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Abstract

After a brief introduction on scale limits and processes of phase segregation, we present
a model of interface motion between two different fluids, described by a pair of kinetic
equations. They provide the late stages dynamics expected by the Cahn-Hilliard equation.

Phase segregation is a first order phase transition which happens in mixtures when the
temperature is lowered below the coexistence curve. Domains rich in different components
begin to arise with several mechanisms. Domains are separated by layers, which become
sharp in the last stages of the process and then they are called interfaces.

The main tool used is Hilbert expansion, the small parameter being the ratio between
kinetic and macroscopic unit of length. The problem can be faced to in several ways. We
show how to compute the limiting dynamics and the first order corrections to it.

It turns out that the late stages of phase segregation are characterized by a geometrical
rearrangement, of the interfaces which tends to minimize the surface, while keeping fixed
the volume of the domains. The normal velocity in each point of the interface is given by
gradients of harmonic functions, whose value on the boundary depends on the curvature
and on the surface tension. The limiting motion is thus given in terms of a free boundary
problem. On the other hand the corrections to that motion are solution of a yet non linear
problem, but with boundaries fixed.

Our model has only a kind of conserved quantity: the total mass of each component.
So it can be interpreted to describe the behaviour of highly viscous fluids, where energy
and momentum yielding fluidodynamic effects are dissipated on much smaller time scales
than those we are interested in. An example of such mixtures is given by polymer blends.



Chapter 1

Introduction

1.1 Scales

The same physical system can be described on several scales. We live, for example, on
a scale in which a typical length is that of a baguette (1 meter) and a typical time is
that required by a digital tv receiver to switch between two channels (1 second). Such
a scale is often referred to as macroscopic. Thus we can write equations for quantities
that have significant variations only over a fraction of meter in a few seconds. Think to
temperature profile in a pot of water over a flame or to the pressure field around the wings
of an airplane. In general macroscopic does not mean simple. Indeed a lot of components
contribute to build up a macroscopic phenomenon. We deal with the result of complex
interactions between objects that, for us, are microscopic and live on a different scale.
Matter is composed by molecules (we do not go further because we want to disregard
quantum effects) moving according to Newton equations. A typical length is now the
effective range of interaction (several angstrom). As to a typical time, it is not obvious
how to define it, because of the wide range of oscillatory phenomena that happen at the
microscopic scale. However it should be reasonable a time of order 10~ 's.

Which is a coherent scheme that links the macroscopic equation to the microscopic
ones? Of course the validity of a theory ultimately relies upon the experiment, but a
phenomenological construction should not be, as a first requirement, contradictory with
more fundamental rules. Moreover, deriving macroscopic equation from microscopic ones
allows to estimate the errors that are committed using the former instead of the latter and
to establish which is the regime of applicability of a macroscopic theory.

At present time the connection between microscopic and macroscopic is thought to be
build over two major hypotheses: a law of large number hypothesis and a local equilibrium
hypothesis. The former recalls the statistical property of some stochastic processes for
which if the number of tries is very high, the behaviour of almost the totality of realizations



is however near to the mean one. That allows to substitute the actual values of any quantity
of interest with its mean value. The latter hypothesis is harder because it is not yet clear
how to demonstrate it also in cases that might appear simple. Systems in thermodynamic
equilibrium are described by the Gibbs measure with parameters the temperature, the
activity and the velocity of the center of mass in a grancanonical setting. That measure is
a solution of the Liouville equation. The hypothesis of local equilibrium states that also a
sample which is not in global equilibrium, yet can be divided in small, but macroscopic,
cells in which it has an equilibrium behaviour characterized by parameters whose values
can change from a cell to another; moreover this situation is preserved by the dynamics
in the sense that the cells stay in equilibrium and only the parameters change their values
according to some rule, that at the end is the macroscopic equation describing the whole
system. In such a way one can replace the true mean values with that computed with
respect to that local equilibrium measure. However the latter is not a solution to the
Liouville equation.

1.1.1 The Basic Model

Consider a system of N point particles of mass m = 1 interacting via a smooth and bounded
potential ¢ which is different from zero only inside a compact set of R¢. Denote with g;
and v; the position and the velocity of the i-th particle. Let the particles evolve according
to Newton law. That is the simplest model of a gas that we can build in a mechanical

fashion. p
4di L
Ui (7) = wifr)
d’l)i
Pitr) = Y Vola—ay)
J#i

If N is large (in common situations the right order of magnitude is N ~ 10%*), Newton
equations are a huge system carrying a lot of information. A macroscopic description is not
required to be so much detailed. The value of few observables are sufficient to describe the
whole system. The scale separation and the great number of particles involved make all
quantities oscillate very rapidly and have a vanishing mean, but those which are conserved.
In fact those ones evolve slowly and can survive over a macroscopic scale. In our simple
model, conserved quantities are the total mass, momentum and energy.

In order to take advantage of the scale separation, let us introduce macroscopic variables
related to the microscopic ones by a small parameter € whose value is given by the ratio
between the microscopic unit and the macroscopic one.

T; =€q;, t=¢€T



The equations now are written

d’l)i . 1 i — Xy
= T ve ()

J#i
Suppose that the sample is contained in a torus A and that its microscopic volume is
|Alnicr- Then, if we assume that the particle density stays constant, N has to scale as ¢~¢
because
N e¢N
n = =
‘A‘micr |A|

In this way the limit ¢ — 0, i.e. the scale separation limit, yields the thermodynamic limit,
in which the volume and the number of particles diverge.

At this stage, empirical densities are distributions; thus we use a weak formalism to
compute their derivatives. For any smooth function f consider

1g=/Adx5a(,t)f(x), a=0,. . d+1

where
1 N
£0 = N Z:Zlé(x — (1))
(2, 1) = %Z(s(:ﬂ —mO))R (), a=1,....d

) = 3 Dot~ ai0) Ev?(t) ¥ %;«a(e-wxi(w ~ (1))

Using Newton equation and the fact that Ne~¢ is bounded and the potential has compact
support, it can be shown that

d d
SI3(0) = /A 023" Capl, 10, f(3) + O(e) (1.1)
p=1
where the empirical currents are
N
Gop(a:t) = = D 0z — z:(1))v] (2)
i=1



Gunplet) = 36 — () [vé’(t) Evf(t) 530 6 ) - xj(t>|>]

with
Vo p(2) = —250,0(2)

Equation (1.1) looks very similar to the weak form of an hydrodynamical equation, but
something is missing. The equation is not closed in any variable, because we still need to
compute the empirical currents from the solution flow of Newton equations.

