Capitolo 2
GLI ATTUALI ACCIAI DA CEMENTO ARMATO E IL COMPORTAMENTO STRUTTURALE

1. Evoluzione delle caratteristiche degli acciai da cemento armato

Lo sviluppo di acciai con caratteristiche meccaniche sempre più elevate si deve principalmente all’evoluzione dei processi produttivi delle barre, fino al più recente denominato Tempcore.

Messo a punto in Belgio verso la metà degli anni settanta, il Tempcore è un metodo di tempra e di autorinvenimento sulla linea di laminazione dei tondini metallici per calcestruzzo armato. La barra d’acciaio in uscita dall’ultima gabbia di laminazione, a temperatura di circa 1000-1100 °C, entra in un cassone di raffreddamento ad acqua in cui è sottoposta ad una forte azione di tempra nella propria zona superficiale la quale acquista così una struttura martensitica: contemporaneamente il cuore della stessa, a temperatura più elevata, ne assume una austenitica (Fig.2.2).

Dopo l’azione di tempra nella barra, posta in aria calma, avviene un flusso di calore dal centro verso l’esterno, causato dal gradiente di temperatura determinatosi nella sua sezione. Lo strato superficiale martensitico è così sottoposto ad una operazione di autorinvenimento che dura sino a quando la temperatura interna e quella esterna della barra non si equivalgono (circa 600 °C). Questo processo è controllato sulla placca di raffreddamento. Le caratteristiche dell’acciaio così otte-
nuto sono fortemente legate alla sua composizione chimica, al diametro, alla temperatura finale ed all'intensità di raffreddamento dello stesso.

Il processo (Fig.2.1) permette, rispetto ad una semplice laminazione a caldo, di avere barre di classe B400 e B500 con bassi tenori di carbonio (pertanto saldabili) in quanto la tensione di snervamento dipende solo dal rivestimento superficiale di martensite rinvenuta il cui spessore è controllato dalla temperatura di rinvenimento.

L'acciaio prodotto in tal modo presenta, quindi, saldabilità, garantita dall'analisi chimica, dai valori di carbonio e carbonio equivalente che devono essere in linea con quelli di norma ($C \leq 0.24\%$ e $C_{eq} \leq 0.52\%$) e zincabilità (data la percentuale di silicio presente compresa tra i valori di 0.16 % 0.25%).

![Fig.2.1 – Processo di produzione di una barra d'acciaio Tempcore](image-url)

Le possibilità offerte da questo tipo di processo di produzione sono state riconosciute dalle più recenti norme europee EC2, EC8 ed ENV 10080 che hanno introdotto una classe di acciaio denominato B500B, laminato a caldo, con resistenze caratteristiche allo snervamento pari a 500 N/mm2. Pur essendo la produzione Italiana d'acciaio costituita in gran parte da acciai Tempcore B500B, tale classe non è prevista dall'attuale normativa (DM 9.1.96), secondo la quale vengono identificati come FeB 44K.
Le differenze tra i due tipi di acciai non sono però trascurabili. Ad una maggiore resistenza caratteristica dei B500B si accompagnano, infatti un minor rapporto tra tensione ultima e di snervamento ed un minore allungamento ultimo. Nei prossimi paragrafi saranno diffusamente riportati i risultati di prove sperimentali su tali acciai, su semplici strutture in c.a. armate con essi, caricate in modo monotono e ciclico.

2. Caratteristiche delle barre d’acciaio tipo Tempcore

I risultati di indagini sperimentali su acciai di recente produzione sono riportati nei lavori di Siviero e Russo44, Pipa45, Macchi, Pinto e Sanpaolesi56, Franchi47.

Tra le prime prove Italiane, è opportuno ricordare quelle effettuate nei laboratori di Brescia e Milano, i cui risultati sono riportati in (Siviero e Russo44). I campioni esaminati comprendevano un campo di diametri variabili da 8 a 32 mm e furono indagate le principali caratteristiche meccaniche. Fu evidenziato che la tensione di snervamento caratteristica era sempre maggiore dei 500 Mpa nominali, in genere dell’ordine di 530 Mpa, mentre quella ultima superava in alcuni casi i 630 Mpa.

Le differenze massime tra tensione ultima e di snervamento erano riscontrate per diametri di 32 mm.
Il valore caratteristico medio per tutti i campioni provati, misurato sulla base di cinque diametri, era circa 19%, la deformazione ultima valutata su 10 diametri circa il 14%, mentre il valore della deformazione ultima uniforme non superava il 9.5%.

Lo studio sviluppato da Pipa45 costituisce, ancora oggi, una delle principali e più complete fonti di dati relativi a prove sperimentali realizzate in alcuni paesi Europei su campioni di acciai Tempcore con diametri ≥ 16mm. Nel seguito sono riassunti i dati relativi a produttori distribuiti sul territorio Europeo così come indicato in Tab.2.1 (1993), quindi sono riportati alcuni risultati di prove effettuate in laboratori Italiani, ed Europei. In conformità con le attuali norme in questo capitolo le tensioni di snervamento ed ultima degli acciai sono indicati come f_y ed f_u rispettivamente; il pedice (k) si riferisce a valori caratteristici.

<table>
<thead>
<tr>
<th>Prodottori</th>
<th>Numero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portogallo</td>
<td>1</td>
</tr>
<tr>
<td>Spagna</td>
<td>6</td>
</tr>
<tr>
<td>Germania</td>
<td>2</td>
</tr>
<tr>
<td>Italia</td>
<td>2</td>
</tr>
<tr>
<td>Gran Bretagna</td>
<td>2</td>
</tr>
<tr>
<td>TOTALE</td>
<td>14</td>
</tr>
</tbody>
</table>

Si illustrano innanzitutto i dati sperimentali analizzati in (Pipa46)

- **Tensione di snervamento**

La tensione di snervamento dipende dalla temperatura di rivenimento del processo termomeccanico con cui sono prodotti gli acciai in oggetto (Fig.2.3). Obiettivo del controllo di tale temperatura è quello di ottenere una distribuzione di tensione di tipo Gaussiano, con valori caratteristici di 400 o 500 Mpa, in modo da poter definire le classi B400, prodotte solo dalla Spagna e dal Portogallo, e B500.
Fig.2.3 – Variazione della tensione di snervamento al variare della temperatura di rinvenimento (Siviero et al.44, Pippa45)

I valori statistici della tensione di snervamento, ottenuti come risultato di prove effettuate su campioni provenienti da tutti gli stabilimenti Europei e su acciai della siderurgia Portoghese, sono riportati nelle seguenti tabelle.

