Addition of either pioglitazone or a sulfonylurea in type 2 diabetic patients inadequately controlled with metformin alone: Impact on cardiovascular events. A randomized controlled trial

O. Vaccaro a,i,* M. Masulli a,i E. Bonora b,i S. Del Prato c,i C.B. Giorda d A.P. Maggioni e P. Mocarelli f A. Nicolucci g A.A. Rивеллеse a,i S. Squatrito h,i G. Riccardi a,i On behalf of the TOSCA.IT study group (Thiazolidinediones Or Sulphonylureas and Cardiovascular Accidents. Intervention Trial)

a Department of Clinical and Experimental Medicine, "Federico II" University, Naples, Italy
b Division of Endocrinology Diabetes and Metabolism, Department of Medicine, University of Verona Medical School and Azienda Ospedaliera Universitaria Integrata, Verona, Italy
c Department of Internal Medicine, University of Pisa, Pisa, Italy
d Diabetes and Metabolism Unit, ASL TORINO 5, Turin, Italy
e ANMCO Research Center, Florence, Italy
f University Milano Bicocca, Department of Laboratory Medicine, Hospital of Desio, Monza Brianza, Italy
g Department of Clinical Pharmacology and Epidemiology, Consorzio Mario Negri Sud, S Maria Imbaro, Chieti, Italy
h Endocrinology Division, Department of Clinical and Molecular Biomedicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
i Società Italiana di Diabetologia (SID), Rome, Italy

Received 4 July 2012; received in revised form 27 August 2012; accepted 1 September 2012
Available online 11 October 2012

KEYWORDS
Type 2 diabetes; Cardiovascular events; Pioglitazone; Sulfonylureas; Randomized Controlled Trial

Abstract
Background and aims: Metformin is the first-line therapy in type 2 diabetes. In patients inadequately controlled with metformin, the addition of a sulfonylurea or pioglitazone are equally plausible options to improve glycemic control. However, these drugs have profound differences in their mechanism of action, side effects, and impact on cardiovascular risk factors. A formal comparison of these two therapies in terms of cardiovascular morbidity and mortality is lacking. The TOSCA.IT study was designed to explore the effects of adding pioglitazone or a sulfonylurea on cardiovascular events in type 2 diabetic patients inadequately controlled with metformin.
Introduction

There is general agreement that metformin, if not contraindicated and well tolerated, should be the first agent in the treatment of type 2 diabetes [1–5], but considerable uncertainty does exist on the best therapeutic option as second line treatment after metformin failure. According to recent guidelines, patients inadequately controlled with metformin, the addition of a sulfonylurea (SU) or pioglitazone are equally plausible options to improve glycaemic control [6,7]. However, these two drugs have profound differences in their mechanisms of action, side effects, and impact on cardiovascular (CV) risk factors.