It is at that point that the hypotheses of a law of large numbers and of a local equilib-
rium become important. They have to be used together to obtain a system of equations
for the hydrodynamical fields of density, velocity and energy. Instead of focusing on a
particular realization of the newtonian motion, we may study how an initial distribution
over the phase space evolves according to the underlying dynamics. Indeed we can never
know exactly the initial configuration of a sample, but rather we expect that it is in a
certain state with a given probability. The equation solved by the distribution evolving
according to Newton law is called Liouville equation and has got the following aspect

@ + Ly) N =0

where
Ly = E?V + E{V
and
N N
Ly = Zvi Vi Ly = ZZFM * Vi,
i=1 i=1 j#i
with

Fi; = =Vo(lgi — q5)

In most cases it provides only a theoretical tool, its solution being as difficult as that of
Newton equations. But working with probability distribution led to great achievements
in understanding the mechanical nature of thermodynamics. For example, even if no one
knows how to prove it, the thermodynamical equilibrium is precisely described by the
Maxwell-Gibbs distribution, which actually is a solution of the Liouville equation. If a
system is in contact with a reservoir at temperature 7' and it can exchange energy and
particles with it, the phase space is

F:UFN

N>0

4



where 'y = (A x R?)Y. Equilibrium states are parameterized by the temperature 7', the
velocity of the center of mass v and the activity z. If we put ourselves in a region of the
phase diagram free from phase transitions, we can establish a one to one correspondence
(at fixed temperature) between the activity and the particle mean density p. The local
equilibrium hypothesis prescribe the following distribution over 'y

sz\(]',t),T(-,t)’u(.,t) ('/'C]-? vl? e 7-,1;]\77 UN) =
1 1
7 i) = ooy | (i — i 1)? g -z,
dexp [M(Jc,) T (i 1) [(v u(zi,t)) +;¢(e |z xﬂ)”

where 7 is the partition function and represents a normalization factor. p = Inz is the
chemical potential and together with 7" and u is a function of the point thought to vary
very slowly on a microscopic scale, but in a regular fashion on the macroscopic one. If we
replace the empirical densities and currents with their expectation values with respect to
the local equilibrium distribution, we obtain from (1.1) equations for those fields. Then,
using properties of isotropy of the potential and assuming some smoothness we can write

d
Oup+ Y Ogylptia] =0

a=1

d
Oi[pug] + Z Oz [ptiauff + Pbopl =0

a=1

Dlo(5u + )] + 3 0, Jualp(Gu’ +¢) + P =0

where the energy density e and the pressure P are known functions of p and 7. The
equations just derived are called Euler equations and are usually used to describe not
dissipating fluids.

We can consider a different point of view. Substantially to solve Liouville equation is
equivalent to solve Newton system, thus if we show that using a local equilibrium distribu-
tion we get a set of phenomenological equations known as valid in a certain regime, we can
conclude that our guess is correct and our microscopic picture is not too far from reality.

1.1.2 The Boltzmann Equation

In this section we briefly describe an heuristic derivation of Boltzmann equation (BE) and
provide a sketchy idea of its rigorous proof [EP]|. The focus is on the meaning of Lanford’s
theorem as a law of large numbers. Indeed since the beginning we assume that f(z,v),
the distribution function on the single particle phase space, coincides with the fraction of



particles in the cell of size dzdv around (z, v). That is true only for a diverging number N
of particle and for vanishing density with the mean free path that stays constant.

Boltzmann equation gives a description of dilute gases which is midway between the
microscopic and macroscopic ones. For that reason, as we will see in next section, it can
be used as an intermediate step in linking microscopic dynamics to hydrodynamics. The
scale of BE is called kinematic and a typical length is represented by the mean free path,
i.e. the average distance covered by a particle between two consecutive collisions.

The heuristic derivation of BE is very intuitive. The probability density f in a point
(xz,v) can change in a time dt because of three different reasons: particles with velocity v
leave the cell centered in (z,v) or enter it; a collision changes the velocity of a particle that
was moving in x with velocity v; a collision produces a particle with velocity v. The first
contribution is known as transport term. Its integral version, given a small space region
Q, is given by

-iéﬂﬂﬂ@vw-w@

where v(z) is the outward normal to the surface 02 in the point x. By the divergence
theorem we can write BE as

Ot+v-V,)f=G-—1L

where G and L are the loss and gain terms due to collisions. The left hand side is a sub-
stantial derivative. In other words it is the time derivative that a lagrangian observer would
compute. If no collision was present, nothing would happen and the density probability
would be transported unchanged along the characteristics of the flow, i.e. along simple
lines x + vt. Only collisions modify substantially the probability density f. For simplicity
we consider hard elastic collisions between particles. An impact happens when a particle
is in z and a second one is in x 4 rn, where r is the diameter of the hard potential and n
is the unit vector parallel to the line joining the centers of the two particles. For a fixed n,
the particle in x can interact in a time dt with any other particle with velocity vy in the
cylinder of volume |(vy — v) - n|r?dndvedt. Then the loss term is obtained integrating over
all possible velocities and direction that provides a collision and finally multiplying by the
total number of particle with which a fixed particle can interact, i.e. N — 1:

L=(N- 1)r2/dn/ dvs fo(z, v, x + nr,v2)|(ve — V) - 1

Here fo(x,v,29,v9) is the joint probability that particle one is in z with velocity v and
particle two is in (z9,v9). S is the set of velocities such that (v; — v) - n < 0. For the
gain term one can proceed in the same way, but it would not be useful. The problem is
represented by the closure of the equation. In fact we need a reasonable ansatz to express
fo as a function of f only. Boltzmann proposed to set fo(x,v,x9,v3) = f(z,v)f(x2,vs)
as if the particles were independent. It can be accepted before a collision, but after that



it is certainly incorrect. Fortunately Boltzmann’s ansatz refers to two fixed particle and
the probability that a collision between them can happen is vanishing if we take the limit
N — oo with Nr? ~ const because it is of order r? (the surface of a particle). The
probability that a particle collides with any other particle is, on the other hand, of order
Nr? and thus it is finite. However, writing the gain term as the loss one, we are sure that
a collision happens, thus we can not use Boltzmann’s ansatz. But we can overcome this
problem using the continuity property

fo(z, v, +nr,vg) = foz, v,z + nr, vy)

where v' and v}, are the incoming velocities. Now it is correct to use the independence
hypothesis for the two particles with velocities v’ and v} because they never met before,
almost surely. At the end

G—-L=(N- 1)r2/dn . dvy(v — o) - n[f(z, V") f(x — nr,vh) — f(z,v) f(z + nr,ve)]

where S, is defined as S but with the reversed inequality. In the limit N — oo, r — 0
with N7? = \~! one obtains the Boltzmann equation:

(O +v-Va)f =Q(f, f)

where the collision operator ) is defined by

/dn/&rdvg v — ) - nl[f(x, V) f(z,vy) — fz,v)f(z,v9)]

In literature Boltzmann’s ansatz is known as Stosszahlansatz, that is propagation of initial
caos. Indeed BE generates a solution flow such that if initially the particles of the gas are
moving not correlated to each other, they persist in this state although collisions happen.
From a mathematical point of view, that means that if the initial measure over the phase
space is product, its evolution is product too. This proposition is part of a theorem, proved
by Lanford, which deduces BE from Newton equations.

First step is establishing the correct limit. This is done by rewriting Liouville’s equation
in a different form and scaling variables as

rT=¢cq, t=¢€T

In order to operate with meaningful quantities, we introduce marginal distributions fJN of
the full probability density v over the N-particle phase space:

(v, g5, 05,8) =/de+1de+1---dQNdUNfN(Ch,Ul,---,QN,UNJ)

7



All functions are symmetric under the exchange of two particles. The pair interaction
potential has range 1 in microscopic unit; thus in macroscopic ones, it is vanishing as ¢.
The total volume of the N particles is order Ne® and has to go to zero if we want to
approach the situation described by BE, as seen above. However, let us introduce scaled
marginal distribution

gjv(xl,vl, ce T, Uf) = 6737'J;]N(671x1, Viyeey € T4, 05)
which satisfies a BBGKY hierarchy induced by Liouville’s equation:

j j o
(at‘i‘;vi'vwi) gj{v_}_zzg_lF (iCz 6-Tk) .Vvigjv:

i=1 ki

N —j T; — Tjx1
- /dxj+1/dvj+1F (%) 'V'vj+19ﬁ1

The second term on the left hand side has a L' vanishing norm; thus the relevant term is

that on the right hand side. There the integral is order €3, so we get a finite object if N
scales as e 2. That is exactly the low density limit quoted above. Summarizing

N =00, € =0, Ne2=)\"!

Second step is to write the BBGKY hierarchy again in a different way. Now we change
slightly notation, rewriting Liouville’s equation in macroscopic variables and setting the
range of the potential equal to €, with N diverging in such a way that Ne? = A\~!. Moreover
let us define

fJN(.’L'l,Ul, - ,ﬁEj,’Uj, t) =
J N

/d$j+1d7)j+1 ...dxyduy H H X({ll‘z — .’L‘k| > 8})fN(IE1, Viy,..., TN, UN,t)
i=1 k=j+1

The functions fJN are asymptotically equivalent to the marginal distribution fJN . They
satisfy the modified BBGKY hierarchy

athN + EijN =e*(N - j)C;,ijjAfrl
with
Cf-,jﬂfﬁl(m, Viyooos Tjy V5) =

1 J
o) Z/ da(xj+1) /dvj+1ni,j+1 - (v — Uj+1)fﬁ1(331,7)1, <o Tjgs Uj+1)
€71 Jau(xy)



where 0,(X;) = {z € Mo {ylly — 24| > e}z — z:| = e} and ny; = (2 — 2;) /| —a5]. A
solution can be found in form of a perturbative expansion:

t t1 tm—1
ij:Zng(N—j)(N—j—1)...(N—j—m—|—1)/ dtl/ dtg.../ dt,
0 0 0

m>0
Us(t —t1)C5 i1 - - Ut — tn) C 1 s U (bm) o
where fé:]j is the initial datum and U*®(t)g;(z1,v1,. .., 2;,v;) = gj(<I>j_t(x1, Viy..,Z5,05); P

is the j-particle hamiltonian flow. It can be proved that the sequence { ij } converges as
N goes to infinity to the solution of the so called Boltzmann’s hierarchy

J
Oufi + Z'Ui Vo fi = Cijnfin

i=1
where
J
Cijrrfim (@i vn, . aj,0;) = A7 Z/ dvj+1/de(|vk )
k=1 5+
[fj+1(xlavia ey Ty Vs - - ,$j+1,U;'+1) — fir1(T1, 015+ Thy Uy -+ -5 T 1, Vjig1)]

Indeed if we write f; as a perturbative series

t t1 tm—1
fj=ZA‘m/0 dt1/0 dtg.../o dtm

m>0

Ut —11)Cj g1 - Ultmo1 — tm) Ciam—1,j+mU (tm) foum

where U is the formal limit of U¢, then it can be shown, for suitable short times, the
convergence term by term of the series defining fJN and the existence of a dominating
convergent series.

A remarkable property of the Boltzmann’s hierarchy is the propagation of chaos: if the
initial datum is a product measure

J
foj(@r, 01,000 25,05) = H fo(@k, v)
k=1

then the solution is still a product

J
fj(l‘l, Viye ooy .Tj,’l)j) = H f(ﬂ?k, Uk,t)
k=1

where f is the solution of the BE with initial datum f;.



Boltzmann equation, which describes an irreversible dynamics, thus arises from micro-
scopic reversible equations as a limiting process characterized by a vanishing density of
particles.

