Coronary Flow Reserve of the Angiographically Normal Left Anterior Descending Coronary Artery in Patients With Remote Coronary Artery Disease

Francesco Pizzuto, MD, Paolo Voci, MD, PhD, Enrica Mariano, MD, Paolo Emilio Puddu, MD, Patrizia Spedicato, MD, and Francesco Romeo, MD

Coronary artery disease (CAD) has been suggested to alter coronary flow reserve (CFR; the ratio between hyperemic and baseline coronary flow velocities) not only in territories supplied by stenotic arteries but also in angiographically normal, remote regions. However, few data exist regarding the left anterior descending (LAD) coronary artery as the normal index artery. The influence of remote CAD on CFR of the angiographically normal LAD was evaluated with transthoracic Doppler ultrasound to measure CFR in the LAD during 90 seconds of venous adenosine infusion (140 \(\mu \)g/kg/min) in 122 subjects who were assigned to 1 group; group 1 comprised 49 controls without angiographically detectable CAD, and group 2 consisted of 73 patients with an angiographically normal LAD and remote CAD. Group 2 was divided into 4 subgroups: 16 patients with previous remote percutaneous coronary intervention (group 2A); 13 patients with significant remote stenosis (group 2B); 23 patients with previous remote myocardial infarction and percutaneous coronary intervention (group 2C); and 21 patients with previous remote myocardial infarction but no percutaneous coronary intervention (group 2D).

METHODS

Study population: Patients were selected from a population undergoing diagnostic or therapeutic cardiac catheterization at our institution. The requisite to be enrolled in this study was the presence of an angiographically normal LAD with or without remote CAD. From June 2002 to August 2003, 122 consecutive subjects (105 men and 17 women; mean age 58 ± 10, range 31 to 77) were recruited and assigned to 1 of 2 groups; group 1 comprised 49 controls with chest pain but no angiographically detectable CAD (i.e., coronary arteries with angiographically smooth silhouettes), and group 2 consisted of 73 patients with an angiographically normal LAD and remote CAD. Group 2 was further divided into 4 subgroups: 16 patients with remote percutaneous coronary intervention but no evidence of myocardial infarction (group 2A); 13 patients without remote myocardial infarction but significant (≥70%) remote coronary stenosis (group 2B); 23 patients with remote myocardial infarction and previous remote percutaneous coronary intervention (group 2C); and 21 patients with remote myocardial infarction but no remote percutaneous coronary intervention (group 2D). Data on hypercholesterolemia (total cholesterol levels >220 mg/dl), hypertension (blood pressure >140/90 mm Hg), diabetes (fasting glycemia ≥126 mg/dl), active smoking, and left ventricular hypertrophy (thickness of septum and left ventricular free wall ≥12 mm) were collected.
Transthoracic coronary Doppler echocardiography: All subjects underwent transthoracic echocardiography and noninvasive Doppler ultrasound assessment of CFR in the LAD 1 to 2 days after percutaneous coronary intervention, and 37.33 ± 18.97 days after myocardial infarction. Patients with acute coronary syndromes, congestive heart failure, significant valvular heart diseases, and contraindications to adenosine administration (second- to third-degree atrioventricular block, severe chronic obstructive pulmonary disease, and bronchospasm) were excluded. All subjects were in sinus rhythm, stable condition, and fasting state when CFR was assessed. All coronary active medications were withdrawn the day before the Doppler ultrasound examination. The study was approved by our institutional review committee. All subjects were informed on the purpose and nature of the study and provided written informed consent before participation.

Transthoracic coronary Doppler echocardiography was performed as previously described9,10,15-17 with a small multilithert transducer that allowed independent change of frequency between 2-dimensional (3.5 to 7.0 MHz) and color (3.5 to 6.0 MHz) Doppler and was connected to an ultrasound system (Sequoia C256, Siemens-Acuson, Mountain View, California). Coronary flow velocity was measured by pulsed Doppler ultrasound under a color-coding guide. The best long-axis view in color flow imaging was obtained to maintain a <30° angle between flow and Doppler beams. All studies were continuously recorded on a half-inch VHS videotape for off-line analysis.

End-diastolic and end-systolic volume indexes and ejection fraction were measured by the biplane method of disks. Wall motion score index was calculated using the 16-segment model proposed by the American Society of Echocardiography,18 (1 = normal, 2 = hypokinetic, 3 = akinetic, and 4 = dyskinetic).