Tab.2.2 – Parametri statistici della tensione di snervamento degli acciai tipo Tempcore

<table>
<thead>
<tr>
<th></th>
<th>B400</th>
<th>B500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero di campioni</td>
<td>361</td>
<td>343</td>
</tr>
<tr>
<td>Media f_y (MPa)</td>
<td>496</td>
<td>585</td>
</tr>
<tr>
<td>Deviazione standard (MPa)</td>
<td>23.3</td>
<td>30.3</td>
</tr>
<tr>
<td>Coefficiente di variazione (%)</td>
<td>4.7</td>
<td>5.2</td>
</tr>
<tr>
<td>Valore minimo (MPa)</td>
<td>431</td>
<td>519</td>
</tr>
<tr>
<td>Valore massimo (MPa)</td>
<td>544</td>
<td>656</td>
</tr>
<tr>
<td>Valore caratteristico f_{yk} (Mpa)</td>
<td>457</td>
<td>535</td>
</tr>
</tbody>
</table>

$f_{yk} = f_y - 1.645 \sigma$
Tab.2.3 – Parametri statistici della tensione di snervamento degli acciai tipo Tempcore, prodotti dalla siderurgia Portoghese.

<table>
<thead>
<tr>
<th></th>
<th>B400</th>
<th>B500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero di campioni</td>
<td>84</td>
<td>51</td>
</tr>
<tr>
<td>Media f_y (MPa)</td>
<td>495</td>
<td>589</td>
</tr>
<tr>
<td>Deviazione standard (MPa)</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Coefficiente di variazione (%)</td>
<td>4.4</td>
<td>5.1</td>
</tr>
<tr>
<td>Valore caratteristico f_{yk} (Mpa)</td>
<td>459</td>
<td>539</td>
</tr>
</tbody>
</table>

Vengono inoltre messe a confronto le caratteristiche di tali acciai con quelle di tipi tradizionali e lavorati a freddo.

Tab.2.4 – Confronto tra parametri statistici della tensione di snervamento di vari tipi di acciai.

<table>
<thead>
<tr>
<th></th>
<th>B400</th>
<th>B500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lavorato a freddo</td>
<td>Laminato a caldo</td>
</tr>
<tr>
<td></td>
<td>SN 400E</td>
<td>SN 400E</td>
</tr>
<tr>
<td>Val. medio f_y (MPa)</td>
<td>464</td>
<td>484</td>
</tr>
<tr>
<td>Coeff. di variazione (%)</td>
<td>5.7</td>
<td>6.6</td>
</tr>
<tr>
<td>Val. caratteristico f_{yk} (Mpa)</td>
<td>420</td>
<td>430</td>
</tr>
</tbody>
</table>

SN400E: acciai lavorati a freddo; SN400: acciai normali; E: acciai spagnoli; NZ: acciai neozelandesi; TEMP: acciai Tempcore

La tensione di snervamento di acciai realizzati con processo Tempcore risulta sempre maggiore di quella che caratterizza altri tipi di acciaio di circa il 7% per le classi B400 e del 5% per i 500B.

Le curve statistiche sono caratterizzate da valori medi molto elevati e coefficienti di variazione relativamente bassi (\leq 5%), che eviden-
zia come tale parametro sia piuttosto uniforme nella produzione Europea.

- **Tensione di rottura**

 Si riportano i parametri statistici della tensione di rottura e si evidenzia la differenza dei valori ottenuti rispetto a quelli di acciai tradizionali. E' inoltre esplicitamente espresso il rapporto di incrudimento \(f_0/f_s \), che influenza notevolmente, insieme all'allungamento uniforme a rottura, il comportamento monotono e ciclico di tali acciai.

Tab.2.5 – Parametri statistici della tensione di rottura di acciai Tempcore.

<table>
<thead>
<tr>
<th></th>
<th>B400</th>
<th>B500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero di campioni</td>
<td>361</td>
<td>343</td>
</tr>
<tr>
<td>Media (f_0) (MPa)</td>
<td>598</td>
<td>680</td>
</tr>
<tr>
<td>Deviazione standard (MPa)</td>
<td>19.8</td>
<td>28.5</td>
</tr>
<tr>
<td>Coefficiente di variazione (%)</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>Valore minimo (MPa)</td>
<td>552</td>
<td>613</td>
</tr>
<tr>
<td>Valore massimo (MPa)</td>
<td>646</td>
<td>752</td>
</tr>
<tr>
<td>Valore caratteristico (f_k) (Mpa)</td>
<td>565</td>
<td>633</td>
</tr>
</tbody>
</table>

Tab.2.6 – Confronto tra parametri statistici della tensione di rottura di vari tipi di acciaio.

<table>
<thead>
<tr>
<th></th>
<th>B400</th>
<th>B500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lavorato a freddo</td>
<td>Laminato a caldo</td>
</tr>
<tr>
<td>SN 400E</td>
<td>SN 400E</td>
<td>E</td>
</tr>
<tr>
<td>Val. medio (f_0) (MPa)</td>
<td>538</td>
<td>552</td>
</tr>
<tr>
<td>Coeff. di variazione (%)</td>
<td>7.5</td>
<td>7.6</td>
</tr>
<tr>
<td>Val. caratteristico (f_k) (MPa)</td>
<td>471</td>
<td>483</td>
</tr>
<tr>
<td>((E/f_0)) medio</td>
<td>1.16</td>
<td>1.14</td>
</tr>
</tbody>
</table>
I dati riportati mostrano assoluta corrispondenza con quelli relativi alla tensione di snervamento cui sembrano essere linearmente correlati attraverso una relazione proposta da (Pipa):

\[f_u = 1.61 + 0.88 f_y \]

I rapporti di incrudimento \(f/f_y \) presentano valori prossimi a quelli relativi ad acciai di classe 400 lavorati a freddo ed inferiori fino al 23% rispetto al caso di acciai lavorati a caldo di classe 400 e superiori all’11% per il grado 500.