SUs have been available for a long time and are the least expensive and more widely used oral hypoglycemic agents. They stimulate insulin secretion by binding to the ATP-sensitive potassium channels in the beta cells. SUs rapidly lower blood glucose, but are associated with modest weight gain, increased risk of hypoglycaemia and a secondary failure rate that exceeds other drugs [8]. In addition, the CV effects of SUs are debated. These agents bind to various degrees the ATP channels in the cardiomyocytes thus blunting the myocardial preconditioning mechanism [9,10]. To what extent this may impact CV morbidity and mortality is unclear. Observational studies report higher all-cause and CV mortality with SUs vs. metformin monotherapy [11–16] and in case series of coronary angioplasty, patients on SUs had higher in-hospital mortality than patients on other treatments [17]. To the contrary, data from the French registry on Acute ST and non-ST-elevation Myocardial Infarction (FAST-MI) have shown a better outcome in patients on SUs at admission as compared with patients on other treatments [18]. As for intervention studies, in the University Group Diabetes Program (UGDP) [19] patients receiving tolbutamide experienced more CV events than those treated with insulin, whereas in the UKPDS there is no evidence of an adverse effect of SUs on CVD outcomes [20] and more recently, in the Action in Diabetes and Vascular Disease: Preterax and Diamicron-MR Controlled Evaluation (ADVANCE) study, intensive therapy with gliclazide significantly reduced the risk of microvascular endpoint, with no detrimental effects on macrovascular events [21]. The thiazolidinediones (TZDs) are insulin sensitizing agents [22]: they lower blood glucose without causing hypoglycaemia and provide more durable glycemic effect than other drugs [8]. Pioglitazone also improves lipid profile, blood pressure, albuminuria, and inflammatory and procoagulant markers, an array of effects which may translate into better CV outcomes. Furthermore the PROACTIVE (PROspective pioglitAzone Clinical Trial In macroVascular Events) study has shown that the addition of pioglitazone to the hypoglycaemic therapy in patients with type 2 diabetes and overt macrovascular disease significantly reduced a composite end point of all-cause mortality, nonfatal MI and stroke as compared to placebo [23]. In addition the CHICAGO and PERISCOPE studies have shown that pioglitazone, as compared with glimepiride, reduces the progression of carotid intima–media thickness [24] and the progression of intracoronary atherosclerosis [25]. Recognized side effects of pioglitazone, which may restrain a more common use, include unwanted weight gain, fluid retention leading to edema and/or heart failure in predisposed individuals, increased risk of bone fractures and possibly bladder cancer [26,27].

Due to the paucity of experimental evidence, the algorithms for managing glycemia recommended by the several professional associations and scientific societies are largely based on the opinion of experts and are not fully concordant [1–7]. In particular, the CVD effects of glucose-lowering agents remain debated. The Thiazolidinediones Or Sulphonylureas and Cardiovascular Accidents. Intervention Trial (TOSCA.IT) study was designed and initiated to compare the effects of the addition of SUs vs. pioglitazone on CV events in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Durability of glucose control, side effects, quality of life and costs will also be evaluated.

Methods

Research design

The study (protocol number FARM6T9CET), registered in the clinicaltrials.gov with ID NCT00700856, is a multicentre,
parallel-group trial of 48 months duration. A Prospective Randomized Open Blinded End-Point Evaluation (PROBE) design is employed. The protocol has been approved by the Ethics Review Committee/Institutional Review Board of the Coordinating Centre and of each participating centre. The study is carried out in accordance with the Declaration of Helsinki and the Good Clinical Practice guidelines. Written informed consent must be obtained from participants before beginning any protocol-specific procedure and the participants are informed of their right to withdraw from the study at any time. Standard procedures for assuring full respect of privacy are undertaken. The conduct of each participating center is monitored by regular visits of professional monitors.

Efficacy end points

The primary efficacy outcome is a composite of all-cause mortality, nonfatal myocardial infarction (MI) (including silent MI), nonfatal stroke, unplanned coronary revascularization. The principal secondary outcome is a composite ischemic end point of sudden death, fatal and non-fatal MI (including silent MI), fatal and nonfatal stroke, major leg amputation (above the ankle), endovascular or surgical interventions on the coronary, leg or carotid arteries.

Other secondary outcomes are:

1) A composite CV endpoint including the primary endpoint plus hospitalization for heart failure, endovascular or surgical intervention on the coronary, leg or carotid arteries, incident angina or intermittent claudication;
2) All cases of heart failure;
3) A microvascular composite endpoint including: incident macroalbuminuria, or doubling of baseline plasma creatinine, or a creatinine clearance reduction of 20 ml/min/1.73 m² or plasma creatinine >3.3 mg/dl, or dialysis;
4) Glucose control (changes from baseline in HbA1c, time to failure of oral hypoglycaemic therapy, defined as HbA1c >8.0% on two occasions three months apart);
5) Changes from baseline of the CV risk factors profile (lipids, blood pressure, microalbuminuria, inflammation markers, waist circumference).

A Clinical Endpoints Committee (CEC) of expert clinicians (cardiologists, diabetologists, internal medicine specialists and epidemiologists), blind to study medication assignment, is reviewing and adjudicating the outcomes included in the primary endpoint plus all the cases of heart failure and revascularization according to predefined criteria.

