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In this work we put forward an exact one-particle framework to study nanoscale Josephson junctions out of
equilibrium and propose a propagation scheme to calculate the time-dependent current in response to an
external applied bias. Using a discrete basis set and Peierls phases for the electromagnetic field, we prove that
the current and pairing densities in a superconducting system of interacting electrons can be reproduced in a
noninteracting Kohn-Sham (KS) system under the influence of different Peierls phases and of a pairing field.
In the special case of normal systems, our result provides a formulation of time-dependent current-density-
functional theory in tight-binding models. An extended Keldysh formalism for the nonequilibrium Nambu-
Green’s function (NEGF) is then introduced to calculate the short- and long-time response of the KS system.
The equivalence between the NEGF approach and a combination of the static and time-dependent
Bogoliubov-de Gennes (BdG) equations is shown. For systems consisting of a finite region coupled to A
superconducting semi-infinite leads, we numerically solve the static BAG equations with a generalized wave-
guide approach and their time-dependent version with an embedded Crank-Nicholson scheme. To demonstrate
the feasibility of the propagation scheme, we study two paradigmatic models, the single-level quantum dot and
a tight-binding chain, under dc, ac, and pulse biases. We provide a time-dependent picture of single and
multiple Andreev reflections, show that Andreev bound states can be exploited to generate a zero-bias ac
current of tunable frequency, and find a long-living resonant effect induced by microwave irradiation of

appropriate frequency.
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I. INTRODUCTION

In the last two decades, superconducting nanoelectronics
has emerged as an interdisciplinary field bridging different
areas of physics such as superconductivity, quantum trans-
port, and quantum computation.'= For practical applications,
the reduction in heat losses in superconducting circuits con-
stitutes a major advantage over semiconductor electronics
where a molecular junction is more subject to thermal
instabilities.*”’

The idea of exploiting atomic-size quantum point contacts
or quantum dots (QDs) coupled to superconducting leads as
quantum bits (QUBITS) has received significant attention
both theoretically and experimentally.’-'' The state of a
QUBIT evolves in time according to the Schrodinger equa-
tion for open quantum systems and can be manipulated using
electromagnetic pulses of the duration of few nanoseconds or
even faster. Due to the reduced dimensionality and the high
speed of the pulses, these systems can be classified as ul-
trafast Josephson nanojunctions (UF-JNJs). The microscopic
description of the out-of-equilibrium properties of an UF-JNJ
is not only of importance for their potential applications in
future electronics but also of considerable fundamental inter-
est. The quantum nature of the nanoscale device leads to a
subharmonic gap structure,’>'® ac characteristics,'”!®
current-phase relation,'>° etc., that differ substantially from
those of a macroscopic Josephson junction. Furthermore,
there are regimes in which the electron-electron scattering
inside the device plays an important role.>'~>

We here focus on a different relevant aspect of UF-JNIJ,
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namely, the ab initio description of their short-time re-
sponses. Considerable theoretical progresses have been made
to construct a first-principles scheme of electron transport
through molecules placed between normal metals. On the
contrary, despite the recent experimental advances in fabri-
cating superconducting quantum point contacts, a first-
principles approach to superconducting nanoelectronics is
still missing. Furthermore, time-dependent (TD) properties
such as the switch on/off time of the current or the response
to time-dependent ac fields or train pulses has remained
largely unexplored. There are several difficulties related to
the construction of a feasible time-dependent approach al-
ready at a mean-field level. The system is open, the elec-
tronic energy scales are 2-3 orders of magnitude larger than
a typical superconducting gap, the problem is intrinsically
time dependent (even for dc biases), and the possible forma-
tion of Andreev bound states (ABSs) give rise to persistent
oscillations in the density and current. The time evolution of
localized wave-packets’ scattering across a superconductor-
normal interface was explored long ago.?°->® More recently,
the analysis has been extended to scattering states in
superconductor-device-normal junctions using the wideband-
limit approximation® and in superconductor-device-
superconductor (S-D-S) junctions by approximating the
leads with finite-size reservoirs.’® However, there has been
no attempt to calculate the response of S-D-S junctions to
TD applied voltages using truly semi-infinite leads.

In this work, we propose a one-particle framework to
study TD quantum transport in UF-JNJ, construct a suitable
propagation scheme and apply it to study genuine TD prop-
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erties such as the switch on/off of the current, the onset of a
Josephson regime, ABS oscillations, ac transport, and the
time evolution of multiple Andreev reflections.

The one-particle framework, described in Secs. IT A and
IIB, is an extension of TD superconducting density-
functional theory (Ref. 31) to systems with a discrete basis
and is built on the mapping from densities to potentials pro-
posed by van Leeuwen’? and Vignale.*® It is shown that un-
der reasonable assumptions the current density and pairing
density of an interacting system perturbed by a TD electro-
magnetic field can be reproduced in a Kohn-Sham system of
noninteracting electrons perturbed by a TD electromagnetic
and pairing fields, and that these fields are unique. In the
special case of normal systems such result provides a formu-
lation of TD current-density-functional theory in tight-
binding models.

An extended Keldysh formalism for the nonequilibrium
Nambu-Green’s function is introduced in Sec. II C and used
to calculate the time-dependent current, density, and pairing
density of the Kohn-Sham Hamiltonian. By adding a vertical
imaginary track to the original Keldysh contour,**~3 we are
able to extract the response of the system just after the ap-
plication of the bias (transient regime) and to describe the
onset of the Josephson regime. We also show the equivalence
between the equations of motion for the Nambu-Green’s
function on the extended contour and the combination of the
static and TD Bogoliubov-de Gennes equations.

In Sec. III, we illustrate a procedure for the calculation of
the one-particle eigenstates of a system consisting of A
semi-infinite superconducting leads coupled to a finite region
C. These states are then propagated in time according to the
TD Bogoliubov-de Gennes equations using an embedded
Crank-Nicholson algorithm which reduces to that of Refs. 37
and 38 in the case of normal leads. The propagation scheme
is unitary (norm conserving) and incorporates exactly the
transparent boundary conditions.

The feasibility of the method is demonstrated in Sec. IV
where we calculate the TD current, density, and pairing den-
sity of S-D-S junctions under dc, ac, and pulse biases. The
paradigmatic model with a single atomic level connected to a
left and right superconducting leads is investigated in detail.
We provide a time-dependent picture of single and multiple
Andreev reflections and of the consequent formation of Coo-
per pairs at the interface. We show that the smaller is the
bias, the longer and the more complex is the transient re-
gime. We also study how the system relaxes after the bias is
switched off. Due to the presence of ABS, a tiny difference
in the switch-off time can cause a large difference in the
relaxation behavior with persistent oscillations of tunable
frequency. ABS also play a crucial role in microwave ac
transport. Tuning the frequency of the microwave field ac-
cording to the ABS energy difference one produces a long-
living transient resonant effect in which the amplitude of the
ac current is about an order of magnitude larger than that of
the current out of resonance. Finally we consider one-
dimensional atomic chains coupled to superconducting leads.
We calculate the TD current-density pattern along the chain
for dc (ac) biases and show a clear-cut transient scenario of
the multiple (photon-assisted) Andreev reflections. A sum-
mary of the main findings and an outlook on future perspec-
tives are drawn in Sec. V.
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II. GENERAL FORMULATION
A. Hamiltonian of the system

The Hamiltonian of a system of interacting electrons can

be written in terms of the field operators @U(r)[@fr(r)] which
destroy (create) an electron of spin o in position r. We ex-
pand the field operators in some suitable basis of localized
orbitals @,,(r) as i, (r)==,,¢ne@n(r). Assuming, for simplic-
ity, that the ¢,,’s are orthonormal the ¢’s operators obey the
anticommutation relations,

{émm éj;g'/} = 50'0" 5nm' (1)

In the presence of an external static electromagnetic and
pairing field, the Hamiltonian has the general form

FIO:I%0+AA0+AA8+Ijlint. (2)

The first term is the free-electron part and reads

KO = 2 2 Tmneiym"éj;iuéno (3)

o mn

with real symmetric hopping parameters 7,,,=T7,,, and real
antisymmetric phases ¥,,,=—7¥,x- LThe phases account for the
presence of an external vector potential A(r), in accordance
with the Peierls prescription. If we use a grid basis for the
expansion of the field operators with grid points r,, then
ymn=% Jimdl-A(r). The second term in Eq. (2) represents the
pairing field operator which couples the pairing density op-
erator to an external field and reads

Ao=2 A, 8080 (4)

We notice that the pairing field A,, is local in the chosen
basis. This term is usually set to zero since the transition to a
superconducting state is caused by the interaction part. Our
motivation to include it at this stage will soon become clear.

The interaction part of the Hamiltonian fAIim contains terms
more than quadratic in the ¢’s operators. We do not specify

the form of I:Iint which can be any. We, however, require that
it commutes with the density operator i,,,=¢), ¢

ot mo>

[Him’ﬁma] =0, Vm,o. (5)
The above condition is fulfilled on a grid basis as well as in
tight-binding models with Hubbard-type interactions.