- **Allungamento uniforme e allungamento a rottura**

L'allungamento a rottura nell'acciaio è usualmente misurato dopo la rottura del campione e con riferimento ad una base convenzionale di 5 o 10 ed i valori così ottenuti sono indicati come \(A_5 \) e \(A_{10} \), rispettivamente.

Particolare importanza riveste, per la caratterizzazione della duttilità del materiale, la definizione della deformazione massima dell'acciaio prima del fenomeno di rottura, ossia la definizione di un parametro di deformazione massima corrispondente alla situazione di deformazione uniforme della barra in presenza di carico massimo, prima dell'inizio del fenomeno di localizzazione della deformazione e della stituzione.

Tale caratteristica denominata deformazione uniforme \(\varepsilon_u \), è definito dalla normativa come allungamento convenzionale \(A_{gt} \) e può essere misurato secondo differenti metodologie cui corrispondono diverse denominazioni.

L'allungamento \(A_{gt1} \) è misurato con estensimetro durante la prova (ENV 10080); quello indicato come \(A_{gt2} \) è misurato sulla parte più lunga del provino, dopo la rottura, su una base di 5 o 10 mm (ENV 10080); mentre la sigla \(A_{gt3} \) indica un allungamento calcolato con la seguente relazione:

\[A_{gt3} = 2 \times A_{10} - A_5 + \text{deformazione elastica} \]

Nella seguente tabella sono riportati i valori delle deformazioni uniformi per acciai Tempcore e quindi sono posti a confronto con i valori relativi ad altri tipi di acciai.
Tab. 2.7 – Parametri statistici della deformazione uniforme degli acciai tipo Tempcore.

<table>
<thead>
<tr>
<th></th>
<th>B400</th>
<th>B500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero di campioni</td>
<td>361</td>
<td>343</td>
</tr>
<tr>
<td>Media (\varepsilon_{\text{v}}) (%)</td>
<td>11.8</td>
<td>9.4</td>
</tr>
<tr>
<td>Deviazione standard (%)</td>
<td>1.69</td>
<td>1.40</td>
</tr>
<tr>
<td>Coefficiente di variazione (%)</td>
<td>14.3</td>
<td>14.9</td>
</tr>
<tr>
<td>Valore minimo (%)</td>
<td>7.5</td>
<td>6.0</td>
</tr>
<tr>
<td>Valore massimo (%)</td>
<td>16.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Valore caratteristico (\varepsilon_{\text{v,sk}}) (%)</td>
<td>9.0</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Tab. 2.8 – Confronto tra parametri statistici della deformazione uniforme di vari tipi di acciaio.

<table>
<thead>
<tr>
<th></th>
<th>B400</th>
<th>B500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lavorato a freddo</td>
<td>laminato a caldo</td>
</tr>
<tr>
<td></td>
<td>SN 400E</td>
<td>SN 400E</td>
</tr>
<tr>
<td>Val. medio (\varepsilon_{\text{v}}) (%)</td>
<td>(-)</td>
<td>4.7</td>
</tr>
<tr>
<td>Coeff. di variazione (%)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Val. caratteristico (\varepsilon_{\text{v,sk}}) (%)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Numero dei campioni</td>
<td>(-)</td>
<td>4</td>
</tr>
</tbody>
</table>

In relazione alla difficoltà di misurare la deformazione ultima uniforme, i risultati sperimentali risultano piuttosto disperzi, caratterizzati da coefficienti di variazione superiori al 14%. Tale valore è pari a circa il triplo di quello relativo alla tensione di snervamento, che nonostante ciò, sembra essere legata alla deformazione ultima dalla relazione (Pipa46):

\[
\varepsilon_{\text{su}} = 23.8 - 0.0244 f_y
\]
Il confronto con barre di durezza naturale laminate a caldo, mostra una riduzione di allungamento ultimo, per acciai Tempcore dell'ordine del 15% per la classe 400 e del 20% per la 500.

- **Deformazione di snervamento e modulo di incrudimento**

Sono inoltre tabellati i valori della deformazione di snervamento e del modulo di incrudimento per vari tipi di acciaio:

| Tab.2.9 – Parametri statistici della deformazione di snervamento di vari tipi di acciaio. |
|----------------------------------|----|----|----|----|
| | B400 TEMP | B500 TEMP | NZ B380 | SN400 B400 |
| Numero di campioni | 33 | 32 | 18 | 16 |
| Media \(\varepsilon\) (%) | 2.2 | 1.4 | 1.0 | 1.2 |
| Deviazione standard (%) | 0.45 | 0.44 | - | - |
| Coefficiente di variazione (%) | 20 | 31 | - | - |
| Valore minimo (%) | 1.6 | 0.7 | - | - |
| Valore massimo (%) | 3.1 | 23 | - | - |

| Tab.2.10 – Parametri statistici del modulo tangente di incrudimento per vari tipi di acciaio. |
|----------------------------------|----|----|----|----|
| | B400 TEMP | B500 TEMP | NZ B380 | SN400 B400 |
| Numero di campioni | 34 | 32 | 17 | 16 |
| Media \(E_\varepsilon\) (MPa) | 3005 | 3510 | 8390 | 8930 |
| Deviazione standard (MPa) | 657 | 534 | - | - |
| Coefficiente di variazione (%) | 22 | 15 | 18 | 13 |
| Valore minimo (%) | 2170 | 2720 | - | - |
| Valore massimo (%) | 5020 | 5330 | - | - |

I dati relativi ad entrambi i parametri sono caratterizzati da valori relativamente alti della dispersione. È interessante notare che il mo-
duolo di incrudimento presenta valori inferiori dell’ordine del 50% e più rispetto ai classici acciai lavorati a caldo.

Le correlazioni di tali parametri con la tensione di snervamento valutate in (Pipa, 46) sulla base dei dati sperimentali sono del tipo:

\[\varepsilon_{s,y} = 5.93 - 0.00776 f_y \]

\[E_y = 6.32 f_y - 225 \]

Ulteriori indagini e risultati sperimentali sono stati ottenuti da Macchi et al. 36, su provini di acciaio di tipo Tempcore B500, nell’ambito dell’indagine sviluppata sul comportamento di elementi in c.a. soggetti ad azioni cicliche.

Le tabelle seguenti forniscono sinteticamente i valori medi delle caratteristiche tensione di snervamento, tensione ultima, rapporto di incrudimento e allungamento uniforme, per alcuni dei diametri sottoposti a prova.