Visits and procedures

The eligibility criteria are listed in Table 1. Eligible patients are randomized to one of two treatments (Fig. 1): metformin + sulfonylurea (glibenclamide 5 mg or gliclazide 30 mg or glimepiride 2 mg used according to local practice) or metformin + pioglitazone (15 mg). Treatment is centrally assigned by telephone after verification of eligibility. The treatment allocation schedule is computer generated in blocks and stratified according to centre and previous CV events. The investigators are masked to the randomization sequences.

An outline of the study procedures is given in Table 2. At screening the study aims and procedures are extensively discussed with the patients, a written informed consent is obtained and the inclusion/exclusion criteria are assessed. Patients deemed eligible and willing to participate are enrolled. At baseline (randomization visit) the inclusion/exclusion criteria are reassessed, a complete medical history, including prior CV events and use of medications, is recorded; a complete physical examination, including standardised measurements of blood pressure, body weight, height, waist and hip circumference and a standard

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Type 2 diabetes of at least 2 years duration</td>
<td>- Type 1 diabetes</td>
</tr>
<tr>
<td>- Males and females, age 50–75 years</td>
<td>- Previous treatment with TDZs within the last six months</td>
</tr>
<tr>
<td>- BMI 20–45 Kg/m²</td>
<td>- Contraindication/intolerance to metformin or SUs or TZDs</td>
</tr>
<tr>
<td>- Stable treatment for the last two months with metformin in monotherapy at 2 g/day</td>
<td>- Documented coronary or cerebrovascular events within the previous 3 months</td>
</tr>
<tr>
<td>- HbA1c ≥ 7.0% and ≤9.0%</td>
<td>- Serum creatinine > 1.5 mg/dl</td>
</tr>
<tr>
<td></td>
<td>- History of congestive heart failure, NYHA class I or higher</td>
</tr>
<tr>
<td></td>
<td>- Chronic use of glucocorticoids</td>
</tr>
<tr>
<td></td>
<td>- Ischemic ulcer or gangrene of lower extremities</td>
</tr>
<tr>
<td></td>
<td>- Liver cirrhosis or severe hepatic dysfunction (ALT > 2.5 times the upper normal limit)</td>
</tr>
<tr>
<td></td>
<td>- Pregnancy or breast feeding</td>
</tr>
<tr>
<td></td>
<td>- Cancer, substance abuse, or any health problem that may interfere with the compliance to the study protocol or limit life expectancy</td>
</tr>
</tbody>
</table>

BMI: body mass index; HbA1c: glycated hemoglobin; SUs: sulfonylureas; TZDs: thiazolidinediones; NYHA: New York Heart Association; ALT: Alanine aminotransferase.
12-lead ECG, is performed. Fasting blood samples and a morning spot urine sample are collected for biochemical analyses (see Table 2). Dietary habits are assessed using a validated food frequency questionnaire — the Italian version of the European Prospective Investigation into Cancer and Nutrition (EPIC) questionnaire. Quality of life and economic costs will also be assessed with the use of standard questionnaires. All participants are instructed to perform home glucose monitoring (one full day glucose profile per week) and to record the number and severity of hypoglycaemic events.

Follow-up is scheduled at 1, 3, and 6 months after randomization and biannually thereafter (Table 2). At each visit adherence to the study protocol is assessed, information on the occurrence of any adverse or endpoint event(s) is collected. Anthropometry, blood pressure and heart rate are measured. Since January 2012, due to regulatory concerns regarding pioglitazone and the risk of bladder cancer, macroscopic hematuria is also assessed at each visit. HbA1c is measured semiannually. A standard 12-lead ECG, fasting plasma lipids (total cholesterol, HDL cholesterol, triglycerides), creatinine, high sensitivity C-reactive protein (hsCRP), and urinary excretion of albumin and creatinine are performed annually. The patient’s home glucose readings and the records of hypoglycaemia are reviewed at each visit. The metformin dose remains constant (2 g/day) throughout the study. The add-on drugs will be up-titrated at any follow-up visit, if necessary, based on home glucose monitoring (i.e fasting glucose >120 mg/dl or post prandial glucose >160 mg/dl in more than 50% of the home glucose readings performed over the last 8 weeks period). The maximum daily dose is 15 mg for glibenclamide, 120 mg for gliclazide, 6 mg for glimepiride, and 45 mg for pioglitazone. If, despite the maximal daily dose of the drugs has been reached, blood glucose control is still unsatisfactory, adherence to treatments is assessed, lifestyle recommendations are reinforced and HbA1c is re-