We are interested in the dynamics of the system when an
extra time-dependent electromagnetic field and pairing po-
tential is switched on at =0. The pairing potential must here
be considered as an independent external field. Since the
time-dependent part of the scalar potential can always be
gauged away we restrict to time-dependent Hamiltonians of
the form

H() =K@ +A@) + AT(0) + Hy,,, (6)

where
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K(0) =2 2 T " 08] 1, (7
and
Ay =2 A, (0éh el (8)

In 1994, Wacker et al®' put forward a rigorous frame-
work, known as TD density functional theory for supercon-
ductors (SCDFT), to study the dynamics of a superconduct-
ing system in the continuum case. The continuum
Hamiltonian can be obtained from the Hamiltonian in Eq. (6)
with the ¢,,’s a grid basis in the limit of zero spacing. They
proved that given an initial many-body state |®), the current
and pairing densities evolving under the influence of two
different vector potentials A and A’ and/or two different
pairing potentials A and A’ are always different. This result
renders all observable quantities functionals of the current
and pairing densities, which can therefore be calculated in a
one-particle manner.?' The original formulation relies on the
assumption that the time-dependent current and pairing den-
sities of the interacting Hamiltonian can be reproduced in a
noninteracting Hamiltonian under the influence of another
vector and pairing potential, i.e., that the interacting A-A
densities are also noninteracting A-A representable. The in-
teracting versus noninteracting representability assumption is
present also in the original formulation of TD density func-
tional theory (DFT) by Runge and Gross*® and TD current
density functional theory (CDFT) by Ghosh and Dhara.*’
The representability problem in TDDFT was solved by van
Leeuwen who proved that the TD density of a system with

interaction I-Alint under the influence of a TD scalar potential V

can be reproduced in another system with interaction I:Ii’nt
under the influence of a TD scalar potential V' and that V' is

unique.’> We will refer to such result as the van Leeuwen

theorem. Taking I:Ii’m=0 the van Leeuwen theorem implies
that the TD interacting density can be reproduced in a system
of noninteracting electrons. Later Vignale extended the van
Leeuwen theorem to solve the representability problem in
TDCDFT.?? In the next section, we show that the results by
van Leeuwen and Vignale can be further extended to solve
the representability problem in TDSCDFT. The theory is for-
mulated on a discrete basis and it is not limited to pure states,
implying that we also have access to the finite-temperature
domain.

B. One-particle Kohn-Sham scheme of TDSCDFT

Let p(z) be the density matrix at time ¢ of the system
described by the Hamiltonian in Eq. (6). We denote by
o(1) ETr{ﬁ(l)é(t)} the time-dependent ensemble average of
a generic operator O(f), where the “Tr” symbol signifies the
trace over a complete set of many-body states. The average
O(1) obeys the equation of motion,

ditou) = L0() +i THHOIAD. 00T ©)

It is easy to verify that when é(t) is the density operator
A=, ¢ Eq. (9) yields

mao
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(0= S 1,0~ 4 I8, 0P, (0], (10)

where J,,,,(f) and P,,() are the expectation value of the bond-
current operator,

n 1 .
Jo() = ;2 (T, ¢S 80— Hec.) (11)

o
and pairing density operator,

- A A Lot ogr A A [
Pm(t) = CmiCmTEZZfodt Lo = CmLCmTelemmt- (12)

Equation (10) is the proper extension of the continuity equa-
tion to systems exposed to a pairing field. The term Ar)

+AT(1‘) acts as if there were TD sources and sinks.

Notice that under the gauge transformation ¢,
—ePu0¢ [with B,(0)=0], the on-site energies change as
Tyim— Tpm—dB,,(1)/ dt while the phases and the pairing field
change according to  ,,(t) = V(D) + B,,(1) - B,(t) and
A, () — A, (Hexp[2iB,,(t)]. Therefore the bond-current op-

erator J,,, and pairing density operator 13,,, are gauge invari-
ant. In a grid basis representation with grid points r,, the
phases B,,(1) are the discretized values of the scalar function
A(r,,,t) which defines the gauge-transformed vector poten-
tial A and scalar potential V:A—A+cVA and V—V
—dA/or.

The equation of motion for the bond current J,,,(f) can be
cast as follows:

d d
dtJmn(t) = Kmn(l) dt Ymn(t) + an(t) . (13)

The first term in the right-hand side (rhs) is exactly
AJ,,n(2)/ 0t; the operator IA(m,,(t)EE(,(Tm,,ewf"'l(’)é;wé,,o+H.c.)
is the energy density of the bond m-n. The second term in the
rhs is, therefore, the average of I:"mn(t)Ei[fl(t),jm"(t)], see
Eq. (9).

The derivation of the equation of motion for the pairing
density P,,(1) is also straightforward and leads to

d . |
<E - 2iTmlﬂ)Pﬂl(t) = lAm(t)[nm([) _ 1]e2leml + l'Gm(t)621Tmm[
(14)

with G,,,(t) = [K(0) + Hips &1 |-
We now ask the question whether the densities J,,,,(r) for
all bonds m-n with T,,,# 0 and P,,() can be reproduced in a

system with a different interaction Hamiltonian Ifli’m under
the influence of TD phases y'(r) and pairing potential A’(z)
starting from an initial density matrix p’(0).

For the densities to be the same at time =0, we have to
choose p’(0) and y'(0) in such a way that

Te{p' (0)J!,(0)} = Tr{(0)J,,,,(0)}, (15)

Tr{p' (0)P,,(0)} = Tr{p(0) P,,(0)}. (16)
Notice that in the primed system, the bond-current operator
j,’nn is different from jmn since the phases ' are generally
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different from 7y. On the contrary, the pairing density opera-
tor is the same in the two systems. Equations (15) and (16)
define the compatible initial configurations of the primed
system.

We answer the above question affirmatively by showing
that given a compatible initial configuration [p’(0), ' (0)]
and under reasonable conditions, there exist y'(r) and A’(r)
for which the bond current and pairing density of the original
and primed system are the same at all times. The formal
statement is enunciated in the following

Theorem. Given a compatible initial
[5'(0),9'(0)] such that

K, (0)= Tr{ (0)2 (T, "2 6 +He. )}

configuration

(17)
for all bonds m-n with T,,, # 0, and
1), (0) = Tr{p' (0)i, ) # 1, (18)

which implies that at time =0 none of the orbitals ¢,, are
half filled in the primed system, there exist a unique set of
continuous phases y'(¢) and pairing potential A’(r) that re-
produce in the primed system the densities J,,,(¢) and P,,()
of the original system.

Remarks. Before presenting the proof of the Theorem, we
discuss few relevant implications. (1) If the original system
is a superconducting system with an attractive interaction

Hlnl and a vanishing pairing field, i.e., A=0, the theorem
implies that the bond currents and pairing densities can be
reproduced in a system of noninteracting electrons, i.e.,

1m—0 perturbed by TD phases y' and pairing field A’. In
the following, we will refer to such noninteracting system as
the Kohn-Sham (KS) system and to the TD perturbation as
the KS phases and KS pairing potential. In Sec. III, we de-
scribe how to perform the time evolution of such KS systems
for geometries relevant to quantum transport. (2) For inter-
acting systems with A=0 and initially in equilibrium in the
absence of electromagnetic fields, the phases y(0)=0 and
hence J,,,,(0)=0 for all bonds. In the KS system, a possible
compatible initial configuration is therefore 7’(0)=0 and
p'(0) such that the expectatron Value of the one-particle den-
sity matrix n,,,(0)=2,Tr{p’'(0)¢) ¢, is real. For such ini-
tial configurations, the cond1t10n (17) becomes n,,,(0) # 0 for
all bonds m-n with T,,#0. (3) If we ask the question
whether only the bond currents J,,,(z) of a system with
Hamiltonian (6) and zero pairing field, i.e., A=0, can be
reproduced in a system with zero pairing field, i.e., A'=

and different interactions Hlnt under the influence of drfferent
phases 7’ starting from some initial density matrix p'(0), the
answer is affirmative provided that p’(0) and 7'(0) fulfill
Egs. (15) and (17). This corollary extends TDCDFT to tight-
binding models using the Peierls phases as the basic KS
fields and lays down the basis for a density-functional TD
theory in discrete systems.*! We conclude this section with
the proof of the Theorem.

Proof. The current and pairing densities of the primed
system obey the equations of motion [Egs. (13) and (14)]
with K,,(t)—K] (1), F,,()—F, (t) and n,(t)—n, (1),

PHYSICAL REVIEW B 81, 115446 (2010)

G,.(t)— G, (t). Therefore, for a generic time ¢, the densities
of the two systems are the same provided that

K0 5 i) = K05 300+ Fo0) = 3 0,

(19)

[ni,n(t) - 1]Ar,n(t) = [nm(t) - 1]Am([) + Gm(t) - Gr,n(t) .

(20)

A discussion on the existence and the uniqueness of the so-
lution for the coupled Egs. (19) and (20) is rather compli-
cated since the dependence on the phases ¥’ and potentials
A’ in F’ and G’ enters implicitly via the TD density matrix
p'(#). To proceed further we then follow the approach of
Vignale and assume that the time-dependent phases and pair-
ing potentials and hence all expectation values are analytic
functions of time around #=0.%3 Expanding all quantities in
Egs. (19) and (20) in their Taylor series and equating the
coefficients with the same power of ¢ we obtain

-1

(l+ 1)K!(0) /(l+l) 2 (k+ 1)K,In(l —k) yr/n(rllﬁl)

mn 7mn

ITHI Ymn mn ?

