Somatostatin: A Novel Substrate and a Modulator of Insulin-Degrading Enzyme Activity

Chiara Ciaccio1,2†, Grazia R. Tundo1,2†, Giuseppe Grasso3, Giuseppe Spoto3,4, Daniela Marasco5, Menotti Ruvo5, Magda Gioia1, Enrico Rizzarelli3,4 and Massimo Coletta1,2⁎

1Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy
2Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, P.za Umberto I 1, I-70100 Bari, Italy
3Department of Chemistry, University of Catania, V.le A. Doria, Catania, Italy
4Institute of Biostructure and Bioimaging, CNR, Catania, Italy
5Institute of Biostructure and Bioimaging CNR, Napoli, Italy

Received 11 July 2008; received in revised form 15 October 2008; accepted 17 November 2008
Available online 25 November 2008

Edited by J. Weissman

Insulin-degrading enzyme (IDE) is an interesting pharmacological target for Alzheimer’s disease (AD), since it hydrolyzes β-amyloid, producing non-neurotoxic fragments. It has also been shown that the somatostatin level reduction is a pathological feature of AD and that it regulates the neprilysin activity toward β-amyloid.

In this work, we report for the first time that IDE is able to hydrolyze somatostatin \(k_{\text{cat}} (\text{s}^{-1}) = 0.38 (\pm 0.05); K_m (\text{M}) = 7.5 (\pm 0.9) \times 10^{-6} \) at the Phe6–Phe7 amino acid bond. On the other hand, somatostatin modulates IDE activity, enhancing the enzymatic cleavage of a novel fluorogenic β-amyloid through a decrease of the \(K_m \) toward this substrate, which corresponds to the 10–25 amino acid sequence of the A\(_{\beta}(1–40) \). Circular dichroism spectroscopy and surface plasmon resonance imaging experiments show that somatostatin binding to IDE brings about a concentration-dependent structural change of the secondary and tertiary structure(s) of the enzyme, revealing two possible binding sites. The higher affinity binding site disappears upon inactivation of IDE by ethylenediaminetetraacetic acid, which chelates the catalytic Zn\(^{2+} \) ion.

As a whole, these features suggest that the modulatory effect is due to an allosteric mechanism: somatostatin binding to the active site of one IDE subunit (where somatostatin is cleaved) induces an enhancement of IDE proteolytic activity toward fluorogenic β-amyloid by another subunit. Therefore, this investigation on IDE–somatostatin interaction contributes to a more exhaustive knowledge about the functional and structural aspects of IDE and its pathophysiological implications in the amyloid deposition and somatostatin homeostasis in the brain.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: insulin-degrading enzyme; kinetics; fluorogenic β-amyloid peptide; somatostatin; circular dichroism
Introduction

Insulin-degrading enzyme (IDE, insulysin) is a 110-kDa zinc-metalloprotease, involved in the hydrolysis of short polypeptides that vary significantly in sequence, many of which (such as insulin, β-amyloid, amylin, glucagon, β-endorphin, and atrial natriuretic peptide) show a propensity to form under certain conditions β-sheet-rich amyloid fibrils. IDE expression is ubiquitous in human tissue, being particularly abundant in the brain, liver, and muscles, where it is found primarily in the cytosol, peroxisomes, and endosomes; on the other hand, only a small fraction of the enzyme is located on the plasma membrane and in the mitochondria. Genetic studies indicate that IDE region of chromosome 10q is associated to the late-onset Alzheimer’s disease (AD) and type II diabetes; furthermore, IDE knocked-out-based work shows glucose intolerance, hyperinsulinemia, and accumulation of β-amyloid in the brain. These results suggest that IDE may be involved in the pathophysiological pathways common to AD, type II diabetes, and hyperinsulinemia.

IDE appears to be a multisubunit protein, each subunit being formed by two domains, namely, (i) the N-terminal domain (IDE-N), where the catalytic site is located, and (ii) the C-terminal domain (IDE-C). X-ray crystallography shows that the enzyme looks like a “clam with two valves”, where IDE-N and IDE-C are kept together through a “latch”. The latch flexibility allows IDE to adopt two different conformations, the “open” and the “closed” state. Only in the open conformation are substrates and reaction products free to go in and out of the active site, favoring the enzymatic activity; on the other hand, in the closed state, the active-site accessibility is severely limited, being characterized by a low enzymatic activity.

Native IDE exists as a mixture of monomer, dimer, and tetramer, which are in equilibrium according to the mass law. The dimeric form has been postulated and tetramer, which are in equilibrium according to the mass law. The dimeric form has been postulated and tetramer, which are in equilibrium according to the mass law. However, it must be pointed out that the impossibility to physically separate the oligomeric forms (i.e., the monomer, the dimer, and the tetramer interconnected by the mass law equilibrium) does not allow obtaining distinct functional information on them, vanishing at this stage any attempt to extract meaningful knowledge on the potential cooperative activity of IDE, even though data reported in this article underlie some aspects of the possible intersubunit functional interaction.

IDE substrate specificity has been proposed not to depend on the amino acid sequence (even though it preferentially cleaves basic and hydrophobic amino acids), but mostly on the β-sheet structure recognition. Thus, several peptides cleaved by insulysin adopt the β-sheet conformation when they bind the enzyme, showing a structural arrangement similar to that occurring during self-association of amyloidogenic proteins. Experimental studies confirm that the same residues involved in amyloidigenic protein fibrillation are also responsible for insulysin binding.

Somatostatin is a cyclic tetradecapeptide first isolated from the hypothalamic tissue as a hormone that inhibits the release of growth hormone. However, it is now considered a multifunctional peptide, located in the central nervous system and in the gastrointestinal system, where it is involved in the regulation of glucose homeostasis with insulin and glucagon. It has been reported that the somatostatinergic network modulates cognitive and sensory functions in the brain, motor activity, and sleep.