Tab.2.11 – Valori medi delle caratteristiche di acciai di tipo Tempcore (prove effettuate presso l’Università di Pavia).

<table>
<thead>
<tr>
<th>Diametro [mm]</th>
<th>(f_y) [N/mm²]</th>
<th>(f_t) [N/mm²]</th>
<th>(f_t/f_y)</th>
<th>(A_{el}) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi 8)</td>
<td>517.0</td>
<td>564.0</td>
<td>1.09</td>
<td>8.7</td>
</tr>
<tr>
<td>(\phi 16)</td>
<td>600.4</td>
<td>655.7</td>
<td>1.09</td>
<td>7.1</td>
</tr>
<tr>
<td>(\phi 22)</td>
<td>614.0</td>
<td>692.2</td>
<td>1.13</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Tab.2.12 – Valori medi delle caratteristiche di acciai di tipo Tempcore (prove effettuate presso l’Università di Pisa).

<table>
<thead>
<tr>
<th>Diametro [mm]</th>
<th>(f_y) [N/mm²]</th>
<th>(f_t) [N/mm²]</th>
<th>(f_t/f_y)</th>
<th>(A_{el}) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi 16)</td>
<td>601.5</td>
<td>660.6</td>
<td>1.10</td>
<td>7.62</td>
</tr>
<tr>
<td>(\phi 22)</td>
<td>623.5</td>
<td>703.4</td>
<td>1.13</td>
<td>8.65</td>
</tr>
</tbody>
</table>
Tab. 2.13 – Valori medi delle caratteristiche di acciai di tipo Tempcore (prove effettuate presso l'Università di Roma “La Sapienza”).

<table>
<thead>
<tr>
<th>Diametro [mm]</th>
<th>f_y [N/mm²]</th>
<th>f_t [N/mm²]</th>
<th>f_t/f_y</th>
<th>A_{e2} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi16$</td>
<td>607.8</td>
<td>662.8</td>
<td>1.09</td>
<td>6.60</td>
</tr>
<tr>
<td>$\phi22$</td>
<td>620.3</td>
<td>701.8</td>
<td>1.13</td>
<td>7.20</td>
</tr>
</tbody>
</table>

I valori medi delle tensioni di snervamento sono superiori rispetto a quelli riportati in (Pipa). Rispetto agli acciai tradizionali nei campioni provati si verifica un notevole incremento di tensione di snervamento cui non corrisponde un proporzionale aumento di tensione ultima, e di conseguenza il coefficiente di incrudimento f_t/f_y non supera mai il valore di 1.13, inferiore del 2.6% rispetto a quello valutato sulla base delle prove illustrate in (Pipa).

Sono infine indicati i valori delle caratteristiche di barre e rotoli B500B vendute in Francia nel primo semestre 1995, provenienti da 18 acciaierie di tutta Europa (4 francesi, 1 del Lussemburgo, 6 italiane, 1 inglese, 4 spagnole, 1 olandese), riportati in (Franchi et al.).

Tab. 2.14 – Caratteristiche di acciai Tempcore B500B (1995)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>575-619</td>
<td>523</td>
<td>656-707</td>
<td>600</td>
<td>11.0-12.1</td>
<td>9.4</td>
<td>1.13-1.14</td>
<td>1.10</td>
</tr>
<tr>
<td>8</td>
<td>534-608</td>
<td>502</td>
<td>632-698</td>
<td>591</td>
<td>8.9-12.0</td>
<td>6.9</td>
<td>1.08-1.22</td>
<td>1.06</td>
</tr>
<tr>
<td>10</td>
<td>529-606</td>
<td>501</td>
<td>640-693</td>
<td>601</td>
<td>8.8-12.2</td>
<td>6.8</td>
<td>1.09-1.22</td>
<td>1.07</td>
</tr>
<tr>
<td>12</td>
<td>535-600</td>
<td>506</td>
<td>638-678</td>
<td>601</td>
<td>9.3-11.6</td>
<td>7.2</td>
<td>1.08-1.23</td>
<td>1.06</td>
</tr>
<tr>
<td>14</td>
<td>527-579</td>
<td>502</td>
<td>637-698</td>
<td>603</td>
<td>9.8-12.6</td>
<td>7.4</td>
<td>1.09-1.26</td>
<td>1.07</td>
</tr>
<tr>
<td>16</td>
<td>540-604</td>
<td>501</td>
<td>640-705</td>
<td>594</td>
<td>8.4-11.8</td>
<td>6.5</td>
<td>1.11-1.19</td>
<td>1.09</td>
</tr>
<tr>
<td>20</td>
<td>547-605</td>
<td>510</td>
<td>645-687</td>
<td>614</td>
<td>9.5-11.7</td>
<td>7.8</td>
<td>1.12-1.20</td>
<td>1.10</td>
</tr>
<tr>
<td>25</td>
<td>541-609</td>
<td>511</td>
<td>642-692</td>
<td>613</td>
<td>9.4-11.7</td>
<td>7.5</td>
<td>1.12-1.20</td>
<td>1.10</td>
</tr>
<tr>
<td>32</td>
<td>544-598</td>
<td>513</td>
<td>645-685</td>
<td>615</td>
<td>9.3-11.2</td>
<td>7.6</td>
<td>1.14-1.20</td>
<td>1.12</td>
</tr>
<tr>
<td>40</td>
<td>545-575</td>
<td>501</td>
<td>663-682</td>
<td>616</td>
<td>8.2-11.2</td>
<td>6.1</td>
<td>1.18-1.24</td>
<td>1.15</td>
</tr>
</tbody>
</table>
I diametri sono variabili da 6 a 40 mm e per ciascuno di essi sono riportati i valori medi e caratteristici della tensione di snervamento, di quella ultima, dell’allungamento uniforme Aₜₚ e del rapporto fₛ/fₚ.

E’ da osservare che il valore medio della tensione di snervamento presenta un limite superiore molto elevato, fino ad oltre 600 MPa. Tale considerazione evidenzia che non avendo alcun limite superiore imposto, alcune acciaierie, pur ottenendo valori caratteristici di 500 MPa calibrano la produzione ad un valore notevolmente più elevato di tale grado richiesto, causando una forte diminuzione del rapporto di incrudimento.