Table 2 Overview of the study assessments.

<table>
<thead>
<tr>
<th>Visit</th>
<th>Screening</th>
<th>Baseline</th>
<th>Year 1</th>
<th>Year 2–4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 mo</td>
<td>3 mo</td>
</tr>
<tr>
<td>Inclusion/exclusion criteria assessment</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informed consent obtaiment</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical history</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Anthropometry</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Clinical examination</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>ECG</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food frequency questionnaire</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of life questionnaire</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic questionnaire</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lipids</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Creatinine</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microalbuminuria</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinalysis and assessment of hematuria a</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoglycaemia</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Compliance</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Endpoint events</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Adverse events</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Plasma lipids include: total cholesterol, HDL cholesterol and triglycerides.

a Starting from January 2012.
evaluated after three months. A confirmed HbA1c >8.0%, will lead to add on a bed-time injection of basal insulin (glargine) and prandial rapid acting insulin boluses, if glucose control is still unsatisfactory. Insulin titration is performed according to a pre-defined algorithm based on self-monitored fasting capillary glucose [28].

Concomitant medications are allowed throughout the study. Initiation and dose adjustments of antihypertensive, lipid-lowering and antiplatelet agents are made according to current guidelines [7] and clinical judgment. The trade

Pharmacoeconomic evaluation

The health status and pharmacoeconomic outcomes are assessed by a standard questionnaire (EQ 5D 5 levels). Direct and indirect costs of the two treatment regimens will be evaluated; the cost-effectiveness analysis (CEA), cost-consequence analysis (CCA) and cost-minimization analysis (CMA) will be conducted as appropriate.

Sample size estimation

The sample size is estimated to detect a reduction in the risk of events of 20% (HR = 0.80; metformin + pioglitazone vs. metformin + SU) with a statistical power of 80% and a p < 0.05, one tail. The estimated occurrence rate of the primary end point is 3.5% per annum [30–32] and the estimated loss to follow-up is 5%. The efficacy analysis will be event driven. Given these assumptions, a total of 3371 patients will be enrolled and a total of 498 events have to be reached to complete the study. The planned follow-up is 4 years; however results of recent trials have shown that the rate of occurrence of the primary end point may actually be lower than we anticipate, therefore a longer follow-up may be necessary to reach the needed number of events.

Safety assessment

The study drugs are largely used for the treatment of diabetes, no additional risk, besides the known side effects of the drugs, is envisaged. The occurrence of adverse events (hypoglycaemic events, weight gain, peripheral edema, heart failure episodes, etc.) is strictly monitored. Hypoglycaemia is defined as a documented glucose value lower than 60 mg/dl and graded as moderate (not requiring help for treatment) or severe (requiring assistance for treatment or associated with loss of consciousness or requiring glucagon or endovenous glucose for treatment).

Patients will stop the study medications if any of the followings occurs: alanine amino transferase increases three times from baseline on two consecutive occasions, one month apart; heart failure, evaluated according to the American Heart Association and the American Diabetes Association consensus on glitazones and heart failure [29], or any other medical condition(s) that contraindicates the use of the study medication(s). In addition, in the pioglitazone arm, treatment will be withdrawn if macroscopic hematuria of unknown origin occurs at any time or bladder cancer is diagnosed. Patients who are withdrawn from the study medications enter a follow-up observational period following the scheduled protocol visits. An external Data Safety and Monitoring Board (DSMB) will monitor safety throughout the study and review the critical efficacy endpoints.
study. Screening and follow-up visits are performed according to a standard protocol described in detail in the manual of operation (MOP). Prior to the initiation of the study, the investigators attended training and standardization sessions in order to minimize inter-observer variability.