Coronary flow reserve: Each subject underwent Doppler echocardiographic recordings of LAD blood flow velocity at baseline and during 90 seconds of adenosine infusion (140 μg/kg/min). Heart rate and electrocardiogram were continuously monitored. Blood pressure was recorded at baseline, during adenosine infusion, and at recovery. Peak and mean diastolic flow velocities were measured before and during adenosine infusion. For each test, the 3 highest Doppler velocities were computed and averaged. CFR was calculated by the same operator who performed the test using peak diastolic values and who was blinded to the angiographic data.

Feasibility and reproducibility of CFR assessment: Feasibility of coronary imaging and Doppler ultrasound recordings was evaluated by consensus of 2 experienced observers. Inter- and intraobserver variabilities in measurements of Doppler velocity in our laboratory were 3.2% and 2%, respectively, whereas intraindividual variability never exceeded (in absolute average values) 2 cm/s, thus providing a maximal ±6% difference in relative terms.16

Coronary angiography: Cardiac catheterization was performed in all patients by the percutaneous femoral approach. Coronary lumen diameter was measured online with electronic calipers by 2 expert operators performing angiography who were blinded to the Doppler results. The outer diameter of the fluid-filled diagnostic catheter, which was centered, was used as a scaling device to obtain absolute arterial dimensions. Two orthogonal projections of the coronary artery lesion at end-diastole were used to measure coronary stenosis, and percent diameter stenosis was derived from the angiographic view best depicting the narrowing. In this study, stenosis ≥70% was considered significant.

Statistical analysis: Data are expressed as mean ± SD except for data expressed as percent or proportion, where ± SE were used. One-way analysis of variance using Bonferroni’s correction to assess intergroup differences (BMDP-7D, University of California Press, Berkeley, California) was used to analyze data, and 2-way analysis of variance was used to assess intergroup differences of hemodynamic variables (BMDP-2V, University of California Press). Confidence intervals (95%) were calculated by standard formulas. A p value <0.05 was considered statistically significant.

RESULTS

Patient characteristics: There was, as expected, more severe CAD, lower ejection fractions, and more wall motion abnormalities in group 2 and a higher prevalence of smoking in groups 2A and 2D (Table 1).

Coronary flow reserve: CFRs of the angiographically normal LAD were 3.08 ± 0.61 in group 1 and 3.03 ± 0.69 in group 2 (p = NS). When patients were grouped according to CAD characteristics outside the LAD (previous percutaneous coronary intervention, ≥70% coronary stenosis, and previous myocardial infarction), a slight but nonsignificant decrease of CFR in the LAD was observed only in those with previous myocardial infarction who did not undergo percutaneous coronary intervention (Table 1 and Figure 1). Neither decreased ejection fraction nor a higher wall motion score index affected CFR in the LAD (Table 1). Figure 2 shows a subject with angiographically normal coronary arteries and a CFR of 3.3, and Figures 3 to 5 show patients with angiographically normal LAD and different types of remote CAD. The CFR in the LAD of these patients was always within the range of group 1 (controls), even in the case of recent (Figure 4) or old (Figure 5) remote myocardial infarctions, with or without revascularization of the infarct-related artery. The presence of 1- or 2-vessel CAD did not influence CFR in the LAD (F = 0.15, p = NS) when all patients with remote CAD were analyzed and when patients with previous remote myocardial infarction were excluded (F = 2.17, p = NS).