1)

-1

[nrfn(O) _ l]A,;(l) —_ E n,ﬁfl"‘)A,’,f")

+E (k) A

-AV+ 6" -GY, (22)

where for a generic analytic function f(z) we defined /¥ as
the /th coefficient of the Taylor expansion. We now show that
Egs. (21) and (22) constitute a set of recursive relations to
calculate all ¥’ and A’® once all y'*® and A’™® are known
for k<<I. We first observe that the I/th derivative of the den-
sity matrix p’(¢) in r=0 depends at most on the (/—1) deriva-
tive of 9’ and A’ since ’5; p'(r)= [H'(1), p'(1)]. The quantity
F! . depends on (y',A’) implicitly through o' (¢) and explic-
itly through the commutator [H'(1), J L()]. Since the /th de-
rivative of the commutator depends on all (y'®,A’®) with
k=1, the quantity F'" is a function of (y’(k),A’(k) with k
=1. On the contrary, the quantities K" and G' depend implic-
itly on (y',A’) through p’(¢) but they explicitly depend only
on vy, i.e., there is no explicit dependence on the pairing
potential A’. We therefore conclude that K’ and G'?) de-
pend on the v with k=1 and on A’® with k<. Finally,
from Eq. (10) we see that the /th derivative of the density
n, () depends at most on the /—1 derivative of y' and A’.
The table below summarizes the dependency of the various
quantities on the order of the derivatives of 7" and A’,
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|F;(l) K/(l) G/(I) nr(l)
{y®Y k=1 k=1 k=1 k<lI. (23)
ANy k=1 k<l k<l k<I

From the above considerations it follows that Eq. (22)
with /=0 can be used to determine A’¥) since the rhs de-
pends only on y©@=+/(0) and from Eq. (18) the prefactor
[n/©-1]#0. Having A’© we can easily calculate (") from
Eq. (21) with /=0 since the rhs depends only on y'©® and
A" and from Eq. (17) K9 #0. With y'®, 5'©_and A’©

we can use Eq. (22) with [=1 to extract A’(l) then Eq. (21)
with /=1 to extract 4'® and so on and so forth.

C. Keldysh-Green’s function in the Nambu space
1. Keldysh contour

We now specialize to interacting systems which are ini-
tially in equilibrium at temperature 7=1/ 8 and chemical po-
tential u; such initial configurations are the relevant ones in
quantum transport experiments, see Sec. II D.*> From static
SCDFT (Ref. 43), we can choose the initial density matrix of
the KS system as the thermal density matrix of a system
described by the equilibrium Hamiltonian (2) with I:Imt:O
and KS phases y and pairing potentials A, and from the
results of the previous section we know that such KS system
can reproduce the TD bond currents and pairing densities of
the interacting system if perturbed by TD KS phases y(r) and

pairing potentials A(r). Denoting by Ifls(t)zf((t)+5(t)
+AT(#), the TD Hamiltonian and by p,(f) the TD density
matrix of the KS system we then have

p)= 58

(e PHOS (), (24)
where Z:Tr{e‘ﬂ(’;‘“’“ﬁ')} is the partition function and S,(z) is
the KS evolution operator to be determined from i %S’X(t)
=H,(1S,(t) with boundary condition S.(0)=1. The Hamil-
tonian H,=H,(0) is the equilibrium KS Hamiltonian while N
is the total number of particles operator. It is worth to notice

that, in general, [I:IJN] # 0 due to the presence of the pairing
ﬁeld The TD expectation value O,(z) of a generic operator

O(?) is in the KS system given by34-36:44

Tr{p,(1)0(1)} = (Ti{O(z = 1.)}), (25)

where we have introduced the short hand notation,

O,(1) =

_iIVKdZI:I/‘"‘@ ..
(1. =TT ] )
Tr[ T{e ™ wHus}]

In the above equation, yx is the Keldysh contour® illustrated
in Fig. 1 which is an oriented contour composed by an upper
branch going from O to %, a lower branch going from  to 0,
and a purely imaginary (thermal) segment going from 0O to
—if3. The operator Tk is the contour ordering operator and
move operators with later contour variable to the left (an
extra minus sign has to be included for odd permutations of
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0_ z=1_
— — —— L
- — >
0y z =1ty
Z = —iT

—ig

FIG. 1. (Color online) The Keldysh contour yg described in the
main text. The contour variable z=¢_/7, denotes a point on the
upper/lower branch at a distance ¢ from the origin while z=—i7
denotes a point on the imaginary track at a distance 7 from the
origin. In the figure, we also illustrate the points O_ (earliest point
on yx), 0, and —if3 (latest point on yg).

fermion fields). Finally A us(Z=14) =H (7), where the contour
points 7_/7, lie on the upper/lower branch at a distance 7 from

the orlgm while for z on the thermal segment H us(Z==i7)

=H,— uN. Thus, the denominator in Eq. (26) is simply the
partition function Z. In Eq. (25), the variable z on the con-
tour can be taken either on the upper (7_) or lower (r,) branch
at a distance ¢ from the origin.

2. Keldysh-Nambu-Green’s function

The KS expectation value Oy(¢) of an operator O(1) is, in
general, different from the expectation value O(¢) produced

by the original system. However, if O(7) is the KS bond-
current operator or the pairing density operator, the average
over the KS system yields exactly the bond current and the
pairing density of the original system. It is therefore conve-
nient to introduce the non-equilibrium Nambu-Green’s func-
tions (NEGF) from which the expectation value of any one-
particle operator can be extracted. A further reason for us to
introduce the non-equilibrium Nambu-Green’s functions
(NEGF) is that the equilibrium and time-dependent
Bogoliubov-de Gennes equations can be elegantly derived
from them, thus illustrating the equivalence between the
NEGEF and the Bogoliubov-de Gennes formalisms. The nor-
mal and anomalous components of the NEGF are defined
according to*®

Go5:2) = Tl e, D). 27)
Fo(5:2) = 2 (Tilén (D6, ), (28)

F,,(z:2') =~ _<TK{CnT(Z a@h, (29)

where z,z’ run on the Keldysh contour yy. 333447 The ¢
operators carry a dependence on the z variable; such depen-
dence simply specifies their position along the contour so to
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have a well-defined action of Tg.** The TD bond current and
pairing density can be expressed in terms of G,(z;z") and

F(z;7') as

Jon(®) == 2 (T "G, (1_52,) + Hel),  (30)

Pm(t) = ime(t+;t—)62iTmmt' (31)

3. Equations of motion

The NEGF of the KS system obey the following equa-
tions of motion:

{idizl—HM(Z)}G(z;Z')=15(2—Z')’ (32)

G(z;z’){ dil H,( )}=15(z—z’), (33)

where all underlined quantities are 2><2 matrlces in the
Nambu space with matrix elements lmn_[o'"” ] and

G mn(Z;ZI) _an(z ;Z)
Gounl232) = [ I N )
Foun(z:2') =G um(@'s2)
K mn(Z) émnAm(Z)
I:Ip.,mn(z) = |: - . (35)
mnAm(Z) //,,nm(z)
The matrix elements of H M(z) are
K mn )= Tmn iymn(t)
porn(£2) =T (36)
A1) =A,(1)
for z=t. on the horizontal branches and
K AN iT) = Tmn n — 5mrz
o (. i7) e M (37)
Am(_ i) = Am

for z=—i7 on the imaginary track. Since H ,(~i7) is indepen-
dent of 7, we write H,(-i7)=H,-ug with ¢,,=0.1,,, and
o, the third Pauli matrix.

In the next section, we show that the solution of the equa-
tions of motion is equivalent to first solve the static
Bogoliubov-deGennes (BdG) equations and then their TD
version.

4. Keldysh components and Bogoliubov-de Gennes equations

We introduce the left and right contour evolution matrices
S®L(z) which satisfy

80 =H,(8), (38)

d
-i—8Mz") =84z )H () (39)
dz
with boundary conditions S®/(0_)=1. The most general so-
lution of the equations of motion [Egs. (32) and (33)] can
then be written as
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G(z:2') =SR2 6(z:2")G™ + 6(z':2)G~ISH(")  (40)
with G"=G~=-i1 and the contour Heaviside function
0(z;z')=1 if z is later than z’ and zero otherwise. Equation

(40) is a solution for all matrices G~ =-i1+G=. In order to
determine G~ or G=, we use the boundary conditions

G(0_:z')=-G(-iB:z'), (41)

G(z;00) =-G(z;-ip), (42)

which follow directly from the definitions [Egs. (27)—(29)] of
the NEGF. Using Eq. (40), one finds G(0_;z")=G~S*(z")
and G(-iB;z")=SR(-iB)G”SL(z’) from which we conclude
that

G™=-S-iBG". (43)
Similarly, from Eq. (42) one finds
G =-G~S"-ip). (44)

Exploiting the fact that H,(-i7)=H,— o is constant along
the imaginary track one readily realizes that S¥Z(—if)
=exp[ *B(H—no)] and hence
- i

¢ T explH, - pe)] )
From the exact solution [Eq. (40)], we can extract any ob-
servable quantity at times =0 and not only its limiting be-
havior at r— . Below we calculate the different components
of the NEGF.

We introduce the eigenstates W, with eigenenergies E,,
of the matrix Hy—u@. The vector ¥, =[u,,v,] is a two-
dimensional vector in the Nambu space and, by definition,
satisfies the eigenvalue problem,

E ey (n) + A, (m) = (Eg+ wuy(m),  (46)

E T "m0 4 (n) + Ay (m) = (Ey = v, (m). (47)

Due to the presence of the pairing field, the components u,
and v, are coupled and the eigenstates W, are a mixture of
one-particle spin-up electron states and spin-down hole
states. We will refer to the eigenstates WV, as bogolons. The
above equations have the structure of the static BAG equa-
tions which follow from the BCS approximation.***° In our
case, Egs. (46) and (47) follow from SCDFT (Ref. 43) and
therefore yield the exact equilibrium bond current and pair-
ing density provided that the exact KS phases and pairing
fields are used.

