Highly efficient Heck olefin arylation in the presence of iminophosphine–palladium(0) complexes

Alberto Scrivantia,*, Matteo Bertoldinia, Ugo Matteolia, Valentina Beghettoa, Simonetta Antonarolib, Alessia Marinib, Bruno Crocianib

a Dipartimento di Chimica, Università “Ca Foscari” di Venezia, Calle Larga S. Marta 2137, 31023 Venezia, Italy
b Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, 00133 Roma, Italy

Received 28 October 2004; accepted 2 December 2004

Available online 27 April 2005

Abstract

The Heck coupling of aryl bromides with olefins such as styrene or butyl acrylate is efficiently catalysed by the iminophosphine–palladium(0) complex \([\text{Pd} (\text{dmfu})(\text{P-N})] \) (dmfu = dimethyl fumarate; \(\text{P-N} = 2-(\text{PPh}_2)\text{C}_6\text{H}_4-1-\text{CH}_2\text{NC}_6\text{H}_4\text{OMe}-4\)) (1) in polar solvents. With activated aryl bromides such as 4-bromoacetophenone turnover numbers of up to 20,000 can be achieved at 140 °C in 2 h. The presence of electron-donating groups leads to decreased reaction rates, nevertheless, high substrate conversions can be obtained in reasonable reaction times. Kinetic studies indicate that complex 1 is only a precursor of the actual catalytic species. Experiments aimed to demonstrate the intervention of metallic palladium did not lead to conclusive findings.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Palladium; Iminophosphine–palladium(0) complexes; Heck reaction; Aryl bromides

1. Introduction

The Heck arylation reaction is one of the most important methods for the formation of new C–C bonds (Scheme 1) [1].

The most commonly used catalysts are palladium species in combination with phosphines [2] or other neutral ligands such as heterocyclic carbenes [3], and nitrogen [4] or sulfur ligands [5]. Alternatively, there is a wide variety of phosphorus [3b,6], nitrogen [7] and sulfur [8] containing palladacycles which are able to efficiently catalyse the reaction. For an industrial application, the development of “ligand-free” palladium catalytic systems appears particularly interesting [1c,9].

Recently, we have reported that the iminophosphine–palladium(0) complex 1 (Fig. 1) is an highly active catalyst for the Stille [10] and Suzuki [11] cross-coupling reactions.

Spurred by the analogies existing between all these reactions, we have extended our studies to assess the catalytic activity of 1 in the Heck arylation reaction. Herein we wish to report the results of our investigations on the catalytic activity of 1 in the coupling of aryl bromides with two model olefins such as styrene and butyl acrylate.

2. Experimental

All reactions, unless otherwise stated, were carried out under an inert atmosphere (argon). Commercial solvents (Aldrich or Fluka) were purified before the use according to standard procedures [12]. Bromobenzene, 4-bromotoluene, 4-chloroacetophenone, chlorobenzene, styrene, butyl acrylate, n-butylamine and thiophenol (Aldrich) were distilled before the use. 4-Bromoacetophenone (Aldrich) was recrystallised from methanol [12]. 4-Bromooanisole, 2-bromo-1,3,5-trimethylbenzene, triphenylphosphine were purchased from Aldrich and used as received. Anhydrous sodium acetate, anhydrous potassium carbonate, anhydrous sodium carbonate...
and mercury were obtained from Fluka. Complex 1 was prepared as described in the literature [13]. The coupling products were identified by their GC–MS and 1H NMR spectra.

GLC analyses were performed on a Agilent 6850 gas chromatograph; GC–MS analyses were performed on a HP 5890 series II gas chromatograph interfaced to a HP 5971 quadrupole mass-detector. 1H NMR spectra were registered on a Bruker Avance 300 NMR spectrometer operating at 300.11 MHz.

2.1. Catalytic experiments

The experiments were carried out in a magnetically stirred glass reactor (50 mL) having an inert gas inlet and a side arm closed with a rubber septum for the withdrawing of GLC samples. In a typical experiment (entry 9 of Table 1), under a nitrogen atmosphere, the reactor was charged with 995 mg (5.0 mmol) of 4-bromoacetophenone, 900 mg (7.0 mmol) of butyl acrylate, 450 mg (5.5 mmol) of NaOAc, 250 µL of a 10−3 M solution of complex 1 in dimethylacetamide and 5 mL of dimethylacetamide containing 128 mg (1.00 mmol) of naphthalene as GLC internal standard. The mixture was heated under stirring at 140 °C for 1 h, then it was rapidly cooled at room temperature and the liquid phase analysed by GLC.

![Fig. 1. Chemical structure of complex 1.](image)

2.2. Kinetic studies and poisoning experiments

In a typical experiment, the reactor was charged with 785 mg (5.0 mmol) of bromobenzene, 728 mg (7.0 mmol) of styrene, 450 mg (5.5 mmol) of NaOAc and 5 mL of NMP containing 128 mg (1.00 mmol) of naphthalene as GLC internal standard. The mixture was heated under stirring at 130 °C, then 500 µL of a 10−3 M solution of complex 1 in NMP was quickly introduced in the reactor from the side arm and the course of the reaction monitored by GLC until the substrate conversion was higher than 90%.