In addition, somatostatin level decreases with age, underlying a possible role of somatostatin in the decay of cerebral activities of elder people. A role of somatostatin in the evolution of AD has also been proposed, since the lack of somatostatin in the cortex and hippocampus has been shown to be linked to an impairment of cognitive function and memory.

Moreover, a reduction of this neuropeptide has been observed in the cortical and cerebrospinal fluid of AD patients, being associated to a selective degeneration of somatostatin-producing neurons and an altered expression of all five somatostatin receptors in cortical neurons. Recently, it has been shown that somatostatin regulates β-amyloid metabolism by increasing the enzymatic activity of neprilysin (which is the most important enzyme responsible for the hydrolysis of β-amyloid together with IDE) in primary cortical neurons; a modification of neprilysin localization induced by somatostatin has also been observed.

Fig. 1. Amino acid sequences of Aβ(1–40) (above) and FβA (below) are compared. Arrows indicate the cleavage sites by IDE.
Altogether, the available data suggest a possible role of both IDE and somatostatin in the pathogenesis of AD. Therefore, a characterization of somatostatin–IDE interaction and its functional effect on IDE activity should cast some light on the molecular interrelationships at the origin of the pathophysiological events of AD. In the present work, we report for the first time that somatostatin is a substrate of IDE and an allosteric modulator of IDE activity toward a novel fluorogenic β-amyloid (FβA) peptide, establishing the functional basis for a link between IDE activity and somatostatin role in the brain.

Results

Hydrolysis of FβA by IDE

FβA contains all cleavage sites (except one) of human Aβ(1–40) (Fig. 1), and the kinetics of its processing by IDE has been investigated in order to obtain the catalytic parameters that characterize the process. It is not prone to aggregation, since it has been synthesized to reduce self-assembly properties of the intact β-amyloid.

No evidence of a sigmoidal dependence of the enzymatic velocity on the substrate concentration is detectable (see Fig. S1), indicating that data do not significantly diverge from a simple enzymatic behavior. Although this feature does not rule out completely some functional interaction among different subunits, the impossibility to discriminate between monomers, dimers, and tetramers (all concurrently present in the enzyme solution under the experimental conditions investigated) does not allow extracting from these data any useful information on the interaction among subunits. Nonetheless, the linear dependence of the double reciprocal plot of velocity versus substrate concentration (Fig. 2) allows a phenomenological analysis of data according to the Michaelis–Menten mechanism, producing the overall catalytic parameters (Table 1). The possibility of describing satisfactorily the enzymatic activity of IDE with a single set of catalytic parameters indeed suggests either that all cleavage sites (see Fig. 1) have similar values or that there is a largely predominant cleavage site (likely that between His14 and Gln15) to which the observed catalytic parameters are referable. In either case, it is important to underline that the value of $K_m = 2.3 \pm 0.35 \times 10^{-5} \text{ M}$ is closely similar to that reported for the native Aβ(1–40), suggesting that IDE interacts with the FβA peptide in a fashion similar to that with the native Aβ(1–40). On the other hand, the value of $k_{cat} = 62 \pm 7 \text{ s}^{-1}$ for the FβA peptide is much faster than what was reported for the native Aβ(1–40), indicating that the energy barrier for the bond cleavage is somehow reduced in the complex between IDE and the FβA peptide.

Somatostatin hydrolysis by IDE

HPLC analysis of somatostatin in the presence of 10 nM IDE indicates that somatostatin is enzymatically processed by the IDE. Although the enzymatic processing of somatostatin has already been reported by other Zn-peptidases, such as neurolysin (EC 3.4.24.16) and thimet oligopeptidase (EC 3.4.24.15), this is the first time that the enzymatic processing by IDE is observed, suggesting a possible influence of IDE on the homeostasis of somatostatin in the brain.

Also in the case of somatostatin hydrolysis by IDE, we do not observe any sigmoidal dependence of enzymatic kinetics on somatostatin concentration (see Fig. S2) and the same considerations can be formulated (see above). On the other hand, the enzymatic processing of somatostatin by IDE follows a Michaelis–Menten mechanism (Fig. 3), and overall catalytic parameters characterizing the single cleavage event (see below) were obtained (Table 1).

Table 1. Catalytic parameters for the enzymatic processing of the FβA peptide, Aβ(1–40), and somatostatin by IDE at pH7.3 and 37 °C

<table>
<thead>
<tr>
<th>Substance</th>
<th>k_{cat}/K_m (M$^{-1}$ s$^{-1}$)</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>K_m (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatostatin*</td>
<td>5.1 (±0.7) × 104</td>
<td>0.28 (±0.05)</td>
<td>7.5 (±0.9) × 10$^{-6}$</td>
</tr>
<tr>
<td>FβA peptide*</td>
<td>2.7 (±0.4) × 106</td>
<td>62.7 (±7.1)</td>
<td>2.3 (±0.3) × 10$^{-5}$</td>
</tr>
<tr>
<td>FβA peptide*</td>
<td>5.2 (±0.6) × 106</td>
<td>61.0 (±6.9)</td>
<td>1.2 (±0.2) × 10$^{-5}$</td>
</tr>
<tr>
<td>+40 μM SsT</td>
<td>3.2 (±0.4) × 105</td>
<td>8.0 (±1.0)</td>
<td>2.5 (±0.4) × 10$^{-5}$</td>
</tr>
</tbody>
</table>

* This work.