Inserting the complete set of eigenstates in Eq. (40) and
taking into account Eq. (45), we find the following expansion
for the NEGF:

G(z;2) =i S* W [ 0(z;2)f (E,)
q

+0(z'52)f~(E)]WiSH(z"), (48)
where f~(w)=1/[1+exp(Bw)] is the Fermi function and
f (w)=f~(w)—1. Taking z and z’ on the real axis but on
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different branches of the Keldysh contour, we can extract the
lesser and greater component of the NEGF. We first notice
that for z=¢., the contour evolution operators reduce to the
standard evolution operators, i.e., S®(r.)=8(s) and S*(r.)
=S7(¢) with

S0 =HOS0, $0)=1 (49)

and H(r)=H,(r.), see Eq. (36). Then, in terms of the
evolved states W, (1)=S()¥, with components W (1)
=[u,(t),v,(r)] we find

GT(1:1)

-F=1(t'";1)
F=(t;1')

-G
u (Dl (t') u (Ol (t)
v (Dul(t') v (i)
where the superscript 7 in F=7 and Gf’T denotes the trans-
pose of the matrix, see also Eq. (34). The functions u,() and

v,(t) can be determined by solving a coupled system of first-
order differential equations. From Eq. (49) it follows that

G=(1;1") = G(t5:1l) =[

=i F(Eq){ } (50)
q

d )
izuq(m,t) = 2 T " u (n,0) + A, (v, (m,1), (51)

d : X
id—tvq(m,t) =—> Tnme’ynm(’)vq(n,t) + A, (Duy(m,1),

(52)

which have the structure of the TD BdG equations.’*" As in
the static case, however, the solution of Egs. (51) and (52)
yields the exact densities and not their BCS approximation.

We notice that for the KS system to reproduce the time-
independent densities of an interacting system in equilibrium
it must be

A, (1) =e A, (53)

for which one finds the solutions uq(t)ze‘i(EfI*”)’uq and
v,()=e"E )y The above time dependence of the pairing
field is the same as in the BCS approximation.

Using Eq. (50) the retarded (R) and advanced (A) NEGF
are

GMA(nr') = = 6(x1 % )G (1) - G (1:1")]
= it ¥ t")S@ST(") (54)
with components

GR/A( /) Gl;/mAn(t’t,) _FnA;;R(t,,t) (55)
t:t)=| = .

o Fol(nr') =Gl (50

It follows that G=(¢;¢') can also be written as

G=(1;1") = GR(1;0)G=(0;0)G™(0;1"). (56)

D. Application to quantum transport

We here apply the above formalism to systems described
by a=1,...,N bulk superconducting leads in contact with a
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central region C which can be, e.g., a quantum dot, a mol-
ecule, or a nanostructure. Assuming no direct coupling be-
tween the leads the Hamiltonian H, is written in terms of its
projections on different subspaces as

N N
H,= 2] H, o o+H, cc+ 21 Hyac+H, o), (57)

where H,, ,, describes the ath lead, H,, ¢ the nanostructure
Cand H, ,c+H, ¢, the coupling between leads « and C. We
assume region C to be a constriction so small that the bulk
equilibrium of the leads is not altered by the coupling to C.
Furthermore, we consider time-dependent perturbations
which correspond to the switching on of a longitudinal elec-
tric field in lead «. The time to screen the external electric
field in the leads is in the plasmon time-scale region. If we
are interested in external fields which vary on a much longer
time scale it is reasonable to expect that the leads remain in
local equilibrium. Therefore, the coarse-grained time evolu-
tion of the system can be described by the following TD
Hamiltonian H,(z.) =H(2):

H,.(t) = exp(— iputo,)H (0)exp(iuta,), (58)
H (1) = EXp(i J diU (1) (Tz>HaC(O)’ (59)
0

Heo(r) =[Hel (0] (60)

We do not specify the time dependence of Hq(7) since it can
be any, see below. The TD field U,(¢) is the sum of the
external and Hartree field and is homogeneous, i.e., it does
not carry any dependence on the internal structure of the
leads, in accordance with the above discussion. It has been
shown that for macroscopic leads the assumption of homo-
geneity is verified with rather high accuracy.”!

As for the case of normal leads, the equations of motion
for the Keldysh-Green’s function can be solved by an em-
bedding procedure. We define the uncontacted Green’s func-
tion g which obeys the equations of motion [Egs. (32) and
(33)] with H, .c=H, c,=0 and the same boundary condi-
tions as G. Then, the equation of motion for G, projected
onto regions CC takes the form

d ,
{ld_zlcc - HM,CC(Z)}GCC(Z;Z )

:1CC5(Z_Z,)+fdzg(Z;Z)GCC(Z;ZI)a (61)

where the embedding self-energy is expressed in terms of g
as
N N

3(@7) = 2 34ET) = 2 Hy coD8aalZTH,, oc(@).
a=1 a=1

(62)

The above equation of motion is defined on the Keldysh
contour of Fig. 1. Converting Eq. (61) in equations for real
times results in a set of coupled equations known as
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Kadanoff-Baym equations®>>-° recently implemented to

study transient responses of interacting electrons in model
molecular junctions.’'”’ The use of the Kadanoff-Baym
equations to address transient and relaxation effects in other
contexts has been pioneered by Schifer,”® Bonitz et al.,”® and
Binder et al.®°

The importance of using an uncontacted Green’s function
g with boundary conditions [Eqgs. (41) and (42)] for a proper
aescription of G>(z;¢') at finite times has been discussed
elsewhere in the context of transient regimes®®>! and it has
been shown that it leads to coupled equations between the
Keldysh-Green’s function with two real times and those with
one real and one imaginary time.

In the next section, we propose a wave-function-based
propagation scheme to solve Eq. (61) for TD Hamiltonians
of the form [Egs. (58)—(60)].

III. NUMERICAL ALGORITHM

We consider semi-infinite periodic leads with a supercell
of dimension Ng for lead a. The projected Hamiltonian

H) ..=H,,(0) can then be organized as follows:

h, t, 0,
t by t,
HO,aa_ tf h 5 (63)

where h, is the 2NZ X 2N¢

: L cell cell
supercell with matrix structure,

Nambu Hamiltonian of the

a —ipj aa
U,,p(s)e + Ry,
P

Wy, (m) =\ W3, c(m)

> 198 wek (s)eiquﬁp/

vp,p"" vp.p
P

with reflection coefficients R and transmission coefficients 7.
The momenta qffpﬂ , (for all leads B including B=a) are asso-
ciated to states with energy E=E%(p) and can therefore be
obtained from the roots of

Det[}_lﬁ+£ﬁeiq+[;;e_iq—,u(_)'5—E15:| =0. (68)

The above equation admits, in general, complex solutions for
q. In Eq. (67), the sums over p run over real solutions g for
which the sign of the Fermi velocity vf(q)=5Ef(q)/ dq is
opposite to the sign of the Fermi velocity vi(p) of the in-
coming bogolon and over all complex solutions g for which
Im[¢]>0 (evanescent states). Once the qi’f , are known the
Bloch state W,”jﬁ , is simply the eigenvector with zero eigen-
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< %]
o= (64)

i T
Aa — €

while ¢, describes the contact between two nearest-neighbor
supercells. Since the pairing field is local the off-diagonal
terms of ¢, are zero and therefore, the general structure of the

hopping matrix is
o= ! ¢ (65)
t,= 7 |-
B a ta

The matrices €,, A,, and ¢, in &, and ¢, have the dimension
of the unit cell, i.e., N, X N&,. In particular, A, is a diago-
nal matrix.

A. Calculation of initial states

Given the above structure of the leads Hamiltonian, the
eigenstates of Hy— o can be grouped in scattering states
with incoming bogolons from lead =1, ..., and Andreev
bound states (ABSs).

1. Scattering states
The lead « is characterized by energy bands E3(p) with
v=1,...,2N5, and p € (0, 7). For a given p, the energies
E%(p) are the solutions of the eigenvalue problem
(ho+t,e” +Lhe™ - pa,)U;, = Ex(p)U;,  (66)

vp

with Uy, the Nambu-Bloch eigenvectors. We write the index
of the localized orbital ¢, as m=s,j,a; here s labels the
orbital within the supercell and j the supercell and « the lead.
The index s runs between 1 and Ng, while the supercell
index j=0,...,%. The scattering state for an incoming bogo-

lon from lead « has the general form

W2 (s)eibum.pl

vp.p m=s,j,a
meC (67)
m=s,j,#* «

value of the matrix I_z,3+gﬁe"‘13£p+1_.‘}3e""fsfp— uag—Elg For
the calculation of the reflection and transmission coefficients
as well as of the amplitude W5 -(m) in the central region, we
extended a recently proposed waveguide approach.’! The
method is based on projecting the Schrodinger equation
(Hy—no)¥=EV onto the central region and onto all the
supercells in contact with the central region, i.e., with j=0.
The projection onto a j=0 supercell leads to an equation
which couples the amplitude of ¥ in j=0 with that in j=1.
Exploiting the analytic form of the eigenstate in Eq. (67), the
amplitude in the leads can entirely be expressed in terms of
the unknown R’s and 7”s for all j. In this way, the equations
can be closed and the problem is mapped into a simple linear
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syitem of equations for the unknown Rfff o T‘;‘f p
‘Ifyp clm).