If we want to measure the average behaviour of some system observables, we can define
an empirical distribution

1 N
MUN = N Z 5wj,vj
j=1

and use it to compute the mean values. Lanford’s theorem is really a law of large numbers
because it allows to prove that those mean values, which depend on the specific motion
of each particle, can be approximated by the mean values computed with respect to the
solution of BE. Indeed as a consequence of the convergence of marginal distributions one

)—>0

when N goes to infinity. That means two things: the behaviour of each particle is substan-

have that for any smooth function ¢ and integer m

E(‘/f(z,v,t)qﬁ(w,v)—/,uN(d:v,dv,t)gb(x,v)

tially the same of each other. It is not really surprising because they are indistinguishable
and in the low density limit they become practically independent. Second, in the limit
N — o0, the behaviour of each realization becomes identical to the mean one.

1.1.3 From Boltzmann Equation To Euler Equation

In practical situations, the mean free path, although the density is very low, is still far
shorter than any macroscopic length as, for example, the size of the container of the gas.
That scale separation can be exploited to derive hydrodynamics from BE through a rigorous
proof of the local equilibrium hypothesis. The validity of such a result is only limited by
the existence of smooth solution to Euler equations (EE), being matter of present research
how to extend it to the case with shocks and singularities.

Boltzmann’s collision operator Q(f, f) admits a more general formulation:

Q) =5 [ do [ dvB(o— 0 )W) + FDg0) — F0)gl0.) =~ F(w)g(0)]

where B is the differential cross section of the scattering between two particles and the
apex denotes outgoing velocities. Now, by symmetry arguments, one can write

/ Ah(n)QUF,0)(v) = ¢ / dodv, dwB(jv — v.],w)[h(v) + h(v.) — h(s") — h(2')]
F)g(0)) + Fl)g(@) — F0)g(o,) — F(v.)g(v)]

10



which shows that [ dvh(v)Q(f,¢)(v) = 0 if and only if A is a collision invariant, that is
h(v) 4+ h(vs) — h(v") — h(v)) =0

We suppose that the collisions between particles are elastic, so collision invariants are mass,
momentum and energy and any linear combination of them:

o) = 3 caxav)

where 1
XO(U) = 1’ Xa(v) = Vg, O = 1a .- 'a3, X4(U) = §|U|2

If we multiply BE by x, and integrate over v, we obtain the system
Op+V-[pul=0 (1.2)

3
aulpuil + Y 0 [pusu; + iy =0, i=1,...,3 (1.3)

i=1

o [p<%2+e)]+v-[pu<%2+ge>+q]=o (1.4)
where we introduced
o, 1) = /dvf(r,v,t)
pulr,t) = / dvov f(r,v,1)
pe(r, 1) = /dv%(v W) f(r, v, 1)

the density, stream velocity and energy and

I, = /dvf(r, v, t)(vi — u;)(vj — uj)

the stress tensor,
0= [ ot - w0 - u)

the heat current vector. System (1.2) is not closed in p, u and e because we need to know
f in order to compute the stress tensor and the heat current vector.

In the kinetic context, because of the low density regime we are dealing with, the local
equilibrium distribution simplifies to the so called local maxwellians, the potential part

11



being irrelevant. Local maxwellians are maxwellians with respect to the velocity, but the
parameters depend on space and time:

_ (v—u)2
e T

M(p,u,T,v) = [27TT]%
If we set f = M, the heat current vector vanishes, the stress tensor yields the equation of
state of perfect gases II; ; = pT'6; ; and e = 3T/2, while the system (1.2) becomes Euler’s
system of equations. But there is a major problem: local maxwellians are not solution of
BE. Just in case all parameters are constant, M can solve BE.

However that difficulty is not surprising because EE belongs to macroscopic world and
cannot be linked to BE, which lives on a kinetic scale, but in a suitable limit. In other
words, if we call € the ratio between kinetic and macroscopic units of length, then we
expect that local maxwellians approximate the real solution of BE when ¢ goes to zero.
Then let us define

fe(z,v,t) = f(e,v,e7 1)

which solves the scaled BE
0f +v- Vol = 2QU, )
It is clear that, when € — 0, to avoid singularities f¢ has to be such that
lim Q(f%, /%) = 0

that is f¢ has to approach a local maxwellian, because it can be proved that the only
solutions to equation (1.5) below are local maxwellians . All this stuff can be made rigorous
by mean of the mathematical tool known as Hilbert expansion. The idea is to find a solution
to the scaled BE as a power series

F=>
k=0

In order to compute the f; coefficients we plug the series in the equation and equate terms
of the same order in ¢. The order ¢! gives

Q(fo; fo) =0 (1.5)

that is fy is a local maxwellian. Now, where do Euler equations arise from? They are
simply solvability conditions for the equation of the following order &°

2Q(fo, f1) = Oufo+v- Vi fo (1.6)

12



Recalling that fy is a maxwellian M, we recognize in the left hand side the Boltzmann’s
linear operator

Lf=2Q(M, f)
This operator has very good properties over the Hilbert’s space defined by the inner product

(f.9) = / oM~ () f(0)g(v)

The kernel of L is spanned by the collision invariants multiplied by M:

4
KerL:{f|f:anMXa, e €R, a=0,...,4}

a=0

Thus the equation
Lf=y
may have a solution only if g stays in the orthogonal space to KerL. In this case, because
of the quoted good properties of L, we can state that there is a function f, in (KerL)*
such that Lf, = g and it is unique. Then we can add to f, any function f in KerL. f
is known as hydrodynamical part and its arbitrariness allows to fulfill the compatibility
conditions of the following orders equations.
If we go back to (1.6), we see that the solvability conditions

(Mxa,9), a=0,...,4

yield exactly Euler equations. The picture is the following: at the lowest order in ¢ the
solution to BE is given by a maxwellian, whose parameters satisfy EE. It means that
the local equilibrium hypothesis become true in the scale separation limit ¢ — 0 and the
smooth changes between the parameters of small macroscopic cells are ruled by EE.