The Coordinating Centre is based at the Department of Clinical and Experimental Medicine of the “Federico II” University of Naples, Italy, and is responsible for the preparation of the study protocol, the Manual of Operations (MOP) and the organization of the training sessions for the field investigators.

The Centre for the Data Monitoring and Randomization, based at the Consorzio Mario Negri Sud in Santa Maria Imbaro (CH), provides a centralized telephone randomization system for the patients allocation to study medications, and is responsible for data management and analyses.

The ECG reading will be performed at the Centro Studi ANMCO in Florence by certified readers blinded to treatment arm and according to a standard protocol.

The biochemical analyses are performed at the Department of Laboratory Medicine, Desio Hospital, Monza-Brianza, Italy.

The food frequency questionnaire is produced and electronically read at REGGIANI S.p.A., Varese, Italy; nutrients, food groups, glycemic index, glycemic load and oxidative capacity will be calculated at the Nutritional Epidemiology Unit of the Department of Preventive & Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, with the use of an ad hoc developed software.

The Pharmacoeconomic and Pharmacovigilance Units are based at the “Federico II” University of Naples, Italy.

Preliminary data

To date 2450 patients have been enrolled (i.e. 73% of the total sample required). End of recruitment is planned within June 2013. The general characteristics of the participants are given in Table 3. Overall they are middle aged, obese, with a mean diabetes duration of 8.6 ± 5.8 years, a mean HbA1C of 7.7 ± 0.5%. On average, lipids and blood pressure are well controlled; 56% are on lipid lowering drugs, 68% report taking antihypertensive medications, 42% use antiplatelet medications and 10.4% report a prior CV event.

Discussion

In clinical practice, the beneficial effects of the various hypoglycaemic treatments must be considered not only in relation to their glucose lowering effects (reduction of HbA1C, time to failure of glucose control), but also in relation to their impact on the risk for the long term complications of diabetes. In addition the benefits have to be balanced against safety (drug-specific side effects, risk of hypoglycaemias, effects on body weight, etc.).

So far, no study has provided a direct (head to head) comparison of different anti-diabetic drugs on long term complications. As a consequence, the several compounds (SUs, pioglitazone, glinides, DPP-4 inhibitors, etc.) have been indicated by current guidelines and expert recommendations as equally plausible options when metformin monotherapy fails, despite the fact that mechanisms of action are different, durability is not superimposable, safety profile and costs are not identical [6,7].

Comparative effectiveness research, particularly with regard to CV outcomes, has a high priority in order to allow evidence based medical decisions, improve public health and optimize cost effectiveness in the management of type 2 diabetes.

The Thiazolidinediones Or Sulphonylureas and Cardiovascular Accidents. Intervention Trial (TOSCA.IT study) is the first trial designed as a head-to-head comparison of two hypoglycaemic strategies on CV endpoints and is also the only ongoing study that evaluates the potential benefits of TZDs on cardiovascular disease, as the TIDE (Thiazolidinedione Intervention With Vitamin D Evaluation) has been terminated prematurely owing to concerns on the CV safety of rosiglitazone [33].

The TOSCA.IT study will also shed light on other relevant issues, such as glucose-lowering effects, time to failure of oral hypoglycaemic therapy, quality of life, side effects and economic costs, including the costs of adverse effects, particularly hypoglycaemia. This information is lacking and is strongly needed to allow an evidence based choice for the management of type 2 diabetes.

Funding

The study is supported by the Italian Medicines Agency (AIFA) within the Independent Drug Research Program – contract no. FARM6T9CET and by Diabete Ricerca, the no profit Research Foundation of the Italian Diabetes Society (SID).