In the poisoning experiments, a bromobenzene–styrene reaction mixture prepared according to the procedure above described was allowed to react at 140 °C. After 1 h a sample of the reacting mixture was withdrawn and analysed by GLC to determine the substrate conversion, then the poison was added from the reactor side arm. Fifteen minutes later, the reacting mixture was analysed again in order to verify the progress of the coupling. Afterwards the reaction was monitored by GLC every 30 min for 2 h.

3. Results and discussion

To test the catalytic activity of 1 we used as the model reactions the coupling of 4-bromoacetophenone with styrene or butyl acrylate (Scheme 2).

Table 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Alkene</th>
<th>Base</th>
<th>Time (h)</th>
<th>T (°C)</th>
<th>Yield (%) a</th>
<th>TON b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NMP</td>
<td>Styrene</td>
<td>NaOAc</td>
<td>1</td>
<td>140</td>
<td>73.7</td>
<td>14700</td>
</tr>
<tr>
<td>2</td>
<td>NMP</td>
<td>Styrene</td>
<td>NaOAc</td>
<td>1</td>
<td>140</td>
<td>63.1</td>
<td>12600</td>
</tr>
<tr>
<td>3</td>
<td>NMP</td>
<td>Butyl acrylate</td>
<td>NaOAc</td>
<td>1</td>
<td>140</td>
<td>50.4</td>
<td>10000</td>
</tr>
<tr>
<td>4</td>
<td>NMP</td>
<td>Butyl acrylate</td>
<td>K2CO3</td>
<td>1</td>
<td>140</td>
<td>10.5</td>
<td>2000</td>
</tr>
<tr>
<td>5</td>
<td>NMP</td>
<td>Butyl acrylate</td>
<td>Na2CO3</td>
<td>1</td>
<td>140</td>
<td>48.7</td>
<td>9700</td>
</tr>
<tr>
<td>6</td>
<td>NMP</td>
<td>Butyl acrylate</td>
<td>n-Bu3N</td>
<td>1</td>
<td>140</td>
<td>43.1</td>
<td>8600</td>
</tr>
<tr>
<td>7</td>
<td>DMA</td>
<td>Styrene</td>
<td>NaOAc</td>
<td>1</td>
<td>140</td>
<td>43.1</td>
<td>8600</td>
</tr>
<tr>
<td>8</td>
<td>DMA</td>
<td>Styrene</td>
<td>NaOAc</td>
<td>2</td>
<td>140</td>
<td>99.8</td>
<td>19900</td>
</tr>
<tr>
<td>9</td>
<td>DMA</td>
<td>Butyl acrylate</td>
<td>NaOAc</td>
<td>1</td>
<td>140</td>
<td>40.2</td>
<td>8000</td>
</tr>
<tr>
<td>10</td>
<td>DMA</td>
<td>Butyl acrylate</td>
<td>NaOAc</td>
<td>2</td>
<td>140</td>
<td>82.4</td>
<td>16500</td>
</tr>
<tr>
<td>11</td>
<td>DMA</td>
<td>Butyl acrylate</td>
<td>NaOAc</td>
<td>3</td>
<td>140</td>
<td>99.8</td>
<td>19900</td>
</tr>
<tr>
<td>12</td>
<td>o-Xylene</td>
<td>Butyl acrylate</td>
<td>NaOAc</td>
<td>1</td>
<td>140</td>
<td>1.8</td>
<td>360</td>
</tr>
</tbody>
</table>

Reaction conditions. 4-Bromoacetophenone: 5.0 mmol; alkene: 7.0 mmol; cat.: 2.5 × 10−4 mmol; [ArBr]/[1]: 20,000; solvent: 5 mL; base: 5.5 mmol.

a Sum of the linear and branched products determined by GLC using naphthalene as internal standard.

b TON: mol of substrate converted/mol of catalyst.

c Cat.: 5.0 × 10−4 mmol; [ArBr]/[1]: 10,000.
Influence of the nature of the aryl bromide