But something is still missing, because we do not know whether Hilbert’s series con-
verges or not and because it is not clear how to assign initial conditions to completely
fix the hydrodynamical parts of the following orders. The latter problem can be fixed by
a suitable initial layer expansion, that is by supplementing the solution with corrections
which are effective only for kinetic times, far shorter than e 't. For any macroscopic time,
these corrections disappear exponentially fast in €, but when ¢ & ¢ they provide the correct
link with the initial conditions.

As to the convergence of Hilbert’s series, it can be replaced by a truncated series with
a reminder:

N
fr=) & fat e Ry
n=0

What is unusual is that in general m # N + 1. The problem can be definitively solved by
showing that a suitable Rj ,, does exist and it is bounded.
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All that program has been realized. Thus in the particular regime of low density,
through the proof of the hypotheses of a law of large number and of a local equilibrium, a
rigorous link between microscopic equation and macroscopic ones has been established.

1.1.4 Problems Related To The Derivation Of Navier-Stokes Equa-
tion

Boltzmann’s H-theorem shows that there is a Lyapunov functional for the system, that
is a quantity which is monotone in time, increasing or decreasing along the solution flow.
Then BE has a nature intrinsically irreversible, in contrast with the reversibility of Newton
equation. The relaxation to equilibrium may be thought to come with some dissipating
effect; but we saw that with an hyperbolic scaling (z = ¢~ '/, t = e7't') we get EE that
is not dissipating anything. That should not be surprising, however, because we know
the deep relationship between dissipation and diffusion. The latter is characterized by a
growth of the size of domain where the gas is diffusing which goes as t2. Then we expect
to see dissipating effects arising from BE only after a much longer time. For this reason

2¢'. Unfortunately this scaling

one can try a so called parabolic scaling: z = e~ 'a', t = &~
does not yield any regular behaviour for the system.

Of course we started that story from the end. Actually also in the frame of the hyper-
bolic scaling one can try to compute corrections to EE which provide a dissipating trend.
This is the most natural thing to do, having worked with Hilbert expansion, because it
allows in principle to derive all the corrections to the local equilibrium.

Denote the substantial derivative with D; := 0; + v - V; then the function f; is given
by

fi=(f)pm+ h

where the parameters of M solve EE and fl is a linear combination of collision invariants
multiplied by M:

4
fl = MZCS)Xa
a=0

The functions ¢4 are determined by the solvability conditions of the next order equation.
They give the order € corrections p;, u; and 77 to the hydrodynamical fields p, v and 7.

So we can introduce
pe=pt+ep, ue=uteu, T, =T+l

and evaluate their time derivatives in order to find a system of closed equations which they
satisfy. But it is not possible because in order to close the equations one obtains greater
order corrections are needed.
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A solution to that obstacle is provided by a suitable resummation of Hilbert’s series,
called Chapmann-Enskog expansion. Its starting point is the following expression for f¢

ff=M+eG*

where the parameters of M have to be yet determined and G° is required to have null

projection on the kernel of L,;, that is the linear Boltzmann’s operator associated to M.
The scaled BE is now

DtM + €DtGE = L]\/[G6 + EQ(GE, GE) (17)

If we denote by Pj; and Pj; the projectors on KerLj; and (KerLj;)* respectively, then we
can subdivide the above equation in the two following relations

PMDtM + EPMDtGE =0 (18)
Pi;DiM + Py D,G* = Ly G* +eQ(GF, )

because the right hand side of (1.7) lives entirely in (KerLy;)*. Then, thanks to the
assumption Py,G¢ = 0, we can rewrite (1.9) as

G° = L} P-D,M + L} (P5D,G* — Q(G*, ¢°))

In the right hand side, the second term is surely of order greater or equal to €; thus we can
choose as a first approximation to GG the function G, defined by

Gy = L,; Py;DiM

(G still depends on ¢ and this is the major difference with Hilbert expansion. We denoted,
committing a slight abuse of notation, the inverse operator of the restriction to (KerLy, )
of Ly with Ly;. G can be written explicitly as a functions of the hydrodynamical fields
which parameterize M. Thus, replacing G° with G in (1.8), we get

PMDtM + €PMDtG1 =0
which is equivalent to the system

Op+ V- (pu) =0
pou+ p(u-Viy)u+ VP =V, (1.Viu) + Vi(0:Vy - 1) (1.10)

3
SPOT + plu- Vo) T) + PV - u= Vs (5.V,T) + Ve (Vau)? + 0. (Vau)?
where P is function of p and T through the equation of state of ideal gases and
VU = €V, 0. = €0, K. =E¢€K
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with v, ¢ and k, respectively the shear viscosity, the volume viscosity and the heat con-
duction coefficient, given by formulas of Green-Kubo type.

The system of equations obtained is known as Navier-Stokes-Fourier system. But the
coefficients v,, 0. and k. are of order ¢, while in the true Navier-Stokes-Fourier equations
they are finite. Only in presence of very large spatial gradients or waiting for a sufficiently
long time, needed in order to make the effect of the second order differential operators
appreciable, the dissipative nature of those equations arises.

Obviously, we could consider different scheme of resummation from Chapmann-Enskog’s,
leading to macroscopic equations other than those above. But Navier-Stokes (NS) equa-
tion is confirmed by a huge number of experiments and this is the reason why one wants
to derive it and not something else. The great difficulty in deriving NS from a scaling
argument is its lack of scale invariance. All equations describing a dynamics resulting from
a limit of scale separation are invariant under such scaling. Let us see what happens if we
try to scale the variables in NS as

z=c¢'2, t=c"%

The equations, which in their natural form are as in (1.10) but with finite transport coef-
ficients, become

Opp+e V- (pa) =0
POyl + €7 p(lh - Vo )it + Vo Pl = €27V - (0Vpil) + Vo (6Vy - 1))
3 . SN .
SPOuT + ' [p(a - Vo) T) + PV - il] = 27V - (AVoT) + 2(Varit)” + 6(Vr)’]
The hat denotes the scaled functions: f (2',t") = f(ex', e%'). It is apparent that no choice
of a can make the equations invariant. But if we scale the velocity field in a different

manner, that is
u(e ! e7") = e*ta(a’, t') (1.11)

and we take a = 2, there are some chances, in a suitable regime, that the equations result
invariant. In fact with that scaling and removing the hat over the scaled functions, the
equations become

Opp+ V- (pu) =0
POyt + p(u -V )u+ e 2VyP =V - (vVpu) + Vu (oVy - u)

gﬂ[aﬂT +p(u - Vu)T)+ PV - =V - (Vo T) + E2V(Vou)® + 0(Veu)?]