Duality of interest

O Vaccaro, M Masulli, A Nicolucci, CB Giorda, P Mocarelli, S Squatrito, AA Rivellese and G Riccardi declare that they have no duality of interest associated with this manuscript.

Table 3 General characteristics of the study participants (n = 2450).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>M ± SD or n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>62.8 ± 6.6</td>
</tr>
<tr>
<td>Males n (%)</td>
<td>1318 (57.4)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>30.3 ± 4.4</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>104.3 ± 11.1</td>
</tr>
<tr>
<td>Diabetes duration (years)</td>
<td>8.6 ± 5.8</td>
</tr>
<tr>
<td>HbA1c%</td>
<td>7.7 ± 0.5</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>4.68 ± 0.95</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.20 ± 0.37</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/l)</td>
<td>2.69 ± 0.82</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.74 ± 0.94</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>134.2 ± 14.9</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>79.7 ± 8.5</td>
</tr>
<tr>
<td>Microalbuminuria</td>
<td>467 (20)</td>
</tr>
<tr>
<td>Antihypertensive treatment</td>
<td>1567 (68)</td>
</tr>
<tr>
<td>Antiplatelet treatment</td>
<td>953 (42)</td>
</tr>
<tr>
<td>Hypolipidemic treatment</td>
<td>1280 (56)</td>
</tr>
<tr>
<td>Prior CV event(s)</td>
<td>238 (10.4)</td>
</tr>
</tbody>
</table>
E Bonora is a member of the Italian Takeda Advisory Board and has received a research grant from Takeda in the last 2 years. S Del Prato has served on advisory panels for Novartis Pharmaceuticals, Merck & Co., Roche Pharmaceuticals, Eli Lilly and Co., Boehringer Ingelheim, Novo Nordisk, Takeda Pharmaceuticals, Intarcia Therapeutics Inc., and Astra Zeneca and, as speaker from Novartis, Sanofi-aventis, Eli Lilly and Co. and Bristol-Myers Squibb. Research support was funded by Merck&Co., Novo Nordisk, Takeda Pharmaceuticals, Novartis Pharmaceuticals. AP Maggioni is a member of the Steering Committee of trials sponsored by Sanofi-Aventis and Eli Lilly.

Contribution statement

Vaccaro, M Masulli, E Bonora, S Del Prato, AA Rivellese, S Squatrito, G Riccardi were involved in the conception and design of the study protocol, drafting of the article and final approval of the version to be published. A Nicolucci was involved in the design of the study and was responsible for data analysis. CB Giorda, AP Maggioni, P Mocarelli revised the manuscript critically providing important intellectual content and final approval of the version to be published.

Appendix A

Executive Committee: Gabriele Riccardi, Federico II University of Naples, Italy; Enzo Bonora, University of Verona, Italy; Stefano Del Prato, University of Pisa, Italy; Carlo B. Giorda, ASL Torino 5, Turin Italy; Aldo Pietro Maggioni, ANMCO Research Center, Florence, Italy; Paolo Mocarelli, Desio Hospital, Monza-Brianza, Italy; Antonio Nicolucci, Consorzio Mario Negri Sud, S. Maria Imbaro (CH), Italy; Angela A. Rivellese, Federico II University of Naples, Italy; Sebastiano Squatrito, Garibaldi-Nesima Hospital, Catania, Italy; Olga Vaccaro, Federico II University of Naples, Italy. Coordinating Center: Olga Vaccaro, Maria Masulli, Nadia Garofalo, Federico II University of Naples, Italy. Data Safety Monitoring Board: Committee Members: Eleuterio Ferrannini (Chair), Università di Pisa, Italy; Barbara Howard, Medstar Research Institute, Washington, USA; Eva Gerds, University of Bergen, Norway; Giuseppina Imperatore, CDC, Atlanta, USA; Luigi Tavazzi, GVM Care&Research, Cotignola (RA), Italy; Fabio Pellegrini, Consorzio Mario Negri Sud, S. Maria Imbaro, (CH) Italy. Clinical Event Committee: Gianna Fabbri (Coordinator), Centro Studi ANMCO, Florence, Italy; Rocco Levantesi (Cardiologist), Ospedale San Pio da Pietralcina, Vasto; Fabio Turazza (Cardiologist), Ospedale Niguarda Ca’ Grande di Milano; Sandro Gentile (Diabetologist), Second University of Naples, Italy; Salvatore Panico (Internist), Federico II University of Naples, Italy; Massimo Porta (Internist), Ospedale Le Molinette, University of Torino, Italy. Central Laboratory: Paolo Mocarelli, Paolo Brambilla, Stefano Signorini, Fabrizio Cappellini, Chiara Parma, Department of Laboratory Medicine, Desio Hospital, Monza-Brianza, Italy. Data managing: Antonio Nicolucci, Daniela D’Alonzo, Barbara Di Nardo, Sonia Ferrari, Monica Franciosi, Romina Pece, Miriam Valentina. Consorzio Mario Negri Sud, S. Maria Imbaro, (CH) Italy.
Massa Carrara – USL 1 - Principal Investigator: Maria A. Dolci. Co-investigator: Laura Bruselli, Mary Morì, Fabio Baccetti, Giovanna Gregori