From Ref. 9.
Kinetic parameters analysis reveals that the enzymatic processing of somatostatin by IDE is less efficient than that for FβA (as from values of k_{cat}/K_m in Table 1) because of the very slow rate-limiting step k_{cat} (see Table 1), even though the IDE–somatostatin affinity is much higher (as from K_m in Table 1). It has been observed that somatostatin spontaneously self-assembles into a wide molecular range of aggregates and even fibrils. However, since IDE has been reported to hydrolyze only peptides with molecular mass <6 kDa, it means that IDE should be able to hydrolyze only low-molecular-mass species of somatostatin, corresponding to either monomers or small oligomeric forms (up to 6 kDa). Therefore, the high affinity observed for the interaction with IDE (as from the very low K_m value, see Table 1) indicates that oligomerization does not seem to impair the recognition by IDE, while the quite slow k_{cat} (see Table 1) might underlie the possibility that the cleavage process is somehow affected by the assembly into small oligomers.

Mass spectrometry identification of somatostatin cleavage site

In order to identify cleavage site(s) on somatostatin sequence, we performed mass spectrometry (MS) studies. In Fig. 4, the mass spectrum of 15 μM somatostatin in phosphate-buffered saline (PBS) buffer in the presence or absence of 18 nM IDE is reported. Somatostatin is identified as the molecular peak at m/z 1637.5 (Fig. 4a); other signals, attributed to somatostatin, appear in the spectrum main due to the high salt content (Na^+, K^+) of the solution (m/z 1699.7, m/z 1676.0). Somatostatin dimeric species containing one, two, or three K^+ ions also appear at m/z 3317.5, 3361.9, and 3393.3, respectively. After 1 h incubation of somatostatin with IDE at 37 °C, new peaks appear in the spectrum (Fig. 4b), namely, at m/z 639.5, 1019.1, 1321.4, 1654.8, 2677.9, and 3356.6. The two most intense peaks at m/z 1654.8 and 3356.6 are easily assigned to cleaved monomeric and dimeric somatostatin molecules, respectively. Thus, since somatostatin is a cyclic peptide, these peaks can be attributed to the monomeric and dimeric forms, respectively, of the cleaved somatostatin molecules, which are in the “open ring” conformation with an additional water molecule at the site cleaved by IDE. In order to confirm this assignment, to identify the remaining peaks and to establish the exact location of the cleavage site, it was necessary to carry out MS/MS experiments accompanied by a reduction/alkylation step before the MS analysis. The presence of two peaks at m/z 696.2 and 1076.3 in the mass spectrum of the reduced/alkylated solution followed by MS/MS identification (data not shown) allowed us to assign the two peaks at m/z 639.5 and 1019.1 as fragments of degraded somatostatin in which the disulfide bond between Cys3 and Cys14 was reduced and broken, as reported in Table 2. The unambiguous identification of these fragments allowed us to identify the cleavage site at the Phe6–Phe7 amino acid bond.

Interaction of IDE with somatostatin

Surface plasmon resonance measurements

The interaction between IDE and somatostatin was investigated by surface plasmon resonance imaging.
(SPRI) technique, and in Fig. 5, the SPRI kinetic data are reported for three somatostatin solutions flowing into different microchannels at various concentrations (flow rate = 50 μl/min). In order to give an insight into the mechanism of such an interaction, a common way to proceed is to find the theoretical interaction model that best fits the experimental kinetic curves. In our case, best results were obtained with an interaction model considering two different sites to be present onto the interacting surface. Rate and equilibrium constants derived from the fitting of the experimental kinetic data are shown in Table 3. These data result from a biphasic interaction of the somatostatin with the surface-immobilized IDE. In fact, the two different affinity constant values \(K_1 = 4.9 (±2.2) \times 10^5 \text{ M}^{-1} \), \(K_2 = 1.6 (±0.8) \times 10^5 \text{ M}^{-1} \) indicate (i) the presence of two different sites on the IDE surface, which are characterized by fairly similar affinities for somatostatin, and/or (ii) the possibility that various assembly forms of somatostatin display slightly different kinetic parameters with IDE. Unfortunately, at this stage, we cannot discriminate between these two hypotheses; neither can we rule out the possibility that the two equilibrium constants observed by SPR experiments (\(K_1 \) and \(K_2 \), see Table 3) might have originated from some heterogeneity in the enzyme surface after the IDE immobilization on the SPR chip. Under such an assumption, the similar values calculated for \(K_1 \) and \(K_2 \) result from surface effects affecting the functioning of the immobilized IDE and represent the affinity of somatostatin to surface-immobilized IDE molecules having slightly different local arrangements. However, it must be outlined that one of the two equilibrium constants (namely, \(K_2 \), see Table 3) is similar to the reciprocal of the Michaelis–Menten constant from enzymatic cleavage of somatostatin [i.e., \(1/K_m = 1.3 (±0.2) \times 10^5 \text{ M}^{-1} \), see Table 1], suggesting that (i) both parameters refer to the interaction of somatostatin with free IDE and (ii) \(K_m \) closely corresponds to the equilibrium dissociation constant for the somatostatin substrate with free IDE.

In order to decouple the binding process from the enzymatic activity, we have also carried out binding experiments of somatostatin to IDE inactivated by exposure to ethylenediaminetetraacetic acid (EDTA), which chelates the catalytic Zn\(^{2+}\) ion, abolishing the enzymatic activity of IDE. It is interesting to observe that inactivation of IDE brings about a drastic (about 10-fold) reduction of somatostatin affinity, which is exerted through a dramatic increase of the dissociation rate constant, whereas the association rate constant remains essentially unperturbed (see Fig. S3).