The additional scaling (1.11) implies that the velocities have to be small compared to a
macroscopic reference velocity as, for example, the sound speed. The ratio between the
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average velocity of the system and the sound speed is known as Mach number. So condition
(1.11) determines a regime of low Mach number.

Moreover we see that the term containing the pressure P in the second equation above
might exhibit a divergent behaviour. Then it is required that the pressure is constant till
the second order, that is, if

P=Py+ecP, +&’Py+...

then it is necessary that
VoPy=0, VuaPr =0

If the gas is ideal then there is a relationship between P and p and T: P = pT'. Above
requirements can be fulfilled supposing that the density and the temperature are constant
at the lowest order

p=l4ep+..., T=14+e0+...

(with a suitable choice of units) and that the following equation holds

Vau(pr+6)=0

That relation is known as Boussinesq condition. The asymptotic analysis of the system
described by above equations yields a subset of NS called incompressible Navier-Stokes
equation (INS). Thus we expect to obtain INS by starting from BE and scaling space and
time as

g=c¢lz, T=¢"%

where (g, 7) are the microscopic variables and (x,t) the macroscopic ones. Of course a
specific choice of the initial datum is needed to ensure the smallness of the velocity and
the validity of the Bossinesq condition. Let us introduce

fo(@v,t) = f(e7'z,v,e7%)

Then BE is rewritten as
1 3 1 & &
(@+~anf:=7QU,f)
£ £
The initial datum is f¢(-,-,0) = fg(o)(-, -) and is such that
2
‘/@ﬁ®=1+w9+0@%‘/m%ﬁ®=1+w®+0@%

with the Boussinesq condition
V(" +6©) =0
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and
/dvvfs(o) =ecu® + O(¢?)

which implements the low Mach number regime. A possible choice of fg(o) that fits all the
above requirements is

0 v—su( )
f(O) = ME¢ = 1+ Spg ) 67 (2(1_,_56(()0;?
R D R ONEE
with p(o) = —0. Now one can proceeds as in the case of Euler equation, by expandin
1 g

the solution as a power series in ¢:
fE = Mf+€2f2+€3f3+...

where M; has the same functional form as M but all its parameters depend on time. The
¢ order term is absent because if we wrote it, by the equation would follow that it lives in
the null space of Ly and as a consequence it can be absorbed by My itself.

As we have just seen deriving EE, all relevant relations come from solvability conditions
for the equations that specify the functions fr. Thus from the compatibility condition for
the equation of f, we have that

Veu=0
V(0 +p1) =0
They mean that the fluid is incompressible and the Boussinesq condition has to be satisfied
at any time. Going on to the next equation, we get
ou+u-Vyu+Vep=vAu
5
The first equation together with the incompressibility condition gives the INS. The function
p is now an unknown term, there is not an equation of state. The last equation is the heat
equation with a transport term and can be solved after INS and independently of it. At
the end one can choose p; = —f and the system is completely satisfied. Again v and k are

given by formulas of Green-Kubo type.
A theorem can be proved which formalize above sentences.

1.1.5 Vlasov Equation

Boltzmann equation can be derived successfully if the interaction potential is short ranged.
Indeed the low density regime would be ineffective if particles were able to interact at long
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distance too. But if the potential is long ranged and weak, then one can hope to describe
its effect as a cumulative contribution from all interacting particles. In other words it
become possible to replace the complex interaction of a particle with all the others with
an average potential.

In presence of an external force field we can repeat the heuristic derivation of BE; besides
the transport term, now a new component appears that measures the rate of change of the
one particle probability density due to an increase or decrease of velocity produced by the
force F;. Thus we can write

Oft = —v-Vofy = F-V,f (1-12)

Now if the particles interact via a potential U, the average force acting in the point z is
Fi(z) = —/dw'dv'ft(x', V' )\VpU(x — )

To be precise, the force so obtained is that produced by a single particle distributed accord-
ing to f; in the point z. In fact f; is normalized to one. In order to get the total force we
should multiply by the number of particles N. Moreover we expect a good approximation
only for weak potentials. A way to implement these considerations is to replace U with
U/N. Thus the force is really Fj.

We obtain Vlasov equation (VE) by using this definition of F} in (1.12):

Oifi(z,v) +v -V fi(z,v) = </ dz'dv’ (2! 0" )V U(z — x')) Vo fi(z,v)

VE can be easily generalized to measures that are not absolutely continuous with respect
to dzdv, by replacing fidzdv with pu(dzdv), multiplying by a test function g and formally
integrating by parts:

Ouir(9) = (v - Vzg) — pr X pe(VorU(z = 37) - Viyg) (1.13)

where
pe(g) = / pe(dzdv)g(z,v)

That form of VE allows an easy verification of the validity of the procedure followed above
to derive it. Indeed if we choose as initial datum

o(dzdv) Z d(q — v)dzdv
then the solution of (1.13) at time ¢ is

¢(dzdv) Z 5(q,(t (pj(t) —v)dzdv
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where the functions ¢;(t) and p;(t) verify a set of equations that we are going to deduce
by inserting the above expression of y; in (1.13). We obtain

Z 9:9(q;(t),pi(t)) = ij(t)-vwg(qj(t),pj(t))—% Z VU(g;(t)—ax(t))-Vug(g;(t), pj (1))
But
d d
9:9(q;(t),p(t)) = 0 Veg + pi Vg

so we can identify the coefficients of Vg and V,g respectively:

9 0) = (0

%pj(t) = —% > VaU(g(t) — (1))

Those equations are simply Newton equations for N particles interacting via a potential
U/N.

As for BE, VE can be derived from those Newton equations rigorously. Of course a
limit procedure is required, specifically we have to let N go to infinity. That limit can be
interpreted as a scale separation limit simply by imposing that the density stays constant.