2. Andreev bound states

The presence of a gap in the spectrum of the supercon-
ducting leads may lead to the formation of localized ABS
within the gap. The procedure to calculate the ABS is
slightly different from the one previously presented since the
ABS energy is not an input parameter and the ABS state is
normalized to 1 over the whole system. The energy E, of an
ABS W, is outside the lead continua. Projecting the
Schrodinger equation (Hy—uo)W,=E, V¥, onto different re-
gions and solving for the projection ¥, - in region C, one
finds (Hf'¢(E}) -~ @ cc) ¥y, c=Ep¥),c, where

1
E- (HO,aa -

Hgffcc(E) =Hycc+ 2 Hoca )HO,aC'

MO yq

(69)

The ABS energies E, can then be extracted from the roots of
Det[HgthC(E) LT o~ EICC] 0 and the eigenvector with
zero eigenvalue of Hi cc(Eb) pmocc—Eylqc is proportional
to the projection W, of the ABS in region C. We call C,, the
unknown constant of proportionality. As for the scattering
states, we can construct the ABS everywhere in the system
according to

> B;pwap(s)eiqh"’i m=s,j,a
‘I’b(m) = P . (70)
Wy, c(m) meC

The momenta gj, , and Bloch states Wy, , are calculated in the
same way as for the scattering states. By definition all mo-
menta have a finite imaginary part and the sum in Eq. (70)
runs over those with a positive imaginary part. The constants
BZ"p can be simply obtained by projecting the Schrodinger
equation (Hy—uo)V,=E, ¥, onto the supercells in contact
with region C, i.e., with j=0. The resulting equation couples
the amplitude of V¥, in j=0 with that in j=1 and with the
known amplitude C, W}, -(m). Exploiting the analytic form of
W, in the leads the amplitude in j=1 can entirely be ex-
pressed in terms of the constants C ng thus yielding a linear
system of equations for each lead. Once the CbBb are
known the constant of proportionality C, is fixed by impos-
ing that the ABS is normalized to 1. This can be easily done
since the sums over j are geometrical series.

B. Embedded Crank-Nicholson propagation scheme

To propagate the generic eigenstate ¥ of Hy—uo, we
extend the embedded Crank-Nicholson®”-* scheme to super-
conducting leads. The equations of motion [Egs. (51) and
(52)] can be written in a compact form as

d
ld—t‘P(t)=H(t)‘1’(t), v(0)=", (71)
where the components of the TD Hamiltonian are given in

Egs. (58)—(60). We first perform the gauge transformation
W (1) =exp[—ipa 1P, (1) for the projection of the state W
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onto lead @ and W (t)=®(¢) for region C. The state d(z)
obeys the equation,

Lo = A D(),

i d0)=¥Y (72)

with

ﬁaa(t) = Haa(o) — MO as (73)

H, (1) = CXP{Z(W‘F f d?l/a(D)qw] H,c(0), (74)
0

and Hcc()=Heo(r). The advantage of the gauge-
transformed equations is that the lead Hamiltonian is now
independent of time. We discretize the time as f,,=2md and
define " =d(t,,) and ﬁ(m)=%[ﬁ(tm+l)+ﬁ(tm)]. The differ-
ential operator in Eq. (72) is then approximated by the Cay-
ley propagator,

(1+i0HM) D) = (1 igHM)O".  (75)

The above propagation scheme is known as Crank-Nicholson
algorithm and it is norm conserving and accurate up to sec-

ond order in . As the matrix ﬁ is infinite dimensional, the
direct implementation of Eq. (75) is not possible. A signifi-
cant progress can be done using an embedding procedure
which, as we shall see, entails perfect transparent boundary
conditions at the interfaces between region C and leads «.
Projecting Eq. (75) onto lead « and iterating one finds

141 14,(0
B =gl -

E gl HU
1.+ zé‘HMJ 0
X (@I 4 @y, (76)

where we have defined the propagator

laa_ iaﬁaa
8wa=" = > (77)
laa+ i(sl:laa

and made use of the fact that I;Iw(t) Eﬁaa is time indepen-
dent. The time dependence of the contacting Hamiltonian
can be easily extracted from Eq. (74) and reads

(m+l) (m)
— ex 0,,) +€ex o T pa) ~
figy = PG LR Tenlig () (75)
where we have defined
p = fznfo (79)

At this point comes a crucial observation which allows for
extending the propagation scheme of Refs. 37 and 38 to the
superconducting case. Since the pairing field is local in the
chosen basis the off-diagonal part of the contacting Hamil-

tonian is zero and hence I;ICaqaangCI;ICa. It follows that
Eq. (78) can also be rewritten as
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(m+1

explip,, 'aco) + exp(i,u(o',")gcc)

2

Jl==1

(cfg I;IaC(O)

H,0(0)2", (80)

which implicitly define the matrices g;m>=(gg"))*. Next we
project Eq. (75) onto region C and use Eq. (76) to express
the @, at a given time step in terms of the @ at all previous
time steps. The resulting equation is

(ec+iHIN DI = (10— iHIY O + X (S + p™)

(81)

and contains only quantities with the dimension of region C.
We emphasize that Eq. (81) is an exact reformulation of the
original Eq. (75) but it has the advantage of being imple-
mentable. Indeed, exploiting the result in Eq. (80) the bound-
ary term S and memory term M read

S = — i H 0008l (Laa + 22 PY,  (82)

m—1

MO == £, ZM(QU + QU1 (@ 4 ==

j=0
(83)
while the effective Hamiltonian is given by
H{Y =BG - 62 207QYz, (84)
a

where the embedding matrices (_)(;") have twice the dimen-
sion of region C and are defined according to

(laa - iﬂ;laa)m

(1 5ﬁ )m+lI;IaC(O)' (85)
Logt10H 4,

Q(olzn) = I:-iCa(O)

In Appendix A, we describe a recursive scheme to calculate
the embedding matrices. In Appendix B, we further show
that the boundary term S g") can be expressed in terms of the
Qs thus rendering Eq. (81) a well-defined equation for time
;;ropagations.

In the next section, we apply the numerical scheme to
UF-JNJ model systems and obtain results for the TD densi-
ties and currents.

IV. REAL-TIME SIMULATIONS OF S-D-S JUNCTIONS

Due to the vast phenomenology of S-D-S junctions it is
not possible to address these systems in a single work. Fur-
thermore, the analysis of the time-dependent regime is gen-
erally more complex than that in the Josephson regime and it
is therefore advisable to first gain some insight by investigat-
ing simple cases. Our intention in this section is to demon-
strate the feasibility of the propagation scheme and to present
genuine TD properties of simple model systems.

We consider a tight-binding chain (region C) with nearest-
neighbor hopping 7 and on-site energy €. connected to a left
(L) and right (R) wideband leads. The a=L,R lead is de-
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scribed by a semi-infinite tight-binding chain with nearest-
neighbor hopping 7, and a constant pairing field A, and is
coupled to the « end point of the central chain through its
surface site with a hopping 7,=t,c. The system is initially in
equilibrium at temperature 7=0 and chemical potential u
=0 and driven out of equilibrium by a TD bias voltage U (1)
applied to lead « at positive times. From Sec. I D, the

Hamiltonian for this kind of systems read f](t):}‘,a[[:[aa(t)
+Hoc(0) + Hea(t) 1+ Hec, where

Ho()=1,2 > (é.',’-'ﬂwéjm +Hc)

j=0 o

+ (e 8+ Hoe) (86)

describes the lead a=L,R,

Hyo(r) = cheiﬁ’dl’UL(l’)Z Coorlos+ Hee, (87)
o
I:IRC(f) = tRceiﬁ’dt/UR(t,)E égoRéNo"" H.c. (88)

o

accounts for the coupling between region C and the leads,
and

N-1 N
HCC= tCZ 2 (éjn+laéln0+ HC) + 602 E éjmréma'
m=0 o m=0 o

(89)

is the Hamiltonian of the chain with N+1 atomic sites. The
currents J; (1) = Jor o(7) and Jg(r) =Jy ox(¢) through the bonds
connecting the chain to the left and the right leads are ob-
tained from Egs. (30) and (50) and read

OES itLCe"VLC(’)[E J(Eu (OL,1)u(0,1)
q

Y f>(Eq)vq(0,t)vZ(0L,t)} tHe,  (90)
q

Jalt) =~ it;ce"”Rd')[E F(E (0.0 (0R )
q

-3 f>(Eq)vq(0R,t)v:(O,t)] +He, (1)

q

where y,c(t)=if(dt' U,(t') and the sum over g runs over all
ABS and scattering states. Similarly, the pairing density
P,(t) on an arbitrary site of the chain is obtained from Eq.
(31) and (50) and reads

P(0) = 2 [ (E Juy(m,t)vy(m,r)e* <. (92)
q

We will write the pairing field as A,=£,eX«A and mea-
sure energies in units of A, times in units of /A, and cur-
rents in units of |e|A/7, with |e| the absolute charge of the
carriers. Since we consider wideband leads with ¢,>1,¢, t¢
and the chemical potential is set to zero the results depend
only on the ratio I' ,= 2tic/ t, (tunneling rate) and not on 7,0
and 7, separately. In the following, we therefore specify the
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value of I', only. In practical calculations, the longitudinal
vector p e (0, ) of the scattering states, see Eq. (67), is dis-
cretized with N, mesh points and only states with energy
within the range (u—A,u+A) are propagated in time. We
will call N, , the number of scattering states from lead « that
are propagated. The cutoff A is chosen about an order of
magnitude larger than the typical energy scales of the prob-
lem, i.e., Ug,, 'y, A, te, and ec.