Circular dichroism measurements

In order to monitor the structural changes induced by the somatostatin–IDE interaction, we performed circular dichroism (CD) spectroscopy of the enzyme in the absence or in the presence of indicated concentrations of somatostatin (Fig. 6a). The same experiments were performed in the presence of EDTA, which is known to inactivate IDE by removing the

<table>
<thead>
<tr>
<th>Calculated peaks (m/z)</th>
<th>Experimental peaks (m/z)</th>
<th>Calculated alkylated peaks (m/z)</th>
<th>Experimental alkylated peaks (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HalaGlyCysLysAsnPheOH</td>
<td>639.7</td>
<td>639.5</td>
<td>639.5</td>
</tr>
<tr>
<td>HPheTrpLysThrPheThrSerCysOH</td>
<td>1019.7</td>
<td>1019.1</td>
<td>1019.1</td>
</tr>
</tbody>
</table>

Table 3. Equilibrium constants for somatostatin binding to IDE as from CD, activity effect, and surface plasmon resonance

<table>
<thead>
<tr>
<th>Circular Dichroism</th>
</tr>
</thead>
</table>
| \(K_a (\text{M}^{-1}) \) | 1.2 (±0.2) \times 10^5
| \(K_b (\text{M}^{-1}) \) | 4.9 (±0.5) \times 10^5
| Activity effect |
| \(K (\text{M}^{-1}) \) | 1.3 (±0.2) \times 10^5
| Surface plasmon resonance |
| \(k_{a1} (\text{M}^{-1} \text{ s}^{-1}) \) | 3.4 (±1.4) \times 10^2
| \(k_{a2} (\text{M}^{-1} \text{ s}^{-1}) \) | 7.0 (±1.5) \times 10^4
| \(k_{d1} (\text{s}^{-1}) \) | 4.9 (±2.2) \times 10^5
| \(k_{d2} (\text{s}^{-1}) \) | 2.4 (±1.3) \times 10^7
| \(k_{d3} (\text{s}^{-1}) \) | 1.5 (±0.2) \times 10^{-2}
| \(K_1 (\text{M}^{-1}) \) | 4.9 (±2.2) \times 10^5
| \(K_2 (\text{M}^{-1}) \) | 1.6 (±0.8) \times 10^5

Fig. 5. SPRI results. SPRI kinetic data for the interaction between immobilized IDE and somatostatin at the concentrations indicated (gray lines). Curves resulting from the fitting obtained adopting the surface heterogeneity model are shown in black. Residuals are also shown (bottom part, dotted lines). Experimental conditions are described in the text.
corresponds to a single binding curve characterized by a
inactivated with EDTA at 207 nm. The continuous line
reported in Table 3. (c) The somatostatin effect on IDE

Fig. 6. Conformational changes in IDE structure
mediated by somatostatin. (a) CD spectroscopy of 1 μM
IDE in 40 mM phosphate buffer at 37 °C in the absence and
in the presence of different somatostatin concentrations:
0 μM (—), 40 μM (—-—), 80 μM (- - -), and 200 μM (−−−−).
(b) The somatostatin concentration-dependent effect on
the ellipticity signal of IDE at 207 nm. Continuous line was
obtained from the nonlinear least-squares fitting of data
according to Eq. (1), employing the values of K_a and K_b
reported in Table 3. (c) The somatostatin effect on IDE
inactivated with EDTA at 207 nm. The continuous line
corresponds to a single binding curve characterized by a
K_{EDTA} = K_b in Table 3.

catalytic Zn^{2+} ion. It is important to highlight that,
due to somatostatin enzymatic processing by IDE, a
fraction of somatostatin is cleaved during the time
required for the spectra collection. This amount
(calculated on the basis of the time interval and the
catalytic parameters reported in Table 1) has been
subtracted from the somatostatin concentration
employed for the quantitative analysis (see below),
under the assumption that cleaved somatostatin
does not interact with IDE. Binding of somato-
statin can be followed as a concentration-dependent
variation of CD spectra of IDE in the near-UV re-
region, suggesting a structural variation of the helical
arrangement of the enzyme. From Fig. 6a, it comes
out that addition of somatostatin at first induces
(up to 50 μM somatostatin) an increase of the nega-
tive ellipticity in the 207- to 222-nm region, followed
at higher concentrations by a decrease of the nega-
tive ellipticity. This behavior may be described by a
two-site binding process; therefore, a quantitative
analysis of concentration-dependent binding of
somatostatin to IDE was performed based on the
ellipticity values at 207 nm (Fig. 6b) according to the
following mechanism:

\[
E + L \rightleftharpoons K_a \text{EL}_1 + L \rightleftharpoons K_b \text{EL}_2
\]

(Scheme 1)

where K_a and K_b are affinity constants for somato-
statin binding to E and EL_1, respectively (Table 3).

According to Scheme 1, K_a and K_b were calculated
by fitting of experimental data to the following
equation,

\[
S_{\text{obs}} = \frac{1}{1 + K_a \cdot [Sst] + K_a \cdot K_b \cdot [Sst]^2} + \frac{K_a \cdot [Sst]}{1 + K_a \cdot [Sst] + K_a \cdot K_b \cdot [Sst]^2} + \frac{K_a \cdot K_b \cdot [Sst]^2}{1 + K_a \cdot [Sst] + K_a \cdot K_b \cdot [Sst]^2}
\]

(1)

where S_{\text{obs}} is the observed ellipticity signal; S_E, S_{EL1},
and S_{EL2} are the ellipticity signals of the three species
reported in Scheme 1; K_a and K_b are the affinity
constants of somatostatin to the species E and EL_1,
respectively; and [Sst] is the somatostatin concen-
tration. The values of K_a and K_b, reported in Table 3,
suggest that binding of somatostatin to the high-
affinity site is accompanied by an increase of
secondary and tertiary structural compactness.
Furthermore, at increasing somatostatin concen-
trations, it interacts with an additional lower-affinity
binding site of IDE, inducing a partial loss of the
structural arrangement of the whole enzyme, as
represented by the marked reduction of the negative
ellipticity signal (Fig. 6a). It is interesting to observe
that the high-affinity equilibrium constant [i.e.,
K_a = 1.2 (±0.2) × 10^5 M^{-1}, see Table 3] is closely
similar to 1/K_{rev} obtained from the somatostatin
enzymatic processing by IDE (see Table 1), and to K_2
obtained from SPR experiments (see Table 3), clearly
indicating that these equilibrium constants all refer
to the same molecular process, which corresponds to
the interaction of free IDE with somatostatin.