Si può inoltre osservare che fatta esclusione per diametri di 6mm, l’allungamento uniforme a rottura è mediamente dell’ordine del 7%, ed il rapporto tra tensione di rottura e di snervamento è quasi sempre inferiore a 1.10.

2.1. Valori caratteristici e di normativa

L’introduzione sul mercato Europeo di barre ad elevato snervamento è stato recepito dagli Eurocodici e specificamente per tali tipi di acciai è in fase di studio una norma UNI, disponibile come Prestandard con la sigla ENV 10080. E’ ancora oggetto di discussione la definizione dei valori minimi di duttilità da richiedere ad acciai tipo B500B e prove sperimentali su elementi armati con tali tipi di acciai cominciano a fornire delle prime indicazioni.

Le caratteristiche degli acciai tipo Tempcore, sono poste a confronto con i requisiti richiesti dalle vigenti normative in materia.

Nella normativa Italiana (DM 9.1.1996) non esiste specifico riferimento ad una classe 500, ma vengono indicati i limiti che devono essere rispettati dalle barre utilizzate nel progetto, relativi alle classi Feb 38k e 44k. I valori sono riportati nella tabella seguente e confrontati con quelli forniti dai Tempcore.
Tab. 2.15 – Confronto tra le caratteristiche statistiche di acciai di tipo Tempcore e valori richiesti dal DM.9.1.1996.

<table>
<thead>
<tr>
<th>Caratteristiche degli acciai indicati dal DM 9.1.1996</th>
<th>Caratteristiche degli acciai tipo Tempcore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 38k</td>
<td>Feb 44k</td>
</tr>
<tr>
<td>f_{yk} [N/mm2]</td>
<td>f_{yk} [N/mm2]</td>
</tr>
<tr>
<td>≥ 375</td>
<td>≥ 430</td>
</tr>
<tr>
<td>≥ 450</td>
<td>≥ 540</td>
</tr>
<tr>
<td>A_5</td>
<td>A_5</td>
</tr>
<tr>
<td>$\geq 14%$</td>
<td>$\geq 12%$</td>
</tr>
<tr>
<td>ε_u</td>
<td>ε_u</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$< 9%$</td>
<td>$< 7%$</td>
</tr>
<tr>
<td>>450</td>
<td>>500</td>
</tr>
<tr>
<td>>550</td>
<td>>550</td>
</tr>
</tbody>
</table>

Non essendo prescritto alcun limite superiore per le tensioni ultime e di snervamento, anche gli acciai Tempcore B400 e B500 possono essere etichettati come Feb 44k, con i conseguenti problemi legati al minore rapporto di incrudimento, indice di minore duttilità rispetto a quella di progetto. Un cenno a tale problema è presente nella norma essendo, infatti, precisato:

"Poiché gli acciai, pur rispettando le limitazioni delle caratteristiche indicate nel prospetto 2. II (contiene le limitazioni riportate nella tabella precedente), possono presentare valori sensibilmente diversi, per costruzioni in zona sismica, e comunque quando si opera la ridistribuzione di sollecitazioni di cui al punto 4.1., il progettista deve dichiarare nella relazione sui materiali i limiti dei rapporti f_s/f_{yk} e (f_t/f_y)$_{medio}$ posti a base del calcolo e che dovranno essere soddisfatti dall'acciaio impiegato."

Nell'EC2 vengono definite due classi di duttilità per gli acciai, l'alta (H) e la normale (N). La capacità plastica delle barre può ritenersi adeguata, secondo tale norma, se vengono rispettate le seguenti indicazioni:

- Alta duttilità (H) $\varepsilon_{u_h} > 5\%$; $f_{t}/f_{y_h} > 1.08$
- Normale duttilità (N) $\varepsilon_{u_n} > 2.5\%$; $f_{t}/f_{y_n} > 1.05$

Confrontando i valori degli acciai Tempcore sia B400 che B500, si osserva che possono considerarsi conformi ai limiti imposti dall'EC2, anche per l'alta duttilità.
Tab. 2.16 – Confronto tra le caratteristiche statistiche di acciai di tipo Tempcore e valori richiesti dall’EC2.

<table>
<thead>
<tr>
<th>Classi di duttilità previste nell’EC2</th>
<th>Caratteristiche degli acciai tipo Tempcore</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N H</td>
</tr>
<tr>
<td>e_{sk}^{u}</td>
<td>≥ 2.5 %</td>
</tr>
<tr>
<td>$(f_{y}/f_{y})_{k}$</td>
<td>≥ 5 %</td>
</tr>
<tr>
<td></td>
<td>< 9.0%</td>
</tr>
<tr>
<td></td>
<td>< 7.0%</td>
</tr>
<tr>
<td></td>
<td>≥ 1.15</td>
</tr>
</tbody>
</table>

Nell’Eurocodice 8 relativo alla progettazione in zona sismica, nella parte 1-3, per le costruzioni in cemento armato, vengono proposte tre classi di duttilità per le sezioni. Per ciascuna di esse sono forniti i limiti che devono essere rispettati dagli acciai utilizzati; tali valori sono riportati nella tabella seguente e posti a confrontato con le caratteristiche dei Tempcore.

Tab. 2.17 – Confronto tra le caratteristiche statistiche di acciai di tipo Tempcore e valori richiesti dall’EC8.

<table>
<thead>
<tr>
<th>Classi di duttilità previste nell’EC8</th>
<th>Caratteristiche degli acciai tipo Tempcore</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCL</td>
</tr>
<tr>
<td>e_{sk}^{u} (1)</td>
<td>≥ 5 %</td>
</tr>
<tr>
<td>$(f_{y}/f_{y})_{medio}$ (2)</td>
<td>≥1.20</td>
</tr>
<tr>
<td></td>
<td>≤1.35</td>
</tr>
<tr>
<td>$f_{y, set}/f_{y, nom}$</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Valore caratteristico con il fattore del 10% come richiesto dalla ENV10080.
(2) Nell’EC8 questo valore è riferito ad acciai tipo A, come nell’EC2, per il quale questo rapporto è verificato in termini di frattile del 10% e non in termini medi. Per un COV del 4% il valore $(f_{y}/f_{y})_{k,0.10} ≥ 1.08$ richiesti dall’EC2, è equivalente ad un valore medio di $(f_{y}/f_{y}) ≥ 1.14$.