A. Single-level quantum-dot model

The single-level quantum dot (QD) model corresponds to
a central chain with only one atomic site (N=0). For A,
=Az=0 (N-QD-N), the TD response of this system has been
investigated by several authors and an analytic formula for
the TD current is also available.3%:92:93 Scarce attention, how-
ever, has been devoted to the system with one superconduct-
ing lead”® (N-QD-S) and to the best of our knowledge, the
only available results when both leads are superconducting
(S-QD-S) have been published in Ref. 30.

1. N-QD-S model under dc bias

We first consider the N-QD-S case schematically illus-
trated in Fig. 2(a). To highlight the different scattering
mechanisms, we shift the central level by €-=0.5, choose
weak couplings to the leads I'; =I",=0.2, and drive the sys-
tem out of equilibrium by applying four different biases U,
=0.3,0.6,0.9,1.2 to the left normal lead. For biases in the
subgap region, i.e., U, <Ag=1, transport is dominated by
Andreev reflections (ARs). In Fig. 2(b), we show the currents
Ji (1) and Jg(r) of Egs. (90) and (91). For U;=0.3 <€, the
AR are strongly suppressed since electrons at the left elec-
trochemical potential u; =U; have just enough energy to en-
ter the resonant window (e-—2T",e-+2I"), where 2I'=T",
+1I'z. Resonant AR can occur for U; > €. and constitute the
dominant mechanism for electron tunneling. This is clearly
visible in the second panel of Fig. 2(b) where the steady-state
values of J; for U;=0.6 and U;=0.9 are approximatively the
same. At larger biases U;=1.2> A electrons can also tunnel
via standard quasiparticle scattering and the steady-state cur-
rent increases. This interpretation is confirmed by the behav-
ior of the pairing density Py(¢) on the QD, third panel of Fig.
2(b). For times up to ~5, the pairing density decreases since
pre-existent Cooper pairs in lead R move away from the QD.
However, while |Py(#)| remains below its equilibrium value
at U;=0.3, for all other biases, U, > e, |Py(t)| increases af-
ter 1~ 5, meaning that a Cooper pair is forming at the inter-
face. We also notice that the values of |Py(t— )| for U,
=0.9 and U;=1.2 are very close while the corresponding
currents Jp differ appreciably. This is again in agreement
with the fact that electrons with energy larger than A; do not
undergo AR and thus no extra Cooper pairs are formed. Fi-
nally we observe that the transient regime is longer in the
N-QD-S case than in the N-QD-N case, see inset in panels 2
and 3 of Fig. 2(b), as also pointed out in Ref. 29.

2. S-OD-S model under dc bias

We now turn to the more interesting case in which the QD
is connected to a left and right superconducting lead (S-QD-
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FIG. 2. (Color online) (a) Schematic of the transport setup. A
single-level QD with on-site energy £-=0.5 is weakly connected
(T, =T)=0.2) to a left normal lead and a right superconducting
lead. In equilibrium, both temperature 7" and chemical potential u
are zero. The system is driven out of equilibrium by a steplike
voltage bias U;=0.3,0.6,0.9,1.2 in the normal lead. For U; <Ap,
the dominant scattering mechanism is the AR in which an electron
is reflected as a hole and a Cooper pair is formed in lead R. (b)
Time-dependent current at the left interface (first panel), right inter-
face (second panel), and absolute value of the pairing density on the
QD (third panel). The insets show the TD current for the same
parameters but Ag=0, i.e., for a normal R lead. The results are
obtained with a time step 6=0.05, cutoff A=6, and a number of
scattering states N, ; =1070 and N, p=1056.

S), see Fig. 3(a). We focus on symmetric couplings I'; =I"x
=I'=1 and on pairing fields A;=Age'X=¢X with the same
magnitude but different phase. This system always support
two ABSs in the gap. Their energy can be obtained analyti-
cally from the solution of Det[I;I(effCC(E)— ncc—Eloc]=0
(see Sec. III A 2) which, in terms of the dimensionless vari-
ables x=E/A, y=I"/A, and e=(€e.—u)/A, reads

2 2
21 —=] - ayz:o, (93)
V1 =x? l—x

where a= \/H%X and varies in the range (0,1). In Fig. 3(a),
we plot the solutions of Eq. (93) as a function of y for e
=u=0. In equilibrium and at zero-temperature one ABS is
fully occupied and the other is empty. At time =0, a con-
stant bias U, is applied to the left lead. In Fig. 3(b), we
display the TD current at the left interface J;(¢) for y=0 and
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FIG. 3. (Color online) (a) Schematic of the S-QD-S model with
'} =T'x=1.0, A;=Ar=1, and €-=0. This system admits two ABS in
the gap. The ABS energy depends on the superconducting phase
difference y as illustrated in the inset. (b) and (c) Time-dependent
current J; () at the left interface as a function of time for (b) U
=3.0,2.0,1.0 [the curves corresponding to bias U;=n.0 are shifted
upward by 0.3(n—1)] and (c) U,=0.5,0.4,0.3,0.2 [the curves cor-
responding to bias U;=0.n are shifted upward by 0.6(n—2)]. The
results are obtained with a time step 6=0.05, cutoff A=12.1, and a
number of scattering states N,; =N, g=768 for panel (b) and &
=0.05, A=4, and N, ; =N, z=788 for panel ().

U;=3,2,1. After a transient, the current oscillates in time
with period T,=27/(2U;), as expected. For U;>2, the
S-QD-S system behaves similarly to a macroscopic Joseph-
son junction with an almost pure monochromatic response,
albeit the average value J. of the current over a period is
different from zero. For U;=1<2A, i.e., in the subgap re-
gion, the transient regime becomes much longer and J,(¢)
deviates from a perfect monochromatic function. At U; =1,
the dominant scattering mechanism is the single AR.

As discussed in Ref. 15, the presence of the resonant level
modifies substantially the J4.—V(V=U,—Uy) characteristic
and for I'=1 the subharmonic gap structure is almost entirely
washed out. However, a very rich structure is observed in the
TD current. In Fig. 3(c), we display J,(¢) for biases U,
=0.5,0.4,0.3,0.2. The charge carriers undergo multiple AR
(MAR) before acquiring enough energy and escaping from
the QD. The dwelling time increases with decreasing bias
and the transient current has a highly nontrivial behavior
before the Josephson regime sets in. From the simulations in
Fig. 3(c) at bias U;=0.2, the propagation time =250 is not
sufficient for the development of the Josephson oscillations.
We also observe that the smaller is the bias the larger is the
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FIG. 4. (Color online) (a) Discrete Fourier transform of J;(f) in
arbitrary units [the curves corresponding to bias U;=0.n are shifted
upward by 0.7(n—3) while that corresponding to bias U, =1.0 is
shifted upward by 2.8. (b) Values of the average current for biases
in the subgap region. (c) ABS contribution to the current J;(r) for
biases U;=0.2,0.3,0.4,0.5,0.6 [the curves corresponding to bias
U;=0.n are shifted upward by 0.8(n—2)]. The numerical param-
eters are the same as in Fig. 3.

contribution of high-order harmonics, which is in contrast
with one would naively expect from linear-response theory.

In Fig. 4(a), we display the Fourier transform of J;(7)
—Jg. in the Josephson regime. Replica of the main Josephson
frequency w;=2U, are clearly visible for U; <A. The values
of J,. as obtained from time propagation are reported in Fig.
4(b) and are consistent with a smeared subharmonic gap
structure.

From the curves J,(¢), it is not evident how to estimate the
duration of the transient time. We found useful to look at the
contribution of the ABS, J; ags, to the total current J;, since
J1 aps(t—)=0. This quantity is evaluated from Eq. (90) by
restricting the sum over g to the ABS and is shown in Fig.
4(c). ABS play a crucial role in the relaxation mechanism as
we shall see in the next section.

3. S-OD-S model under dc pulses

As mentioned in Sec. I, the possibility of employing UF-
JNJ in future electronics rely on our understanding of their
TD properties. In the previous section, we studied the tran-
sient behavior of a S-QD-S system under the sudden switch
on of an applied bias. Equally important is to study how the
system responds when the bias is switched off. We therefore
consider the same S-QD-S model as before with I';=I",=1,
€c=0, and A;=Ay=1 initially in equilibrium at zero tem-
perature and chemical potential. At time =0, a constant bias
U, =1 is applied to lead L until the time 7, at which the bias
is switched off. How does the system relax? In Fig. 5, we
show the current J at the right interface as well as the den-
sity no and pairing density |Py| on the QD for switch-off
times 1")=5m+nm/8 with n=0,1,2,3,4. Despite the fact
that the switch-off times are all very close [#%~15.71 and
t((;g~ 17.28], the system reacts in different ways and actually
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FIG. 5. (Color online) Time-dependent current at the right inter-
face Jy (first panel) as well as the density n, (second panel) and
pairing density |Py| (third panel) on the QD. The curves from bot-
tom to top corresponds to a switch-off time t£¥}=5w+nw/8, with
n=0,1,2,3,4. Since the bias is U; =1, the accumulated phase dif-
ference y' at the end of the pulse is x" =21£,’}2=n77/ 4. For the
switch-off time tg’g, the curves of Jg are shifted upward by 0.3n,
those of ny by 0.5n, and those of |Py| by 0.2n. The results are
obtained with a time step 6=0.05, cutoff A=12.1, and a number of
scattering states N, ; =N, zg=768.

relaxes only in one case. The strong dependence on 7, is due
to the two ABS in the gap. Similarly to what happens in
normal systems® the asymptotic (f— ) form of the density
on the QD is

no(t) = 1o cont ~ E Jij COS{[GX}ss - /(Gss]f}, (94)
ij

where 65335, i=1,2, are the ABS eigenenergies of the Hamil-
tonian after the bias has been switched off and ng o is the
contribution of the continuum states to the density. The co-
efficients f;;=f;; are matrix elements of the Fermi function

IH(0)] calculated at the equilibrium Hamiltonian and de-
pend on the history of the applied bias.%>% Contrary to the
normal case, however, the energy of the ABS depends on
when the bias is switched off since after a time 7. the phase
difference y changes from zero to 2U; . This fact together
with Eq. (94) explains the persistent oscillations at different
frequencies. Indeed x"=2U Ltf)"fi:mr/ 4 and from Fig. 3(a),
we see that [elys(x")—e2hs(x™)] varies from ~1.08 to
zero when n varies from zero to 4. The amplitude of the
oscillations as well as the average value of the density n,
however, do not depend only on y but also on the history of
the applied bias. Two different biases U;(7) and U, (¢) yield-
ing the same phase difference  x=2[§"d7U;(7)
=2[¢drU,(7) give rise to different persistent oscillations,
albeit with the same frequency.