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aryl bromide</th>
<th>Alkene</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>TON a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C₆H₅Br</td>
<td>Styrene</td>
<td>3</td>
<td>97.7</td>
<td>9700</td>
</tr>
<tr>
<td>2</td>
<td>C₆H₅Br</td>
<td>Butyl acrylate</td>
<td>5</td>
<td>49.4</td>
<td>4900</td>
</tr>
<tr>
<td>3</td>
<td>C₆H₅Br</td>
<td>Butyl acrylate</td>
<td>24</td>
<td>81.6</td>
<td>8200</td>
</tr>
<tr>
<td>4</td>
<td>4-CH₃C₆H₅Br</td>
<td>Styrene</td>
<td>24</td>
<td>93.9</td>
<td>9400</td>
</tr>
<tr>
<td>5</td>
<td>4-CH₃C₆H₅Br</td>
<td>Butyl acrylate</td>
<td>24</td>
<td>72.3</td>
<td>7200</td>
</tr>
<tr>
<td>6</td>
<td>4-CH₃C₆H₅Br</td>
<td>Styrene</td>
<td>24</td>
<td>75.5</td>
<td>7500</td>
</tr>
<tr>
<td>7</td>
<td>4-CH₃OOC₆H₄Br</td>
<td>Butyl acrylate</td>
<td>24</td>
<td>84.7</td>
<td>8500</td>
</tr>
<tr>
<td>8</td>
<td>2-Bn-1,3,5-(CH₃)₃C₆H₂</td>
<td>Styrene</td>
<td>24</td>
<td>2.3 b</td>
<td>230</td>
</tr>
<tr>
<td>9</td>
<td>2-Bn-1,3,5-(CH₃)₃C₆H₂</td>
<td>Butyl acrylate</td>
<td>24</td>
<td>1.5 b</td>
<td>150</td>
</tr>
</tbody>
</table>

Reaction conditions. Aryl bromide: 5.0 mmol; alkene: 7.0 mmol; cat.: 5.0 mmol; [ArBr]/[alkene] = 10,000:1; solvent: NMP (5 mL); base: NaOAc (5.5 mmol). TON: mol of substrate converted/mol of catalyst.

a Sum of the linear and branched products determined by GLC using naphthalene as internal standard.

b Internal standard: p-undecane.

There is a great interest in developing new catalytic systems able to activate aryl chlorides, owing to the low cost and availability of this class of substrates. Accordingly, as a further step of our study, we investigated the activity of Pd(OAc)₂ [9b,9f] or some nanoparticle catalysts, primarily focusing on palladium[14], i.e. that the catalysis is actually heterogeneous. During our experiments we did not observe the formation of palladium black, but it is known that often is very difficult to distinguish between homogeneous and heterogeneous catalytic systems, in particular when colloidal metallic nanoparticles are the active catalytic species. In this connection, it is worth to note that when Pd(OAc)₂ [9b,59] or some...
palladacycles \[\text{fc,7f–h,15}\] are employed as catalysts in the Heck reaction, there are strong evidences indicating that the actual catalytic species are ligand-free colloidal palladium nanoparticles or clusters and that the starting palladium complex just acts as a catalyst precursor. Therefore, in order to substantiate the intervention of colloidal palladium species in the present case, we deemed appropriate to get a deeper insight on the nature of the catalysis with some poisoning experiments (for a leading review of this subject, see Ref. [14]). Indeed, if the actual catalytic species is a metal particle it would be expected the addition of a Hg drop or of neutral molecules such as PPh$_3$, CS$_2$ or thiophene, able to strongly bind to the particle surface, would stop the reaction [14].

Unfortunately, our experiments led to conflicting results leaving the question about the nature of the true catalytic species without a clear-cut answer. In fact, the addition of a small Hg drop (ca. 600 or 1000 equivalents with respect to complex 1) to a reacting mixture of bromobenzene and styrene. On the other hand, no effect follows the addition of PPh$_3$ (0.05 or 0.10 equivalents) or of thiophenol [16] (0.05 or 0.10 equivalents) to reacting mixtures of bromobenzene and styrene.

4. Conclusions

In conclusion, the iminophosphine–palladium complexes are highly active catalyst precursors for the Heck coupling of aryl bromides with terminal olefins. The catalyst efficiency compares well with that of other highly active catalysts, even if the catalysis appears particularly sensitive to steric hindrance on the aryl group. Further studies are in progress in order to determine the effect of the structure of the catalyst (effect of the nature of the groups Z and Y in Fig. 1) and gain evidences on the nature of the actual catalytic species and the reaction mechanism.

Acknowledgements

This work has been carried out with the Financial Support of the MIUR (COFIN).

References

(b) S. Braicu, A. de Meijere, in: F. Dieterich, P.J. Stang (Eds.), Metal Catalyzed Cross Coupling Reactions, Wiley, New York, 1998 (Chapter 3).
(c) G.T. Crowley, Chem. Soc. Rev. 27 (1998) 427;
(d) E.P. Boltenkaya, A.V. Cheprakov, Chem. Rev. 100 (2000) 3009;
(c) A.C. Hilber, S.P. Nolan, Platinum Met. Rev. 46 (2002) 50, and references therein;
(b) M.E. van der Boom, D. Milstein, Chem. Rev. 103 (2003) 1759, and references therein;
(e) G.A. Graa, A.C. Hilber, S.P. Nolan, Org. Lett. 3 (2001) 1077;
[16] We used thiophenol in the poisoning experiments owing to its high boiling point which ensures its permanence in the reaction solution at 140°C.