L’EC8 fornisce limiti inferiori e superiori al rapporto f_{y}/f_{y} medio e soprattutto limita la sovraresistenza espressa dal rapporto tra la tensione di snervamento misurata e quella nominale.
Dall’analisi dei dati riportati appare evidente che, per quanto riguarda l’allungamento uniforme e il rapporto di incrudimento, gli acciai di classe B400 soddisfano le richieste dell’Eurocodice per tutte le classi di duttilità, mentre i tipi B500 non sono idonei per l’alta duttilità anche se è da evidenziare che spesso i tradizionali acciai Fe44 non rispettano per eccesso i limiti posti sui rapporti \((\varepsilon/\varepsilon)\). Per quanto riguarda la possibilità di fornire sovraresistenze, ossia limitazioni al rapporto tra la tensione di snervamento misurata e quella nominale, appare chiaramente che i B400 non rispettano i limiti per classi ad alta duttilità.

La ENV 10080 (1995) si riferisce a due classi di acciaio B500, denuminandole B500A e B500B in funzione della duttilità, e fornisce, oltre ai valori caratteristici, i valori minimi dell’allungamento a rottura e del rapporto di incrudimento.

Per acciai in barre tali valori sono riportati per le barre nella seguente tabella in cui sono posti a confronto con le caratteristiche dei Tempcore.

Tab. 2.18 – Confronto tra le caratteristiche statistiche di acciai di tipo Tempcore e valori richiesti dalla ENV 10080.

<table>
<thead>
<tr>
<th>Classi di duttilità previste nell’ENV10080</th>
<th>Caratteristiche degli acciai tipo Tempcore</th>
</tr>
</thead>
<tbody>
<tr>
<td>B500A</td>
<td>B400</td>
</tr>
<tr>
<td>B500B</td>
<td>B500</td>
</tr>
<tr>
<td>(\varepsilon_{y}) ((N/m^2)) (1)</td>
<td>(\geq 500)</td>
</tr>
<tr>
<td>(\varepsilon_{s}) (1%) (2)</td>
<td>(\geq 50)</td>
</tr>
<tr>
<td>((\varepsilon/\varepsilon)_{0}) (2) (2)</td>
<td>(\geq 9.50)</td>
</tr>
<tr>
<td>((\varepsilon/\varepsilon)_{0}) (1) (1)</td>
<td>(\geq 8.50)</td>
</tr>
</tbody>
</table>

(1) Valore caratteristico con frattile del 5%
(2) Valore caratteristico con frattile del 10%

I limiti previsti dalla ENV 10080 coincidono con quelli dati dall’EC2, per cui valgono le stesse considerazioni precedentemente espressione per tale Eurocodice.
3. Comportamento monotono di elementi armati con acciai tipo Tempcore

In seguito alla stesura dei Model Codes del CEB (78 e 90), che sollevavano il problema dell'influenza delle caratteristiche di acciai a basso rapporto di incrudimento sulla duttilità di strutture, diverse campagne sperimentali sono state avviate in vari Paesi, con l'obiettivo di studiare il comportamento di elementi armati con acciai di tipo Tempcore. I principali risultati di alcune indagini eseguite in Europa sono riassunti in (Elgehausen et al.42).

Prove su travi di lunghezza pari a 2 metri, con sezioni di 80 cm di larghezza e 18 cm di altezza, caricate da una forza in mezzeria, furono eseguite da Eibl e Buhler36 nei laboratori di Karlsruhe. L'armatura consisteva in 6 barre di diametro φ = 8 mm, corrispondenti ad una percentuale dello 0.24% rispetto alla sezione di calcestruzzo. Furono utilizzati quattro tipi di acciaio le cui caratteristiche sono riportate in Tab.2.19; la resistenza ultima del calcestruzzo era pari a 27 N/mm2.

Tab.2.19 – Caratteristiche degli acciai utilizzati per la sperimentazione (Eibl e Buhler36)

<table>
<thead>
<tr>
<th>Sigla</th>
<th>f'/f₀</th>
<th>εₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPL1</td>
<td>1.04</td>
<td>2.4%</td>
</tr>
<tr>
<td>RPL2</td>
<td>1.18</td>
<td>10.7%</td>
</tr>
<tr>
<td>RPL3</td>
<td>1.08</td>
<td>2.6%</td>
</tr>
<tr>
<td>RPL4-RPL5</td>
<td>1.07</td>
<td>4.7%</td>
</tr>
<tr>
<td>RPL6</td>
<td>1.15</td>
<td>4.6%</td>
</tr>
</tbody>
</table>

Gli elementi denominati RPL2, armati con acciai di tipo duttile, raggiungevano rotazioni plastiche ultime pari a circa 36 mrad, valori inferiori di circa 1/4 (appena 9 mrad) caratterizzavano i campioni di tipo RPL1.

I risultati ottenuti in termini di diagramma momento rotazione sono riportati in Fig.2.4, dove appaiono evidenti le forti differenze di duttilità al variare delle caratteristiche degli acciai utilizzati.
Fig. 2.4 – Diagrammi sperimentali momento-rotazione (Eibl et al.36)

Trentasei tipi di travi, armate con diverse qualità di acciai furono sottoposte a carichi crescenti fino a rottura da Calvi et al.39. Una prima serie di sperimentazioni fu eseguita su elementi semplicemente appoggiati di luce pari a 2 m e con sezioni di 44 cm di base e 16 cm di altezza armate con barre di diametro φ6 e φ10. Gli acciai utilizzati erano caratterizzati da valori del rapporto di incrudimento variabili tra 1.03 e 1.21 e allungamenti ultimi variabili tra 2.3% e 7.9%, le caratteristiche del calcestruzzo erano costanti con $f_c=38$ N/mm2.

Le rotazioni plastiche massime (circa 80 mrad) furono registrate per acciai con $f_s/f_y = 1.12$ e $\varepsilon_{\text{pl}} = 7.9\%$, mentre i valori minimi (circa 8 mrad) si raggiungevano nei provini armati con acciai caratterizzati da $f_s/f_y = 1.06$ e $\varepsilon_{\text{pl}} = 2.3\%$, evidenziando la nettissima influenza di tali parametri sulla duttilità strutturale.