On the other hand, the lower-affinity constant K_b
observed by CD has no counterpart in the enzymatic
activity of IDE on somatostatin (see Fig. 3) or in the
interaction followed by SPR (see Fig. 5). It likely
refers instead to the interaction of somatostatin with a
lower-affinity binding pocket distinct from the
substrate active site, which brings about an alteration
of the tertiary (and likely quaternary) structure of IDE. This assumption is also supported by the evidence that IDE inactivated by EDTA displays the same low-affinity equilibrium constant for somatostatin as the active IDE (i.e., \(K = K_{o} = 4.9 \times 10^{5} \text{ M}^{-1} \)), see Table 3), inducing only a loss of the structural arrangement of the enzyme (Fig. 6c). As a whole, data by SPR and CD both seem to confirm that upon inactivation by EDTA, the high-affinity site for somatostatin (possibly the active site) dramatically reduces its binding affinity, either becoming unable to bind somatostatin or displaying a value similar to the low-affinity site.

Effect of somatostatin on IDE processing of the amyloid peptide

The effect of human somatostatin on the IDE-dependent degradation of fluorogenic substrate was measured in reaction mixtures containing 5 μM FβA peptide and 2 nM IDE in the presence of indicated concentrations of somatostatin. It is important to underline that, due to the somatostatin enzymatic processing by IDE, a fraction of somatostatin is cleaved during the time required for the fluorogenic assay. This amount (calculated on the basis of the time interval and the catalytic parameters reported in Table 1) has been subtracted from the somatostatin concentration employed for the quantitative analysis (see below), under the assumption that cleaved somatostatin does not interact with IDE. The enzymatic activity on FβA as a function of somatostatin concentration is compared with values obtained in the absence of somatostatin (Fig. 7). Somatostatin significantly enhances IDE activity, with the maximum effect at about 40 μM, a behavior perfectly consistent with the spectroscopic effect observed by CD (Fig. 6), suggesting that this effect is related to the binding of somatostatin to free IDE. It is interesting to outline that the same effect has also been observed in the case of other IDE substrates, such as β-endorphin, bradykinin, and several dynorphins. Like for some of these substrates, at a much higher somatostatin concentration (>100 μM), an inhibitory effect is observed (Fig. 7), likely due to the presence in the FβA cleavage site of a second somatostatin molecule, which becomes, in this way, a competitive inhibitor. It is worth outlining that this concentration range is closely similar to that observed for the lower-affinity constant observed by CD, suggesting that this interaction is also responsible for the progressive disappearance of the somatostatin-linked activation process. However, since the inhibitory effect appears at very high somatostatin concentrations, we have only analyzed the enhancing effect according to the following equation:

\[
A_{\text{obs}} = \frac{1}{1 + K \cdot [\text{Sst}]} + A_{r} \frac{K \cdot [\text{Sst}]}{1 + K \cdot [\text{Sst}]}
\]

(2)

where \(A_{\text{obs}} \) is the observed relative activity with respect to IDE in the absence of somatostatin, \(A_{r} \) is the relative activity in the presence of a somatostatin concentration needed to saturate the binding site, \(K \) is the somatostatin affinity binding constant, and \([\text{Sst}]\) is the somatostatin concentration. This equation underlies the existence of only one activating binding site for somatostatin, as it appears from our data over the investigated concentration range.

The close similarity of the somatostatin high-affinity constant from CD experiments (i.e., \(K_{o} \) in Table 3, see Fig. 6) with both the equilibrium constant for the second binding site observed by SPRI experiments (i.e., \(K_{2} \) in Table 3, see Fig. 7) and that resulting from the rate-enhancing effect (i.e., \(K \) in Table 3, see Fig. 7) indeed suggests that (i) the high-affinity site by CD (corresponding to the binding site characterized by \(K_{o} \) in SPRI experiments) is a modulatory cleft and (ii) the activity effect is related to the interaction of somatostatin with free IDE (i.e., E in Scheme 1). In addition, the catalytic parameters, obtained for FβA processing by IDE in the presence of 40 μM somatostatin (see Fig. 2), show that the somatostatin-linked effect is only exerted on \(k_{m} \), leaving \(k_{\text{cat}} \) unchanged (see Table 1). Therefore, the rate-enhancing effect (see Fig. 7) is due to an allosteric mechanism, such that the binding of somatostatin to one site brings about a conformational change of a second site, facilitating the FβA binding. However, this conformational change affects the substrate affinity (as from the decrease of \(k_{m} \) for FβA upon somatostatin addition) but it does not change the cleavage rate \(k_{\text{cat}} \). This has already been observed for the processing of a synthetic substrate in the presence of dynorphin B-9, suggesting that cooperativity in IDE is likely expressed mostly through a change of substrate affinity without affecting significantly the speed of the rate-limiting step.

Discussion

IDE is a Zn²⁺ metalloprotease characterized by the presence of different quaternary structures (namely, monomeric, dimeric, and tetrameric forms), which might display different enzymatic activity toward amyloidogenic proteins. It has been shown that IDE is able to enzymatically process the amyloid β-protein, giving rise to new fragments that are not neurotoxic or that do not deposit on amyloid plaques and that this activity can be modulated by metabolic peptides, such as dynorphins. As a whole, these findings render IDE a potentially interesting target for the design of anti-Alzheimer’s drugs.