Matera – Ospedale di Matera - Principal Investigator: Angelo Venezia

Messina – Policlinico G. Martino - Principal Investigator: Domenico Cucinotta. Co-investigator: Basilio Pintaudi

Messina - Ospedali Riuniti Papardo- Piemonte” di Messina - Principal Investigator: Francesco Ragonese. Co-investigator: Pietro Pata

Milano - San Raffaele Diabetes Research Institute - Principal Investigator: PierMarco Piatti. Co-investigator: Laura Bruselli, Mary Mori, Fabio Sina- Principal Investigator: Francesco Ragonese. Co-investigator: Laura Bruselli, Mary Mori, Fabio
cs: Armando Zampino, Sinisi Rosa, Maria Domenico Cucinotta. Co-investigator: Basilio Pintaudi

Angelo Venezia

Baccetti, Giovanna Gregori A. Dolci. Co-investigator: Laura Bruselli, Mary Mori, Fabio

Orsi

Principal Investigator: Matteo Bonomo. Co-investigator: Laura Menicatti

Napoli - Università “Federico II” – Internal Medicine Unit - Principal Investigator: Angela Albarosa Rivellese. Co-investigators: Anna Amelia Turco, Ornella Ciano, Pasquale Vallesuoco, Gerardo Corigilian.

Napoli - ASL NA2 - in cooperation with Università di Napoli “Federico II” - Co-investigators: Carmine Pentangelo, Ettore Petrari, Pasquale Aulett, Ornella Carbonaro, Giuseppe Capobianco

Napoli - ASL NA3 - in cooperation with Università di Napoli “Federico II” - Co-investigators: Gennaro Ciaiazzo, Bruno Angiuli, Giuseppina De Simone, Cutolo Michele, Valeria Mastrilli, Giuseppe Nunziata, Geremia Romano, Iole Gaeta, Tommasina Sorrentino

Napoli - Università “Federico II” – Diabetes Unit - Principal Investigator: Ciro Iovine. Co-investigators: Giovanna Donnarumma, Francesca Nappi

Napoli - Seconda Università - Principal Investigator: Giuseppe Paoloisso. Co-investigators: Maria Rosaria Rizzo

Padova - Policlinico di Padova - Principal Investigator: Angelo Arogaro. Co-investigator: Monica Vedovato

Padova - Policlinico di Padova - Principal Investigator: Angelo Arogaro. Co-investigator: Monica Vedovato

Palermo – Università degli Studi di Palermo - Principal Investigators: Aldo Galluzzo, Carla Giordano. Co-investigator: Vittoria Torregrossa

Parma – AOU di Parma - Principal Investigator: Leone Arsenio. Co-investigators: Elisabetta Dall’Aglio, Federico Cioni, Massimiliano Babini, Giovanni Monacagrott