Il programma sperimentale descritto in (Clarke37) fu eseguito allo scopo di indagare gli effetti sul comportamento plastico delle caratteristiche degli acciai e del legame di aderenza, della forma del diagramma del momento, del rapporto di snellezza e dei carichi a lungo termine.

Le travi presentavano luce di 3.2 metri; due tipi di sezioni con altezza costante pari a 15 cm e larghezza di 50 e 25 cm furono soggette a
prova. I rapporti di incrudimento degli acciai utilizzati erano compresi in un campo di valori tra 1.046 e 1.353, mentre l’allungamento ultimo variava tra il 2.2% e il 16.5%; la tensione massima del calcestruzzo assumeva sempre lo stesso valore pari a 30.2 N/mm². I risultati in termini di rotazioni plastiche mostravano valori minimi pari a 6.9 mrad per acciai con $f_y/f_r = 1.056$ ed $\varepsilon_y = 2.2\%$ e valori massimi superiori a 160 mrad per f_y/f_r superiori ad 1.3 e ε_y pari a circa 10%.

Gli effetti della duttilità dell’armatura e della sua percentuale sono stati chiaramente evidenziati anche dai risultati sperimentali riportati in (Bosco et al.38) e riassunti in (Beeby58).

![Diagram](image)

Fig.2. 5—Influenza della percentuale di armatura sulla rotazione plastica (Bosco et al.38, Beeby58)

L’acciaio definito ad alta duttilità è caratterizzato da un rapporto di incrudimento pari a 1.15 ed un allungamento ultimo uguale al 7%, mentre quello a bassa duttilità presenta $f_y/f_r = 1.08$ ed $\varepsilon_y = 4.2\%$.

La differenza di comportamento di travi armate con tali acciai appare evidente nei diagrammi riportati in Fig.2. 5 che mostrano, inoltre, l’influenza della percentuale di armatura, soprattutto per sezioni armate con acciai piuttosto duttili. L’incremento di armatura è positivo nel caso in cui si abbia rottura dell’acciaio, ma fornisce minori capacità plastiche della struttura nel caso in cui la crisi sia dovuta al calcestruzzo.
4. Comportamento ciclico di elementi armati con acciai tipo Tempcore

Prove su elementi tipo mensola armati con acciaio Tempcore, in presenza di cicli di spostamenti imposti in sommità, sono state sviluppate originariamente da Pipa con l’obiettivo di simulare un’azione sismica di elevata intensità.

I provini sono stati sottoposti a cicli di spostamenti con valori massimi crescenti fino a 0.8 dello spostamento ultimo dell’elemento per carico monotono. L’analisi presenta risultati in termini di curvatura accumulata nella zona d’incastrato e di energia dissipata nella stessa zona, ed evidenzia in molti casi un collasso per rottura delle barre a seguito del raggiungimento dell’allungamento massimo nell’acciaio.

Tale indagine ha evidenziato la minore duttilità in presenza di acciai con ridotte caratteristiche di incrudimento e allungamento uniforme rispetto agli acciai tradizionali.

Analoge prove sono state sviluppate recentemente presso le Università di Pavia, Pisa, e Roma I (Macchi et al.30).

Sono state eseguite prove a carico monotono e ciclico su acciai di tipo tradizionale e Tempcore e su elementi a mensola armati con differenti tipi di acciai (Macchi et al.61)

Le dimensioni e le azioni previste tendono a simulare il comportamento di un edificio intelaiato di 4 piani, con maglia 4 x 4, con travi infinitamente rigide.

La geometria dei campioni e la disposizione dell’armatura sono illustrate in (Macchi et al.30) e riportati in Fig.2.6. La resistenza del calcestruzzo, media dei vari campioni, è risultata pari a 42 MPa, i diametri delle barre sono uguali a 16, 22 e 28 mm, mentre gli acciai utilizzati denominati A8 ed Fe presentano le seguenti caratteristiche:

A8: \(f_y = 600 \text{ Mpa}; f_t = 655 \text{ Mpa} \)
\(f_y/f_t = 1.1; \varepsilon_u = 8\% \)

Fe: \(f_y = 590 \text{ Mpa}; f_t = 842 \text{ Mpa} \)
\(f_y/f_t = 1.4; \varepsilon_u = 11\% \)

Per valutare l’influenza dei carichi verticali, per alcuni campioni è stata prevista la presenza di sforzi normali pari a 0.08 Nu e 0.16 Nu es-
sendo \(N_u \) lo sforzo normale ultimo valutato come prodotto della sezione di geometria per la resistenza a compressione del calcestruzzo.

Fig. 2.6 – Campione soggetto a prova ciclica (Macchi et al.51)

Sono state effettuati tre tipi di prove:
- prove cicliche carico-spostamento a duttilità assegnata, secondo le seguenti sequenze predefinite (Fig. 2.7):
 1. un ciclo completo con spostamento corrispondente allo snervamento;
 - 3 cicli completi a duttilità 3;
 - 3 cicli completi a duttilità 6.
 2. un ciclo completo a snervamento;
 - 3 cicli completi a duttilità 2.5;
 - 3 cicli completi a duttilità 5;
 3. un ciclo completo a snervamento;
 - un ciclo completo a duttilità 2.5;
 - 2 cicli completi a duttilità 4.
- storia di spostamenti simulanti un evento sismico, derivata dalla prova pseudodinamica realizzata presso il laboratorio di Roma;
- prova pseudodinamica.
In particolare, ad esclusione di pochi casi, i campioni armati con acciaio di tipo Tempcore non hanno superato il programma di carico per la prematura rottura delle barre. Viceversa sono risultati più soddisfacenti quelli armati con acciai tradizionali Fe in cui non si è verificato tale fenomeno.

È interessante osservare che le cause del cattivo comportamento rilevato, sono certamente dovute alla concentrazione di deformazioni nelle barre in prossimità della fessura. A causa del ridotto rapporto tra tensione di rottura e snervamento la deformazione plastica è limitata ad una piccola zona mentre, nei casi di armatura tradizionale, la parte interessata dalla plasticizzazione è più estesa, la fessurazione appare più diffusa, le curvature locali sono minori e si evita l’espulsione del copriferro. La forte influenza del parametro di incrudimento f'_y/f_y, appare evidente anche dal confronto del comportamento ciclico al variare dei diametri. Passando, infatti, da diametri minori a maggiori, a parità di allungamento a rottura, aumenta il valore del parametro di incrudimento da 1.10 per $\Phi=16\text{mm}$ a 1.16 per $\Phi=28\text{mm}$, e si osserva un miglioramento del comportamento dell’elemento.