Furthermore, it is well known that somatostatin performs crucial roles in the brain and that its decrease represents a pathological feature of AD, even though this reduction is not accompanied by an alteration of proteolytic processing of peptide precursors. Although the mechanism that couples alterations of the somatostatinergic system to AD remains unclear, recently, it has been shown that somatostatin regulates β-amyloid metabolism.
IDE is able to hydrolyze it at the Phe6–renin terminal peptide showing self-assembly (see Table 2), confirming that IDE cleaves plays a behavior quite similar to that observed for bradykinin and dynorphins.10 Since it is smaller and similar for somatostatin (see Table 1) and the reciprocal of the oligomeric IDE (which has been proposed to be predominantly in the dimeric form under normal steady-state enzymatic conditions)10 induces changes in the secondary- and tertiary conformation(s), as from CD spectra (Fig. 6a). The kinetics of this interaction (see Fig. 5 and Table 3) indicates that the process is relatively slow and the complex is stable (as from the fairly slow dissociation rate constant k_{3d} in Table 3). However, it must be underlined that the removal of the catalytic Zn$^{2+}$ ion after exposure of IDE to EDTA brings about a conformational change, which decreases dramatically the ligand affinity. This is supported by both the enhanced somatostatin dissociation rate constant, observed by SPR (see Fig. S3), and the disappearance of the higher-affinity site for somatostatin (characterized by the equilibrium constant $K_a=1.2 \times 10^3$ M^{-1}, see Fig. 6b and Table 3). The low-affinity site does not seem instead affected by the EDTA-induced inactivation of IDE (see Fig. 6c). It is very important to outline that the binding of a small ligand substrate molecule (such as somatostatin) to IDE is accompanied by relevant changes of its secondary and tertiary structure (as from CD experiments). This clearly indicates that the enzyme undergoes an induced-fit ligand-linked conformational transition, which is associated to an increased enzymatic activity, as indicated by the enhanced rate of FvβA peptide processing (see Fig. 7). This allosteric effect is exerted through a decrease of K_a for the FvβA peptide processing by IDE (see Fig. 2), leaving essentially unchanged the speed of the rate-limiting step k_{cat} (see Table 1). Therefore, in the framework of an allosteric mechanism,37 we can exploit the ligand-linked variation of K_a to calculate the interaction energy (ΔG_i) between the active sites ($\Delta G_i = RT\Delta \ln K_m$), which turns out to be ligand dependent, since it is smaller and similar for somatostatin (see Table 1) and β-endorphin and somewhat larger for bradykinin and dynorphins.10

The binding of a second somatostatin molecule to IDE (which displays a much lower affinity, as from K_a in Table 3 and Fig. 6) must necessarily occur at a topologically different site, which is unlikely to be a catalytic one (as also suggested by the lack of an effect after the EDTA-induced inactivation of IDE), since no evidence for a slower enzymatic process of somatostatin by IDE is observed at larger substrate concentrations (data not shown). This binding brings about a widespread structural change of IDE (as detected by CD, see Fig. 6), possibly involving also the quaternary arrangement of IDE, which results in a decreased enzymatic activity at higher somatostatin concentrations (see Fig. 7).

These observations contribute to elucidate IDE–somatostatin interaction and the modulating role of somatostatin in the brain. This interaction may have important physiopathological consequences, since under physiological conditions, somatostatin could facilitate β-amyloid degradation in somatostatin-positive neurons, preventing the deposition of amyloid plaques; in addition, IDE could contribute to control somatostatin levels through its enzymatic action on it.

Figure 7. Effect of somatostatin on IDE-catalyzed hydrolysis of FvβA. Hyrolysis of 5 μM FvβA by 10 nM IDE was followed as a function of the concentration of somatostatin in 40 mM phosphate buffer at pH 7.3 and 37 °C. Activity is plotted in relation to the values obtained in the absence of somatostatin. The continuous line between 0 somatostatin and 40 μM somatostatin was obtained by nonlinear least-squares fitting of data according to Eq. (2), and the value of K_m is reported in Table 3. The continuous line connecting the experimental point at 40 μM somatostatin with the point at 140 μM somatostatin is simply drawn, and it does not correspond to a nonlinear least-squares fitting.

Through the modulation of nephrilysin proteolytic activity,19,23,24

In this work, we show for the first time that the neuropeptide somatostatin is not only a novel
substrate of IDE but also a modulator of its activity toward a FvβA peptide, corresponding to the 10–25 amino acid sequence of the Aβ(1–40), which displays a behavior quite similar to that observed for the intact Aβ(1–40) (see Fig. 7 and Tables 1 and 3). IDE is able to hydrolyze it at the Phe6–Phe7 bond (see Table 2), confirming that IDE cleaves preferentially peptides showing self-assembly properties, involving basic and/or hydrophobic amino acids.11,12,24 Although the factors responsible for its "in vivo" degradation in the brain remain largely unknown, it has been shown that somatostatin is degraded by membrane-associated forms of other Zn-proteases, such as neurolysin and thimet endopeptidase,26,27 displaying multiple cleavage sites. Here, we show that, indeed, one of these sites is in common with that of IDE (see Fig. S4), suggesting the possibility that in a physiological environment, the single IDE cleavage on somatostatin may not generate two fragments but an open ring of somatostatin, which could facilitate its enzymatic processing by other enzymes. Therefore, the somatostatin degradation pattern probably involves several enzymes in the brain, making extremely interesting a further investigation on the molecular and physiological interrelationships between them.