Hemodynamic variables: Adenosine infusion induced similar changes in all groups (2-way analysis of variance interaction term, p = 0.13 and 0.59 in groups 1 and 2, respectively) with respect to heart rate, which increased (p <0.0001), and mean arterial pressure,
TABLE 1 Study Population, Risk Factors, and Hemodynamic Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1 (n = 49)</th>
<th>Group 2A (n = 16)</th>
<th>Group 2B (n = 13)</th>
<th>Group 2C (n = 23)</th>
<th>Group 2D (n = 21)</th>
<th>F (p Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (ys)</td>
<td>60 ± 11</td>
<td>56 ± 12</td>
<td>54 ± 8</td>
<td>56 ± 6</td>
<td>58 ± 9</td>
<td>1.20 (NS)</td>
</tr>
<tr>
<td>Sex (0 = women; 1 = men)</td>
<td>0.73 ± 0.06</td>
<td>0.94 ± 0.06</td>
<td>0.84 ± 0.10</td>
<td>1.00 ± 0.0</td>
<td>1.00 ± 0</td>
<td>4.13 (<0.036)*</td>
</tr>
<tr>
<td>Body surface area (m²)</td>
<td>1.84 ± 0.15</td>
<td>1.85 ± 0.18</td>
<td>1.85 ± 0.16</td>
<td>1.89 ± 0.11</td>
<td>1.88 ± 0.14</td>
<td>0.48 (NS)</td>
</tr>
<tr>
<td>Hypercholesterolemia (>220 mg/L)</td>
<td>0.59 ± 0.07</td>
<td>0.69 ± 0.12</td>
<td>0.69 ± 0.10</td>
<td>0.69 ± 0.10</td>
<td>0.62 ± 0.10</td>
<td>0.28 (NS)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0.16 ± 0.05</td>
<td>0.06 ± 0.06</td>
<td>0.23 ± 0.12</td>
<td>0.30 ± 0.10</td>
<td>0.19 ± 0.09</td>
<td>1.00 (NS)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.53 ± 0.07</td>
<td>0.62 ± 0.12</td>
<td>0.54 ± 0.14</td>
<td>0.48 ± 0.11</td>
<td>0.76 ± 0.09</td>
<td>1.12 (NS)</td>
</tr>
<tr>
<td>Smoking habits</td>
<td>0.49 ± 0.07</td>
<td>0.87 ± 0.08</td>
<td>0.46 ± 0.14</td>
<td>0.70 ± 0.10</td>
<td>0.76 ± 0.09</td>
<td>3.11 (<0.018)</td>
</tr>
<tr>
<td>Left ventricular hypertrophy</td>
<td>0.20 ± 0.06</td>
<td>0.0</td>
<td>0.15 ± 0.10</td>
<td>0.14 ± 0.08</td>
<td>2.23 (NS)</td>
<td></td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>68 ± 11</td>
<td>64 ± 12</td>
<td>64 ± 11</td>
<td>66 ± 9</td>
<td>62 ± 8</td>
<td>1.08 (NS)</td>
</tr>
<tr>
<td>Mean arterial blood pressure</td>
<td>97 ± 8</td>
<td>99 ± 10</td>
<td>100 ± 10</td>
<td>100 ± 9</td>
<td>102 ± 8</td>
<td>0.82 (NS)</td>
</tr>
<tr>
<td>Peak flow velocity (cm/s)</td>
<td>23 ± 7</td>
<td>22 ± 6</td>
<td>25 ± 6</td>
<td>21 ± 6</td>
<td>25 ± 7</td>
<td>1.33 (NS)</td>
</tr>
<tr>
<td>Ejection fraction [%]</td>
<td>64 ± 0.4</td>
<td>61 ± 1</td>
<td>60 ± 0.6</td>
<td>53 ± 1</td>
<td>50 ± 1</td>
<td>60.57 (<0.00001)</td>
</tr>
<tr>
<td>Wall motion score index</td>
<td>1.01 ± 0.04</td>
<td>1.07 ± 0.20</td>
<td>1.02 ± 0.07</td>
<td>1.30 ± 0.17</td>
<td>1.40 ± 0.3</td>
<td>32.55 (<0.00001)</td>
</tr>
<tr>
<td>Peak LAD CFR</td>
<td>3.08 ± 0.61</td>
<td>3.18 ± 0.77</td>
<td>3.05 ± 0.65</td>
<td>3.07 ± 0.79</td>
<td>2.86 ± 0.50</td>
<td>0.63 (NS)</td>
</tr>
<tr>
<td>Mean LAD CFR</td>
<td>2.97 ± 0.60</td>
<td>3.18 ± 1.01</td>
<td>2.93 ± 0.70</td>
<td>2.93 ± 0.80</td>
<td>2.73 ± 0.53</td>
<td>0.95 (NS)</td>
</tr>
</tbody>
</table>

One-factor analysis of variance was used to test significance. F statistics (and corresponding p values) are shown. In the presence of a significant (p < 0.05) F, pairwise comparisons were performed using Bonferroni’s correction.

* p<0.05, group 1 versus groups 2C and 2D, p = NS in remaining comparisons.
† p<0.10, group 1 versus group 2A, only.
‡ p<0.01, group 1 versus groups 2B, 2C, and 2D, group 2A versus groups 2C and 2D, group 2B versus groups 2C and 2D; and p < 0.05, group 2C versus group 2D.
§ p<0.01, group 1 versus groups 2C and 2D, group 2A versus groups 2C and 2D, group 2B versus groups 2C and 2D only.

FIGURE 1. CFR is shown individually in control subjects (group 1) and patients with angiographically normal LAD coronary arteries and different types of remote ischemic heart disease (groups 2A, 2B, 2C, and 2D). Confidence intervals of the average value obtained in control subjects without risk factors (n = 7, CFR 2.95 ± 0.24, 95% confidence interval 2.77 to 3.13) are indicated by shading to provide a direct comparison with visually estimates of how CFR distributes according to the groups considered. Thick lines represent average values in each subgroup, none of which lies distant from the distribution of control subjects, considered overall or as those without risk factors (see Results and Discussion for further details).

which decreased (p <0.0001). Rate–pressure product slightly decreased during adenosine infusion compared with baseline values (p < 0.02). However, groups behaved moderately differently, and the 2-way analysis of variance interaction term showed borderline significance (p < 0.06).

