^{1/2})dt + m(\partial_0, \partial_0^+)dN(t)U(t), \quad (4.30)
\]
\[U(0) = I\]
is unitary.

Proof. Conditions (2.8)–(2.11) are obviously satisfied since (4.30) was constructed to satisfy them. Direct substitution of the coefficients of (4.30) into (2.12)–(2.14) shows that they are also satisfied and the result follows by Theorem 2.1. \(\square\)
References

 AUTHOR INDEX

Volume 4

Accardi, L., Boukas, A. & Kuo, H.-H., On the unitarity of stochastic evolutions driven by the square of white noise 4/2001/579

Andruchow, E., Corach, G. & Stojanoff, D., Projective space of a C*-module 4/2001/289

Asai, N., Analytic characterization of one-mode interacting Fock space 4/2001/1409

Belavkin, V. P. & Ohy, M., Quantum entropy and information in discrete ensembled states 4/2001/337

Boukas, A., see Accardi

Corach, G., see Andruchow

Da Prato, G. & Tubaro, L., On a class of gradient systems with irregular potentials 4/2001/183

Estevez, M. A., see de Paoli

Fidalgo, F., Weak and strong martingale convergences of generalized conditional expectations in noncommutative L^p-spaces 4/2001/511

Franz, U., Léandre, R. & Schott, R., Malliavin calculus and Skorokhod integration for quantum stochastic processes 4/2001/511

Franz, U., Monotone independence is associative 4/2001/315

Gundlach, M., Khrennikov, A. & Lindahl, K.-O., On ergodic behavior of p-adic dynamical systems 4/2001/569

Hashimoto, Y., Quantum decomposition in discrete groups and interacting Fock spaces 4/2001/277

Hida, T., see Accardi

Ichihara, K., Long time asymptotic properties of heat kernels on negatively curved Riemannian manifolds 4/2001/377

Iosida, T., see Gibilisco

Khrennikov, A., see Gundlach

Kondratiev, Yu. G., see Finkelnburg

Konstantinov, A. Yu., see Finkelnburg

Kubo, I., see Asai

Kuo, H.-H., see Asai

Kuo, H.-H., see Accardi

Kuo, H.-H., see Accardi

Léandre, R., see Franz

Lenczewski, R., Filtered stochastic calculus 4/2001/309

Lichtensch, Y., How to generate Markovian cocycles on boson Fock space 4/2001/215

Liebacher, V. & Skieide, M., Units for the time-ordered Fock module 4/2001/355

Lindahl, K.-O., see Gundlach

Mendiach, S. & Streit, L., Multiple interaction local times in terms of white noise 4/2001/533

Muraki, N., Monotonic independence, monotonic central limit theorem and monotonic law of small numbers 4/2001/390

Nachteeger, H., Kolmogorov systems and Anosov systems in quantum theory 4/2001/385

Ohy, M., see Belavkin 4/2001/137