The close similarity between the higher-affinity equilibrium constant of somatostatin for IDE observed by CD (i.e., K_a in Table 3) and the reciprocal of the K_m from its enzymatic processing by IDE (see Tables 1 and 3) reveals that the interaction of somatostatin with one of the active sites of the oligomeric
As a whole, this complex regulatory mechanism may represent an elegant feedback network, which may play a central role in the homeostasis of somatostatin and β-amyloid. Thus, although a biological counterproof is needed, we can hypothesize that the brain levels of somatostatin and β-amyloid may be mutually balanced by the IDE enzymatic activity on both of them and by their reciprocal modulatory role on the IDE enzymatic activity. A pathological decrease of somatostatin synthesis may break this balance and could trigger a down-regulation of IDE and neprilysin activity with a consequent accumulation of β-amyloid, leading to a vicious cycle that could be crucial for the onset of neurodegenerative processes.

Materials and Methods

Materials

Recombinant IDE was obtained from Calbiochem. Human somatostatin, ethanol solution, ethanolamine–HCl (1 M), guanidine–HCl (8 M), and diethobis(N-succinimidylpropionate (Lomant’s reagent) were all purchased from Sigma-Aldrich (Milan, Italy). Dithiobis(N) sulfonylacetone (EDANS)–OH, and the [4-((4-(dimethyl-amino)phenyl)azo)benzoic acid (EDANS)]-OH, and the 5–25, was prepared on a 433A Applied Biosystems automatic synthesizer (synthesis scale: 0.1 mmol), following standard Fmoc/tBu protocols and containing residues 10–25, was cleaved from the resin by treatment with a TFA–H2O–trisopropylsilane (90:5:5, v/v/v) mixture for 4 h at room temperature, precipitated in cold diethyl ether, and lyophilized from a 50:50 H2O–CH3CN solution. The crude product was purified to homogeneity by semipreparative RP-HPLC using a C18 50 × 2.2 cm ID column (Phomenex, Torrance, CA) equilibrated at 20 ml/min with 20% CH3CN in H2O and 0.1% TFA. A gradient from 20% to 70% CH3CN and 0.1% TFA was used for 50 min to elute the peptide. Fractions containing the purified product were pooled, and the product was then characterized by liquid chromatography (LC)–MS on an LCQ Deca XP Ion Trap mass spectrometer (ThermoElectron, Milan, Italy) equipped with an OPTION ESI source, operating at 4.2 kV needle voltage and 320 °C and with a complete Surveyor HPLC system. Narrow-bore 50 × 2 mm C18 BioBasic LC–MS columns from ThermoElectron equilibrated at 0.2 ml/min with 20% CH3CN in H2O and 0.05% TFA were used for these analyses. A gradient from 20% to 70% of CH3CN and 0.05% TFA over 50 min was applied to elute the peptide. The molecular weight was consistent with the expected value within the limits of the experimental error (MWExp/Theor: 2545.6/2545.72 amu).

The Fmoc-A was dissolved in 20 mM phosphate buffer and 50% dimethyl sulfoxide, pH 7.3. Undissolved species were removed by centrifuging freshly dissolved peptide at 10,000g for 2 h at 4 °C, and the resulting supernatant was stored at −20 °C until use.

Peptide concentrations were determined using EDANS’s extinction coefficient of 5.9 mM−1 cm−1 at 335 nm.

Methods

HPLC analysis

Reaction mixtures containing 10 nM IDE and increasing concentrations of somatostatin were incubated at 37 °C for 5 h in 0.1 M phosphate buffer, pH 7.3. Aliquots were taken at different time intervals (i.e., 0 h, 15 min, 30 min, 1 h, 3 h, 5 h), and the reaction was stopped by addition of 0.5 mM EDTA. Samples were applied to a C4 reverse-phase HPLC column (Surveyor, Thermo Finnigan), and the elution was performed at a flow rate of 1 ml/min using a linear gradient: 95% eluent A (H2O + 0.1% TFA) and 5% eluent B (CH3CN + 0.1% TFA), with absorbance monitored at 220 and 254 nm.

Mass spectrometry: AP-MALDI MS experiments

Reaction mixtures containing 18 μM somatostatin in the presence or absence of 10 nM IDE in 0.1 M phosphate buffer (pH 7.3) were incubated at 37 °C for 1 h and analyzed with atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) MS.

All the AP-MALDI MS experiments were carried out by using a Finnigan LCQ Deca XP PLUS (Thermo Electron Corporation, USA) ion trap spectrometer that was fitted with a MassTech Inc. (USA) AP-MALDI pulsed dynamic focusing source. The latter consists of a flange containing a computer-controlled X–Y positioning stage and a digital camera and is powered by a control unit that includes a pulsed nitrogen laser (wavelength, 337 nm; pulse width, 4 ns; pulse energy, 300 μJ; repetition rate up to 10 Hz) and a pulsed dynamic focusing module that imposes a delay of 25 μs between the laser pulse and the application of the high voltage to the AP-MALDI target plate. Laser power was attenuated to about 55%. The target plate voltage was 1.8 kV. The ion trap inlet capillary temperature was 220 °C. Capillary and tube lens offset voltages of 30 and 15 V, respectively, were applied. Other mass spectrometer
parameters were as follows: multipole 1 offset at ± 3.75 V, multipole 2 offset at ± 9.50 V, multipole radio-frequency (RF) amplitude 400 V, lens at ± 24.0 V, and entrance lens at ± 88.0 V. Automatic Gain Control was turned off and instead the scan time was fixed by setting the injection time to 220 ms and using five microscans. Although there is the risk of losing resolution, the latter experimental conditions were chosen as sensitivity was the main goal in most experiments. For the same reason, although 1 min acquisition per sample was usually performed, in some cases, it was necessary that an acquisition up to 5 min and different experiments were reproduced from three to five times.