DISCUSSION

This quite large study shows that remote CAD, in its different forms, including myocardial infarction, has no significant influence over CFR of an angiographically normal LAD. The mean value of 3.03 ± 0.69 found in group 2 (all patients with remote CAD) was largely above the proposed cut-off values of 2.519 and 2.24,20 below which a microvascular dysfunction should be considered in the absence of a significant epicardial stenosis.

Acute coronary occlusion may influence dynamics and flow reserve in remote areas not directly involved by the ischemic event,1,5 but it is possible that the problem has been overestimated. Uren et al1 used positron emission tomography in 13 patients 1 week after acute myocardial infarction and found an impaired CFR of 1.53 ± 0.36 in non–infarct-related areas, which increased to 2.19 ± 0.69 at 6 months. This finding conflicts with other reports that used intracoronary Doppler ultrasound during myocardial infarction.21,22 Lepper et al21 found a CFR of ≥1.6 even in the infarct-related artery immediately after successful primary percutaneous coronary intervention, followed by good reperfusion as assessed by myocardial contrast echocardiography. Neumann et al22 obtained a similar CFR (1.56 ± 0.51) in the infarct-related artery after primary percutaneous coronary intervention, which increased to 2.04 ± 0.65 at 1 hour and to 2.66 ± 0.72 at 2 weeks. Therefore, it is difficult to reconcile these contrasting findings, obtained in few patients and with overlapping confidence intervals,1 whereby CFR in the revascularized infarct-related artery returned toward normal values (2.66 ± 0.72) at 2 weeks.22 but in the angiographically normal artery remained low (2.19 ± 0.69) at 6 months.1 If the impaired
remote CFR is a reality, it should translate into an unusual clinical scenario in which virtually all patients with acute myocardial infarction have symptoms and positive diagnostic tests for remote ischemia before discharge. Of note, Sicari et al. found remote ischemia in only 96 of 778 patients (10%) who underwent dobutamine stress echocardiography 12 ± 5 days after myocardial infarction.

Other factors may influence remote flow in acute myocardial infarction, namely: (1) the culprit artery (right and/or circumflex coronary artery affects LAD flow less than the reverse), (2) wall motion abnormalities of the jeopardized myocardium, (3) tight stenosis of the culprit artery, (4) the time elapsed between the acute event and flow assessment, and (5) the reopening of the culprit artery. In our experience, only wall motion abnormalities and the reopening of the culprit artery had a slight but nonsignificant influence (Table 1).

An impaired CFR in an angiographically normal coronary artery has been described in small series of patients with stable remote CAD without previous myocardial infarction. It was mainly attributed to an early impairment of microvascular function in the presence of angiographically undetectable coronary atherosclerosis or to a longstanding adaptation to the increased load in remote regions with structural remodeling of the coronary vasculature. Other studies have described an impairment of vasomotor tone of the angiographically normal coronary artery and remote CAD only in patients with coronary risk factors.

In our series, all patients with angiographically normal LAD, remote CAD, and no myocardial infarction had a CFR in the LAD within the range of the control group (Figure 1 and Table 1), which was also independent of risk factors (see confidence intervals in Figure 1) and number of vessels with disease.

We recognize 4 main limitations of our study. (1) The control group consisted of subjects with angiographically normal coronary arteries who for some reason underwent diagnostic coronary angiography. Of note, the CFR of 3.08 ± 0.61 of this group was similar to that reported by Kern et al. (2.81 ± 0.61) and Wienke et al.
who used intracoronary Doppler ultrasound in subjects without angiographically detectable CAD and who were similar ages. CFRs of 4.07 ± 0.98 and 3.95 ± 0.68 have been found by positron emission tomography in healthy volunteers with low risk of CAD, but these series included younger subjects.6,27 Therefore, it seems that advancing age more than subclinical angiographically undetectable atherosclerosis may affect CFR.26,28 (2) Risk factors did not significantly affect our results, based on standard cut-off values. However, extremely high levels of cholesterol or other risk factors may play a role. (3) This is a single-center study that requires confirmation by data from other laboratories. (4) CFR was measured only in the LAD territory. Recent data have shown that imaging of the posterior descending coronary artery, regardless of its origin from the right or circumflex artery, is feasible.29,30

In conclusion, focal factors in each territory are responsible for CFR, and impaired CFR in 1 region is not a general phenomenon of the coronary circulation.