Nella Fig.2.8 sono riportati i risultati sperimentali in termini di legame forza-spostamento per pilastri armati con barre di diametro pari 16 mm. Il primo diagramma si riferisce all’elemento armato con acciai Fe, soggetto alla sequenza T1, mentre il secondo è relativo allo stesso campione caratterizzato da armatura di tipo A8 e soggetto alla storia di carico T2.
Le indicazioni conclusive di tale ricerca evidenziano la necessità, ai fini di un adeguato comportamento in presenza di azioni sismiche, di richiedere per l'acciaio un valore minimo dell'allungamento uniforme pari all'8% ed un rapporto di inerudimento tra 1.15-1.20. Inoltre è da approfondire l'influenza del rapporto tra tensione di snervamento reale e nominale sul comportamento delle strutture in presenza di azioni sismiche. Un limite massimo di 1.3 di tale rapporto è indicato dagli autori come necessario per assicurare lo sviluppo delle cerniere plastiche e garantire il raggiungimento delle capacità ultime di progetto.

Modelli di mensole con la stessa armatura, geometria e storia di carico sono state sottoposte a prove da Franchi et al. con la più specifica finalità di stabilire i minimi valori delle caratteristiche degli acciai capaci di garantire una adeguata duttilità.

Sono stati sottoposti a prova 9 elementi, le cui caratteristiche sono riportate nella seguente Tab.2. 20.

I primi cinque provini e l'ultimo sono armati con acciaio avente valori caratteristici che si colloca nella media della produzione Europea dei B500B, nei campioni 6 e 7 sono invece presenti acciai con minore capacità plastica, ma che secondo un modello analitico svolto dagli autori, dovrebbe superare le storie di carico fornendo una duttilità 6.
I provini 4, 5, 6 sono soggetti ad una debole sollecitazione assiale. E' inoltre da evidenziare che nel pilastro 9 le staffe sono state puntate all'armatura longitudinale mediante saldatura.

Tab. 20 – Elementi strutturali provati (Franchi et al. 57)

<table>
<thead>
<tr>
<th>Pil.</th>
<th>f_{cm} [MPa]</th>
<th>Arm.</th>
<th>Staffe</th>
<th>R_{cm} [MPa]</th>
<th>N [kN]</th>
<th>R_c [MPa]</th>
<th>R_m [MPa]</th>
<th>Agt [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>34.6</td>
<td>4Φ16</td>
<td>1Φ8/75</td>
<td>30</td>
<td>0</td>
<td>536</td>
<td>632</td>
<td>12</td>
</tr>
<tr>
<td>P2</td>
<td>33.6</td>
<td>4Φ16</td>
<td>1Φ8/75</td>
<td>30</td>
<td>0</td>
<td>536</td>
<td>632</td>
<td>12</td>
</tr>
<tr>
<td>P3</td>
<td>40.8</td>
<td>4Φ16</td>
<td>1Φ8/75</td>
<td>30</td>
<td>0</td>
<td>536</td>
<td>632</td>
<td>12</td>
</tr>
<tr>
<td>P4</td>
<td>35.8</td>
<td>4Φ16</td>
<td>1Φ8/75</td>
<td>30</td>
<td>200</td>
<td>536</td>
<td>632</td>
<td>12</td>
</tr>
<tr>
<td>P5</td>
<td>40.0</td>
<td>8Φ16</td>
<td>2Φ8/75</td>
<td>30</td>
<td>200</td>
<td>536</td>
<td>632</td>
<td>12</td>
</tr>
<tr>
<td>P6</td>
<td>34.0</td>
<td>4Φ16</td>
<td>1Φ8/75</td>
<td>30</td>
<td>0</td>
<td>548</td>
<td>624</td>
<td>8.4</td>
</tr>
<tr>
<td>P7</td>
<td>34.0</td>
<td>4Φ16</td>
<td>1Φ8/75</td>
<td>30</td>
<td>0</td>
<td>548</td>
<td>624</td>
<td>8.4</td>
</tr>
<tr>
<td>P8</td>
<td>34.0</td>
<td>4Φ16</td>
<td>1Φ8/75</td>
<td>30</td>
<td>200</td>
<td>548</td>
<td>624</td>
<td>8.4</td>
</tr>
<tr>
<td>P9</td>
<td>34.0</td>
<td>4Φ16</td>
<td>1Φ8/75</td>
<td>30</td>
<td>0</td>
<td>536</td>
<td>632</td>
<td>12</td>
</tr>
</tbody>
</table>

I risultati ottenuti, in termini di diagramma forza-spostamento sono riportati in Fig. 2.9 per i pilastri P1 e P9.

Fig. 2.9 – Risultati sperimentali (Franchi et al. 57)
Il comportamento ciclico degli elementi provati è sembrato abbas-
stanza soddisfacente, fatta esclusione per i campioni 8 e 9 per i quali si
è verificata una prematura rottura delle barre, nonostante il sufficiente
rapporto di incrudimento.

Secondo gli autori la differenza di comportamento è legata, nel ca-
sog del pilastro 8 alla presenza di sforzo normale, mentre nel caso
 dell'elemento 9, la crisi dell'acciaio è probabilmente dovuta alla presen-
za della saldatura che ha ridotto la deformazione massima a rottura
della barra.

Con riferimento alle indagini sperimentali precedentemente de-
scritte è da osservare che non sono disponibili corrispondenti modella-
zioni analitiche idonee a descrivere il comportamento per storie di spo-
stamenti imposti.

E' evidente infatti, la difficoltà di una descrizione dei legami costi-
tutivi ciclici, in particolare del degrado locale dell'aderenza tra acciaio e
calsestruzzo in presenza di fenomeni di instabilità delle barre e di
espulsione del copriferro. Per quanto riguarda il caso di elementi sogget-
ti a carichi ciclici senza inversione, una modellazione preliminare è sta-
ta sviluppata in (Greco et al.56) sulla base di opportuni legami costitutivi
ben noti (Otter e Naaman, Priestley per il calsestruzzo, Giuffre'-Pinto-
Menegotto o Filippou per l'acciaio, Ciampi et al. per l'aderenza).