In fact
N

p~
|A|micr

where |A|yer is the volume of the container A in microscopic units. In macroscopic units

NN
PN

Thus when ¢ — 0 the number of particles has to diverge as N ~ ¢ %, being d the dimension
of the space.

VE is widely used in plasma physics where it is coupled with Maxwell equations. We
shall develop a model which inherits from VE the idea of replacing the actual interaction
with an average of it. The potential used will be of Kac type, that is weak and long ranged.
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1.2 Phase Segregation

We deal with nonlinear non-equilibrium phenomena describing the separation of the phases
of a mixture of two or more components.

Consider for simplicity a mixture of two fluids or a binary alloy. When the system is
suddenly quenched to a temperature below the coexistence curve, a coarsening starts which
leads from the homogeneous phase to a situation where two phases coexist, each rich in
one species, separated by an interface. But let us begin from the description of a simpler
case, that is the coexistence of the phases of a single substance.

1.2.1 Equilibrium Of The Phases

A system in thermodynamic equilibrium can exhibit more than one phase, depending on
the values of the temperature and the pressure, for example. A phase is a state of the
body characterized by an order parameter or by a particular symmetry. The liquid and
the vapour phases of water are distinguished by the values of the respective densities, but
there is no difference as to spatial displacement of the molecules. On the contrary the solid
state of water has a peculiar symmetry which allows to recognize that phase without any
doubt. Actually we note in advance that the distinction between vapour and liquid is quite
formal and beyond a certain temperature it looses any sense to speak about two different
phases (existence of a critical point).

There are three kinds of conditions determining the coexistence of different phases at
equilibrium. The first two are the equality of the temperature and the pressure. If we
ask for only two coexisting phases, then let 77, P, and T5, P, be their temperatures and
pressures. At equilibrium we have

=T,

and
P1:P2

The third type of condition involves the chemical potentials y;, ¢ runs over the phases. At
equilibrium also chemical potentials have to coincide:

/L1(T, P) = Mz(Ta P)

where T" and P are the values of temperature and pressure of the two coexisting phases.
In general we can expect that a whole curve in the plane (T, P) corresponds to a situation
of phase coexistence. It means that above that curve the system is homogeneous and all
the volume is occupied by, say, phase 1. For values of temperature and pressure below
the curve, it is phase 2 which fills all the available space. If (T, P) lies on the curve, then
the volume is divided in two or more parts by interfaces between the two different phases.
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Experimentally it can happen that a sample of a substance can stay in a certain phase
also if the values of temperature and pressure pertain to a different phase. Of course those
values have to be quite close to the coexistence curve. In that case the state of the system
is not of equilibrium and it is then called metastable.

If we switch to the plane (v,T) of the specific volume and of the temperature, then
the picture changes considerably because there is no more equality between the specific
volumes of each phase, then there is no coexistence curve. The plane is divided in domains
where the system stays in a particular phase; but there is also a region of values which
do not correspond to any equilibrium state. Consider for simplicity a fixed temperature
at which only two phases (e.g. liquid and vapour) can coexist at most. Then, keeping
constant the total mass M (and the pressure) too, we increase by degrees the volume V.
If at the beginning the system was in a liquid phase, it stays liquid until a precise volume
V, is reached. At that point the vapour phase appears; the respective fraction of volume
and mass is initially very small, but the specific volume has already a well defined value.
Also the specific volume of the liquid is now frozen to the value V,/M. Progressively the
liquid phase disappears and when a volume V}, is reached, the whole system is in the vapour
phase.

There is a simple rule which links the mass of each phase and the value of the specific
volume. Let M; and V; be the mass and the volume of phase i. Then

Mi+My=M, Vi+Va=V (1.14)

Moreover, if V, <V <V, then

Vi_, V_,
Ml_a’ M2_b

where v, = V,/M and v, = V,/M are constants depending only on the temperature (and
the pressure). We can rewrite the second relation of (1.14) as

Vo My + My =V

We have a system in the unknown M; and M,. The solution is

_Mu=V o, V= My

M, ,
Vp — Vg Vp — Vg

It follows that

which is equivalent to



known as the lever rule.

From the equalities of the chemical potentials p; and ps above, we have inferred the
existence of a curve in the plane (7, P) whose points correspond to states of the system
where two phases coexist. But there are points where three phases can appear at the same
time. Indeed in principle if we require that

pi(P,T) = pa(P,T) = ps (P, T)

we can still find a solution to that system. Of course it is not possible that more than
three phases can coexist. The points where three phases are present are called triple points.
They are the intersection of the coexistence curves of phase (1,2), (1,3) and (2, 3).

For any fixed value of the pressure, we can plot the chemical potentials of phases 1 and
2, say. The point of intersection at temperature 7T, specifies the phase transition, in the
sense that if T < Tj the system is in the phase with the lower potential and when T > T
the equilibrium is characterized by the other phase. The heat transferred from or to the
body during the transition is linked to the derivatives of p; and po in the point 7y. In
fact it is given by ¢ = Ty(so — s1), where s; is the entropy of phase i; moreover one has
that s; = —0u; /0T, thus ¢ > 0 (heat is absorbed from the ambient) if we are going in the
direction of higher temperatures.

1.2.2 Critical Points

As mentioned above, phases can be distinguished by quantitative means by measuring,
for example, their specific volumes or by qualitative considerations respective to their
symmetry. In the former case it can happen that the coexistence curve stops in a point.
For values of the temperature and of the pressure greater than those of that point, the
two phases coincide, any distinction between them looses sense. Those points are called
critical.

In presence of a critical point, in the plane (v, T’) the domain of unstable states acquires
a typical bell shape. At the vertex of the bell is located the critical point. There the
specific volumes of the coexisting phases are the same and so there is no more quantitative
distinction.

Following a line of reversible transformations surrounding the critical point, it is possible
to go from a phase to another without crossing the coexistence curve, that is the two phases
never come in contact.