Perugia – Università di Perugia - Principal Investigator: Gabriele Perriello. Co-investigator: Alessia Timi

Pescara – Ospedale Civile di Pescara - Principal Investigator: Agostino Consoli. Co-investigator: Federica Ginestra

Piacenza – Ospedale Guglielmo da Saliceto – Principal Investigator: Donatella Zavaroni. Co-investigator: Fabio Calzoni

Pisa – Ospedale di Cisanello - Principal Investigator: Stefano Del Prato. Co-investigators: Roberto Miccoli, Cristina Bianchi, Savvina Polit

Pistoia – Spedali Riuniti di Pistoia - Principal Investigator: Roberto Aichini. Co-investigator: Anna Tedeschi

Praia a Mare (CS) - Presidio ospedaliero di Praia a Mare - Principal Investigator: Luciano Tramontano. Co-investigator: Alessia Imbronise, Carmelo Di Perna

Prato – Ospedale di Prato - Principal Investigator: Maria Calabrese. Co-investigator: Alessia Zogheri

Ravenna – AUSL Provincia di Ravenna - Principal Investigator: Paolo Di Bartolo. Co-investigator: Alessandra Luberto

Rimini – Ospedale Infermi di Rimini - Principal Investigator: Giorgio Baillardini. Co-investigators: Anna Carla Babini, Chiara Zannoni

Roma – Azienda Ospedaliera S. Andrea - Principal Investigator: Giuseppe Pugliese. Co-investigators: Laura Salvi, Giulia Mazzitelli, Alessandra Zappadorferen

Roma – Ospedale Fatebenefratelli in cooperation with Azienda Ospedaliera S. Andrea di Roma- Principal Investigator: Simona Frontoni. Co-investigators: Alessia Ventricini

Roma – Policlínico di Tor Vergata - Principal Investigator: Davide Lauro. Co-investigators: Angelica Galli, Maria Elena Rinaldi

Roma – Ospedale Pertini - Principal Investigator: Sergio Leotta. Co-investigators: Lucia Fontana

Roma – Campus Biomedico in cooperation with Ospede
dale S. Maria Goretti di Latina– Principal Investigator: Paolo Pozzilli

Roma – Policlínico Umberto I in cooperation with Azienda Ospedaliera S. Andrea di Roma- Principal Investigator: Frida Leonetti

San Giovanni Rotondo – Ospedale Casa Sollevio della Sofferenza - Principal Investigator: Salvatore De Cosmo. Co-investigators: Simonetta Bacci, Antonino Pio Palena

Salerno – ASL di Salerno in cooperation with Università di Napoli "Federico II" - Co-investigators: Pasqualino Calata, Gelsomina Capuano, Umberto Amelia

Siena – Policlinico "Le Scorte" - Principal Investigator: Francesco Dotta. Co-investigators: Elisa Guarino, Elena Ceccarelli

Spoleto– Ospedale San Matteo degli infermi- Principal Investigator: Carlo Lalli. Co-investigators: Maura Scarpone

Terrarica (LT) – Polo Sud ASI di Latina – Principal Investigator: Elisa Forte. Co-investigators: Stella Potenziani

Treviso – Ospedale di Treviso - Principal Investigator: Antonio Bossi. Co-investigators: Marcello Filopanti

Udine – Azienda Ospedaliero Universitaria "S.Maria della Misericordia" – Endocrinology Unit - Principal Investigator: Franco Grimaldi. Co-investigators: Laura Tonutti

Udine – Azienda Ospedaliero Universitaria "S.Maria della Misericordia" – Diabetes Unit - Principal Investigator: Alessandro Cavarape

Verona – Ospedale Civile di Verona - Principal Investigator: Enzo Bonora. Co-investigators: Massimo Cigolini, Isabella Pichirin, Corinna Brangani, Elena Tomasetto

Verona – Ospedale Civile "G. Fracastoro" di San Boni facio - Principal Investigator: Claudio Capra Co-investigators: Massimo Cigolini
References