From the results of this section, we conclude that for de-
vices coupled to superconducting leads a small difference in
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the switch-off time of the bias can cause a large difference in
the relaxation time of the device. This property may be ex-
ploited to generate zero-bias ac currents of tunable fre-
quency.

4. S-QD-S model under ac bias

The time-propagation approach has the merit of not being
limited to steplike biases as it can deal with any TD bias at
the same computational cost. Of special importance is the
case of ac biases where a microwave radiation U, sin(w,f) is
superimposed to a dc signal V=U;—Uy. The study of UF-
JNIJ in the presence of microwave radiation started with the
work of Cuevas et al.” who predicted the occurrence of
subharmonic Shapiro spikes in the Jy4,—V characteristic of
superconducting point contacts. Later on, Zhu et al.%® ex-
tended the analysis to the S-QD-S model and discuss how
the ABS modifies the Jy4.—V characteristic. The replicas of
the Shapiro spikes have been experimentally observed® and
can be explained in terms of photon-assisted multiple An-
dreev reflections. Using a generalized Floquet formalism,
one can show that in the long-time limit,’

Jo (1) = 2 TV, y, @)l mernan, (95)

where y=U,/w, and w;=2V is the Josephson frequency. The
calculation of J, is, in general, rather complicated and to the
best of our knowledge, the full TD profile of J; () as well as
the duration of the transient time before the photon-assisted
Josephson regime sets in have not been addressed before.

We here consider the S-QD-S model with I';=T"3=1, &,
=0, and A; =A,=1 under a dc bias and in the presence of a
superimposed microwave radiation Uy (¢)=U;+ U, sin(w,f)
and Ug=0. In Fig. 6(a), we display the TD current at the left
interface for fixed y=U,/ w,=0.05 and different values of the
frequency w,=0.5,1.08,1.5. The first striking feature is the
occurrence of a transient resonant effect at w,=1.08 ~ w,pg
=éelllo— €. At the resonant frequency, the amplitude of
the oscillations increases linearly in time till a maximum
value ~0.3. The Fourier decomposition (not shown) reveals
that the peak at w=1.08 splits into two peaks, one above and
one below 1.08, which is consistent with the observed beat-
ing. The effect is absent at larger (w,=1.5) and smaller (w,
=0.5) frequencies for which the amplitude of the oscillations
remains below 0.05 and two main harmonics, one at w, and
the other at wypg, are visible in the Fourier decomposition
(not shown). The peak at w=w,pg is due to a transient exci-
tation with a long lifetime and cannot be described using
Floquet-based approaches.

The ABS plays a crucial role in determining the TD pro-
file of J;, at the resonant frequency. The total current J;(r)
=J1 cont) +Jp aps(?) is the sum of the current J; .o, coming
from the evolution of the continuum states and the ABS cur-
rent J; Aps(#). These two currents are shown in Fig. 6(b)
from which it is evident that ABS carry an important amount
of current not only in the dc Josephson effect**” but also in
the transient regime. In Fig. 6(c), we show the pairing den-
sity on the QD for the resonant frequency w,=1.08.

In the presence of an external bias, the ABS contribute to
the current only in the transient regime. The duration of the
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FIG. 6. (Color online) (a) TD current at the left interface for
U;=0 and U,=0.05w, with ©,=0.5, [the curve is shifted upward by
0.4], and 1.5 [the curve is shifted upward by 0.8]. (b) ABS and
continuum contribution to the total current in the resonant case w,
=1.08, U,=0.05w,, and U;=0. (c) Pairing potential on the QD for
the same parameters as in panel (b). The results are obtained with a
time step 6=0.05, cutoff A=4, and a number of scattering states
N,.=N, z=788.
transient is investigated in Fig. 7 where we show Jg aps for
dc biases with a superimposed microwave radiation de-
scribed by U,(t1)=U,+U, sin(w,t), with U,=0.050,, o,
=1.08, and U;=0.0,0.03,0.1,0.3. The interplay between the
ac Josephson effect and the resonant microwave driving
leads to complicated TD patterns for small U;. Increasing U,
the lifetime of the quasi-ABS decreases resulting in a fast
damping of the oscillations, see Fig. 7 with U;=0.3.

B. Long atomic chains

We consider a chain of N+1=21 atomic sites with on-site
energy €-=0 and nearest-neighbor hopping 7-=1, see Eq.
(89), symmetrically coupled, I';=I"3=T", to superconducting
electrodes with |A;|=|Agz|=A. In the limit of long chains, one
can prove that the current phase relation (at zero bias) is
linear if t-=1"/2.2>"" This is the so-called Ishii’s sawtooth

—U,=03
—U, =01

Jr aBs

—U,=003
—U,=00

| ! h
0 250 500 t 750 1000

FIG. 7. (Color online) ABS contribution to the current at the
right interface for dc biases with a superimposed microwave radia-
tion described by U (1)=U,+U, sin(w,), with U,=0.05w, o,
=1.08, and U;=0.0,0.03,0.1,0.3. The system is the same as in Fig.
6 with A;=Ap=1, I';=T"3)=1, and €,=0. The time step is 6=0.05.
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behavior’! and is due to perfect AR. To better visualize the
MAR in the transient regime we therefore choose 7-=I'/2. In
equilibrium, there are 16 ABS in the gap. At time =0, the
system is driven out of equilibrium by a dc bias U; applied
to lead L.

In Fig. 8, we display the contour plot of the currents
Jpns1(2) along the bond (n,n+1) of region C as a function of
time for different values of U;=2A/4,2A/3,2A/2. The
MAR pattern is illustrated with black arrows. There is a
clear-cut transient scenario during which electrons undergo n
AR before the ac Josephson regime sets in, with n=U;/2A.
At every AR the current increases since the electrons are
mainly reflected as holes and holes as electrons. The same
numerical simulation in a normal system would have given a
current in region 1AR smaller than the current in region
0AR.

For the same system parameters, we also considered a dc
bias U;=0.8 for which the dominant scattering mechanism is
the third-order AR. The contour plot of the bond current is
displayed in the top-left panel of Fig. 9 and is similar to the
case U;=2A/3 of Fig. 8. A new scattering channel does,
however, open if a microwave radiation of appropriate fre-
quency is superimposed to U;. We therefore applied an ac
bias Ug(t)=U, sin(w,t) to lead R and choose w, to fulfill
2U;+w,=2A, i.e., ,=0.4. In Fig. 9, we report the contour
plot of the bond current for different values of U,
=0.0,0.1,0.3,0.5. At U,#0, the right-going wave front re-
duces its intensity just after crossing the bond 10 due to
scattering against the left-going wave front from lead R, see
the characteristic A shape in the bottom-right panel. When
the right-going wave front hits the right interface the bond
current sharply increases. Furthermore, the larger is U, the
shorter is the transient regime. This can be explained as fol-
lows. At large U,, the dominant scattering mechanism is the
one in which an electron from lead L and energy U, is re-
flected as a hole and at the same time absorbs a photon of
energy w,. The energy of the reflected hole is 2U; + w,=2A,
no extra AR are needed for charge transfer and the photon-
assisted Josephson regime sets in.

V. CONCLUSIONS AND OUTLOOKS

In this paper, we proposed a one-particle framework and a
propagation scheme to study the TD response of UF-JNJ. By
projecting the continuum Hamiltonian onto a suitable set of
localized states, we reduced the problem to the solution of a
discrete system in which the electromagnetic field is de-
scribed in terms of Peierls phases. The latter provide the
basic quantities to construct a density-functional theory of
superconducting (and as a special case normal) systems. We
proved that under reasonable conditions, the TD bond cur-
rent and pairing density of an interacting system driven out
of equilibrium by Peierls phases y(¢) can be reproduced in a
system of noninteracting KS electrons under the influence of
Peierls phases ¥’ (¢) and pairing field A’(r) and that y’(¢) and
A’(r) are unique. We considered the KS system initially in
equilibrium at given temperature and chemical potential
when at time 7=0, an external electromagnetic field is
switched on. To calculate the response of the system at times

115446-14



TIME-DEPENDENT QUANTUM TRANSPORT WITH...