Spectra of the studied solutions were acquired in a data-dependent fashion by first acquiring full extended mass range from m/z 200 to 4000, followed by MS/MS scans of the most intense ions of the previous full MS scan. MS/MS scans were acquired using an isolation width of 5 m/z, activation q_a of 0.250, activation time of 30 ms, and normalized collision energy (NCE) in the range 30–40%. Dependent on the ion [NCE is the amplitude of the resonance excitation RF voltage scaled to the precursor mass based on the following formula: RF amplitude = [NCE% 30%] (precursor ion mass × tick amp slope + tick amp intercept), where the tick amp slope and tick amp intercept are instrument-specific values. For our LCQ Deca, 35% NCE for m/z 1000 = 1.8 V].

In order to unambiguously assign the somatostatin fragments produced by IDE, a reduction/alkylation step was carried out in the reaction mixture prior to the MS analysis without any purification step, according to the procedure previously described. 29

Fluorogenic assay for FJA hydrolysis by IDE

The hydrolysis of the fluorogenic peptide was measured at 37 °C following the increase in fluorescence at 472 nm (with excitation at 336 nm) after cleavage of the peptide bond by IDE and the separation of the quenching Dabcyl group from the fluorescent EDANS group. Reaction mixtures contained the fluorogenic peptide substrate at the indicated concentrations and 10 nM IDE.

The effect of somatostatin on the IDE activity was investigated following the hydrolysis of FJA at 37 °C in a reaction mixture containing either (i) 2 nM IDE, 5 mM FJA, and various concentrations of human somatostatin or (ii) 40 μM somatostatin, 2 nM IDE, and indicated FJA concentrations. The reactions were followed on a Cary Eclipse fluorescence spectrophotometer.

CD spectroscopy

IDE was diluted to 1 μM in 40 mM phosphate buffer at pH 7.3 in the absence and in the presence of different concentrations of somatostatin. The same experiments were performed in the presence of 50 μM EDTA. Samples were examined using 0.2-mm quartz cuvettes in a Jasco J-720 CD spectropolarimeter (Tokyo, Japan). Spectra were recorded at 37 °C and at 1 nm resolution with a scan rate of 20 nm/min. Eight scans were acquired and averaged for each sample.

Poly(dimethylsiloxane) microfluidic devices fabrication

Microfluidic devices were made in poly(dimethylsiloxane) (PDMS) polymer as described elsewhere. 42 Briefly, PDMS microchannels were created by replication from masters in polyvinyl chloride. Replicas were formed from a 1:10 mixture of PDMS curing agent and prepolymer (Sylgard 184, Dow Corning, USA). The mixture was degassed under vacuum and then poured onto the master in order to create a layer with a thickness of about 3–4 mm. The PDMS was then incubated for at least 2 h at 60 °C before being removed from the masters. Microchannels were 500 μm wide and 80 μm in height. At the ends of each channel, there were circular reservoirs (diameter, 400 μm). PEEK tubes (Upchurch Scientific) were inserted in such reservoirs in order to connect the PDMS microfluidic cell to an Ismatec IP-N (Ismatec SA, Switzerland) peristaltic pump.

SPRI measurements

The SPRI apparatus (GWC Technologies, USA) and the microfluidic system used were the same as reported in some of our previous works. 43 A six-microchannel microfluidic device was used in this case to follow the interaction between IDE and somatostatin at different concentrations.

SPR images were analyzed by using the V++ software (version 4.0, Digital Optics Limited, New Zealand) and the software package Image J (version 1.32) (National Institutes of Health, USA). SPRI provides data as pixel intensity units (0–255 scale). Data were converted in percentage of reflectivity (%R) by using the formula:

$$%R = 100\left(\frac{I_s}{I_R}\right)$$

where I_R and I_s refer to the reflected light intensity detected using p- and s-polarized light, respectively.

Experiments were carried out by sequentially acquiring 15 frame-averaged SPR images with 5 s time delay between them. Kinetic data were obtained by plotting the difference in percent reflectivity (%R) from selected regions of interest of the SPR images as a function of time. All the SPRI experiments were carried out at room temperature. The rate constants k_1 and k_2 were calculated by fitting adsorption/desorption kinetics data through numerical integration analysis. 44

Immobilization of IDE on gold surface

Two different immobilization procedures were scrutinized for IDE and positive results were obtained in both cases. Specifically, similar SPRI signals were indeed registered after a 40-min injection at 5 μl/min of a 36-nM IDE solution into a microchannel in contact with a gold surface previously functionalized with (a) Lomant’s reagent 45 and (b) dithiol tethers (SPT-0013:SPT-0014C=10:1 mixed ethanol solution). 46 The same procedure was followed with IDE previously inactivated by EDTA.

We found that the pH of the PBS buffer used for sample dilution is crucial for a positive result of the activity measurements and a pH of 7.3 was chosen for all experiments. Ethanolamine–HCl (1 M) was used for deactivation of the unreacted NHS groups, while 5 min injection at 5 μl/min of guanidine–HCl (8 M) was used for the denaturation of IDE. This last procedure was undertaken to avoid the possibility that observed signals were due to unspecific interactions between the somatostatin molecules and the functionalized SPRI chips. Thus, a large difference in the SPRI signal was recorded according to whether the somatostatin solutions were injected into microchannels where the immobilized IDE was in the native form or it had been previously denatured (see Fig. S5). This result reinforces the conclusion that the kinetic data recorded in the case of active IDE–somatostatin are due to a real interaction between somatostatin and IDE rather than to trivial
somatostatin unspecific interactions with the functionali-
zed SPRI chip.

Acknowledgements

The authors thankfully acknowledge useful discussions with Prof. S. Marini and Drs. G. F. Fasciglione and D. Di Pierro during the early stages of the project. The financial contribution from the Italian Ministry of University and Research (MiUR FIRB RBNE03PX83 to M.R., E.R., and M.C.) is grate-
fully acknowledged.

Supplementary Data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jmb.2008.11.025

References