PHYSICAL REVIEW B 81, 115446 (2010)

SN ANARA

i

1 10

Atomic bonds 20

10 Atomic bonds 20 L

10 Atomic bonds 20

FIG. 8. (Color online) TD picture of MAR. A chain of 21 atomic sites is symmetrically connected with I'; =I'3=2¢-=2 to two identical
superconducting leads with A;=Az=1. A dc bias Uy =2A/n, n=4,3,2, is applied to lead L at time =0. The panels show the contour plots
of the bond current J,,,;(r) across the atomic bonds of region C. The results are obtained with a time step 6=0.05, cutoff A=4, and a

number of scattering states N, ; =N, p=1232.

t>0, we used a nonequilibrium formalism in which the nor-
mal and anomalous propagators are defined on an extended
Keldysh contour that includes a purely imaginary (thermal)
path going from 0 to —i3. We showed that the solution of the
equations of motion for the NEGF are equivalent to first
solve the static BAG equations and then the TD BdG equa-
tions. It is worth emphasizing that in TDSCDFT, the BdG
equations do not follow from the BCS approximation and
that their solution yields the exact bond current and pairing
density of an interacting system provided that the exact KS
Peierls phases and pairing field are used.

For systems consisting of A superconducting leads in
contact with a finite region C and driven out of equilibrium

! 10 Atomic bonds %0 ! 10 Atomic bonds 70

! 10 Atomic bonds 20 ! 10

Atcmic bonds 20

FIG. 9. (Color online) Photon-assisted MAR in a chain of 21
atomic sites. The equilibrium parameters are the same as in Fig. 8.
An ac bias Ug=U, sin(w,?) in lead R is superimposed to a dc bias
U;=0.8 in lead L. The panels show the contour plots of the bond
current J,, ,,1(¢) across the atomic bonds of region C for different
values of U,=0.0,0.1,0.3,0.5 and w,=0.4. The results are obtained
with a time step 6=0.05, cutoff A=4, and a number of scattering
states N, ; =N, g=1232.

by a longitudinal electric field, a numerical algorithm is pro-
posed. The initial eigenstates are obtained from a recent gen-
eralized waveguide approach properly adapted to the super-
conducting case.’' The initial states are propagated in time
using an embedded Crank-Nicholson algorithm which is
norm conserving, accurate up to second order in the time
step and that exactly incorporates transparent boundary con-
ditions. The propagation scheme reduces to the one of Refs.
37 and 38 in the case of normal leads.

The method described in this work allows for obtaining
the TD current across an UF-JNJ and hence to follow the
time evolution of several AR until the Josephson regime sets
in. As a first calculation of this kind, we explored in detail
the popular single-level QD model in the weak and interme-
diate coupling regime. We demonstrated that the transient
time increases with decreasing bias and provided a quantita-
tive picture of the MAR. The rich structure of the transient
regime is due to the ABS which plays a crucial role in the
relaxation process. For dc pulses, we showed that ABS can
be exploited to generate zero-bias ac currents of tunable fre-
quency. Furthermore, irradiating the biased system with a
microwave field of appropriate frequency, the ABS give rise
to a long-living transient resonant effect. The transient re-
gime increases also with the length of the junction. We con-
sidered one-dimensional atomic chains coupled to supercon-
ducting leads under dc and ac biases. Here we showed that in
conditions of perfect AR there exists a clear-cut transient
scenario for MAR. For biases U;=2A/n, the dominant scat-
tering channel is the nth-order AR and the transient regime
lasts for about nN/v, where N is the length of the chain and
v the electron velocity at the Fermi level. Similar consider-
ations apply to photon-assisted MAR. A more careful analy-
sis of the transient regime is beyond the scope of the present
paper. However, such analysis is of utmost importance if the
ultimate goal of superconducting nanoelectronics is to use
these devices for ultrafast operations.

The TD properties presented in this work have been ob-
tained using rather simple, yet so far unexplored, models. A
more sophisticated description of the Hamiltonian is, how-
ever, needed for a quantitative parameter-free comparison
with experiments. Theoretical advances also involve the de-
velopment of approximate functionals for the self-consistent
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calculation of the TD pairing potential and Peierls phases.
Self-consistent calculations have so far been restricted to
equilibrium S-D-S models with a pointlike attractive interac-
tion treated in the BCS approximation.”>”> For biased sys-
tems, however, the pairing potential and Peierls phases must
be treated on equal footing and a first step in this direction
would be the BCS approximation for the pairing field and the
Hartree-Fock approximation for the Peierls phases. More dif-
ficult is the study of UF-JNJ in the Coulomb-blockade re-
gime for which electron correlations beyond Hartree-Fock
must be incorporated.

Finally, the approach presented in this work is not limited
to two terminal systems. The coupling of the central region
to a third normal lead, or gate, allows for controlling the
Josephson current by varying the gate voltage.”>’%’” These
systems can be potentially used for fast switches and
transistors,’®’® and a microscopic understanding of their ul-
trafast properties is therefore necessary to optimize their
functionalities.

APPENDIX A: CALCULATION OF THE
EMBEDDING MATRICES

Without loss of generality we include few layers of each
lead in the explicitly propagated region C. Then, the embed-
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ding matrix QE;") is zero everywhere except in the block of

o

dimension 2N, X 2N, which is connected to the a lead.
Denoting with (_L;" such nonvanishing block in Q(a’”), we

have

(m) —t (1aa - iél:laa)m

t, — t
(Lo +i6H )"

Zao

(A1)

where the subscript (0,0) denotes the first diagonal block
(supercell with j=0) of the matrix in the square brackets. We

notice that from Eq. (73), the matrix H,,, is the same as the
matrix H,,(0) in Eq. (63) but with renormalized diagonal
blocks h,=h,—pno,. In order to compute the qf;”)’s, we in-
troduce the generating matrix function, )

t, (A2)

q.(x.y) =t, -
xlaa + iyéI:Iaa 0,0

which can also be expressed in terms of continued matrix
fractions

1 .
q.(x.y) =t, t,
2 1 f
x1,+iyoh,+y Y3 t),
X1+ iy, +y* &t ,——t),
1 , .
=t t,=taPo X)), (A3)

where the last step is an implicit definition of p,(x,y). The
(_]fx’")’s are obtained from the generating matrix function as

1 Jd aJ "
(_l(ozn)zt — [——+—] l_)a(x,y)

f_ (m)
t =t t .
““m! dx  dy fa=lala L

x=y=1

(A4)

Using the identity m%[—ﬁ—‘l+%]’"1_);l(x,y)[_)a(x,y)=0, we de-
rive the following recursive scheme:

m

1+ ik )P = (1, idh)p" ™" - 8 () +2¢%
k=0

(k=2

+qE)pinh

p! (A5)

with p"=q'™ =0 for m <0. The above relation can be used
to calculate q(am) provided that all pg‘) are known for k<m.
To obtain pgﬁ, we can use Eq. (A3) with x=y=1 in which the
continued fraction is truncated after a number Ny Of levels.

Convergence can be easily checked by increasing Ny

axla +iySh, + yzézga(x,y)

APPENDIX B: CALCULATION OF THE
BOUNDARY TERM

From Eq. (81), we see that in order to propagate an eigen-
state of Hy— wor we need to know the boundary term defined
in Eq. (82). The state ®© can be either a scattering state or
an ABS. As shown in Sec. III A, the projection onto lead «
of a generic eigenstate with energy E can be written as a
linear combination of states of the form

D (m=s,j,a)=Z(s)e™, (B1)

where the amplitudes Z; satisfies the eigenvalue equation,
(ho+te™ + 8™ - no)Z = EZ. (B2)
In the following, we show how to compute the action of the

operator I;ICa(O)gZ’a(lM+ gaa) on @ We define the Nambu
vector in region C,
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q)gle) = ﬁca(o)gza(laa + gaa)q)/l:
=2 0) e el g )
(1,,+i5H,,)""

from which the boundary term can easily be extracted by
taking the appropriate linear combination of the q)“’") and
then multiplying by —i&%", see Eq. (82). Slnce reglon C
includes few layers of the leads the vector d%k’" is zero
everywhere except for the components corresponding to or-
bitals in contact with lead «. If we call ¢gfl’<”) the vector with
such components from Eq. (B3), we can write

alm (1aa - i&:iaa)m o m
(=, S | =0,V
(1aa + iéI:Iaa)m+1 Jj=0

(B4)

where the subscript j=0 in the square brackets denotes the
vector of dimension 2N, with components given by the
projection of the full vector onto the first j=0 supercell. As
for the embedding matrices, we introduce the generating
function,

1
Vile.y) = l—~‘1’?] (B5)
xlaa + iyg[:laa Jj=0

from which the V™ are obtained via multiple derivatives,

PHYSICAL REVIEW B 81, 115446 (2010)

1Ll 9 a1
yeln) - — [_ —+ —] Vi(x,y) (BO)
m! ox dy

x=y=1

The generating function can be obtained as follows. Taking
@} as in Eq. (B1) and exploiting the property in Eq. (B2), it
is easy to realize that

[H,.D{]; = (E - 8,0 [ DF];, (B7)

where the subscript j denotes the vector of dimension 2Ng,
with components given by the projection of the full vector
onto the jth supercell. Then, multiplying the Dyson identity,
1 1 iyd 1 ~
- ————H, (B
X xl aa + ly 5HCKC¥

Xyt iayﬁw X

on the right by ®¢, using Eq. (B7) and solving for V;(x,y)
we obtain the followmg result:

1 +iyde~p,(x, y)t
xX+iyoE

Vile,y) = i (B9)

where p,(x,y) is the generating function defined in Eq. (A3).
The quantity Va ™ can now be obtained from Eq. (B6) and
reads

(m) _ ﬂ
5E)m+l

T+
x(p +pl Lz

This concludes the calculation of the boundary term.

Se-ik (1-isE)"™
= (1 +isE)ym™+!

(B10)
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