If the phases have different symmetry, than a continuous path linking them can not
exist. As a consequence there is no critical point and the coexistence curve goes to infinity
or stops in the intersection with another curve.
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1.2.3 A Simple Model Of Droplet Growth

When a sample is led below the coexistence curve by lowering the temperature, a germi-
nation of the second phase begins through the appearance of droplets. Just to give a first
impression of the type of problem we are dealing with, we briefly report of a classical model
of droplet growth, which although very simple is able to capture some interesting aspects
of the system. Consider an Ising model with spins up and down. Let H be an external
magnetic field. Suppose that the temperature 7T is below its critical value 7,: T < T,. This
is necessary to have metastable states, from which the nucleation process starts. When
H > 0 the picture is well known: the system is composed by a sea of spins up and some
isolated droplets of spins down, whose size is microscopic, that is essentially not visible at
the scale of our observation. Let us denote with [ the number of spins down in a droplet.
On average we can think that there is a typical size R, associated to cluster of [ spins.
Then we can study the distribution of the clusters respective to the number of spins from
which they are constituted and we can then deduce the behaviour of R;. Let n; be the
number of droplets built by / spins. At the equilibrium we have

n; = Ne P
where ¢, is a suitable free energy. The natural guess for ¢; is
g =2Hl+ ol T

We recognize two terms. The first on the left hand side is a bulk term which corresponds
to the flipping of [ spins. It is the cost to be paid to have [ spin down in the magnetic field
H. The second term is characterized by the surface tension o > 0 and it is proportional to
the interaction between the spins on the surface of the droplet and those surrounding it.

Until H is positive, when [ increases n; decreases. It means that the size of the clusters
of spins down is microscopic. If we switch the sign of the magnetic field, H < 0, then a
competition between bulk and surface term is primed. It yields a value [, such that if [ <[,
then n; is small, but if [ > /. the size of the cluster becomes macroscopic. All of these are
equilibrium considerations, but we can imagine that during the out of equilibrium process
that leads to the formation of spins down droplets, the small ones shrink while the big ones
grow. Indeed if almost all the spins of a droplet stay on its surface, then the interaction
with the surrounding is able to destroy the droplet. On the contrary a stable droplet has
a huge bulk, which is not sensible to what happens outside.

1.2.4 Multiple Components

Let us generalize the above considerations to a mixture of two or more components. We
suppose that no chemical reaction takes place at equilibrium. Thus we can describe the
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system using the concentrations ¢;, ¢ = 1,...,n, of each component. Of course we have to

n
ZCZ' =1
i=1

which amounts to say that only n — 1 concentrations are independent. The system can

remember the constraint

exhibit several phases containing one or more components. From the conditions deter-
mining the thermodynamical equilibrium of the mixture we can deduce how many phases
can coexist. Indeed, as above, the temperature and the pressure have to be the same for
all the phases of each component. Now let us denote the chemical potential respective to
component 7 in the phase a with u, then for any i =1,...,n

=== 0
where 7 is the number of different phases. Those chemical potentials are function of P and
T but also of n — 1 independent concentrations for each phase. Thus we have 2 4 r(n — 1)
unknowns and n(r — 1) conditions. The system is solvable only if we require that

n(r—1)<2+4+r(n—1) <= r<n+2

that is at equilibrium it is not possible to find more than n + 2 coexisting phases. That
condition is known as Gibbs rule of the phases. We see at once that if n = 1, at most
the system can present three phases in mutual contact; we know that this happens at the
triple point and nowhere else.

If n = 2 and there is only one phase, then to describe completely the system we have
to specify the pressure, the temperature and the concentration of one of the components
in that phase. In fact if we call f = n + 2 — r the number of thermodynamical degrees
of freedom, in the above setting we get f = 3, that is there are three free parameters to
choose. But if we want two phases, then f = 2 and giving the temperature and the pressure
is sufficient to establish the equilibrium values of the concentrations of all the components
in each phase.

From a different point of view, we can think to change the concentration, for exam-
ple, keeping constant 7" and P and observe the system undergoing a transition from an
homogeneous state to a situation in which two phases coexist.

To fix the ideas, let n be equal to 2. We can represent the state of the system with a
point in a three-dimensional reference of coordinates: the pressure P, the temperature T
and the chemical potential p of one of the components. Because of the rule of the phases,
the points corresponding to the coexistence of two phases lie on a surface. Three phases
are present at the same time along a line (triple points line) and four phases can coexist
only in isolated points.

If we replace the chemical potential with the concentration ¢, then the picture changes
slightly. Now a surface is present too, but it divides the space in domains where equilibrium
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is possible and others where a segregation of phases takes place. If we keep constant the
pressure, we obtain from the intersection with the above surface a curve (equilibrium curve).
Suppose to start from a homogeneous state and to increase the concentration ¢. Then two
things may happen: a) the system evolves from a phase to another continuously; b) at a
certain point a new phase appears, where all components have well defined concentrations.
In the latter case we stay below the critical point.

We remark that under the equilibrium curve the system is not stable. If from an
homogeneous state outside the not equilibrium region we suddenly quench the system into
it, then it evolves in such a way that the concentrations converge more or less rapidly to
the values obtained by intersecting the equilibrium curve with an horizontal line at the
temperature of the cooling. Thus if the sample is quenched deeply below the equilibrium
curve, spatially we observe regions where the concentration of the first component is low
and that of the other is high and regions where the opposite happens. We decide to
study that system at a scale where the layer separating the phases is reduced to a surface
called interface. In this situation the evolution of the system towards equilibrium can be
accounted of simply by describing the geometrical motion of the interface.

1.2.5 Nucleation And Spinodal Decomposition

Till now we dealt with equilibrium states, but the process which lead the sample from an
homogeneous single phase condition to a two phases non homogeneous one goes through
a sequence of not equilibrium states characterized by complicated structures that grow
finally into droplets.

We specialize to the case where a critical point is present. In that situation the coex-
istence curve has a typical bell shape and the critical point is located at its vertex [GSS].

We also anticipate that because the initial and the final states are of thermodynamical
equilibrium, a free energy function does exist and it provides the driving force of the whole
phenomenon. If the final states was not of equilibrium, it would not be obvious to write a
proper Lyapunov functional.

A classical approach to phase segregation distinguishes below the coexistence curve a
region of unstable states from one of metastable states. If the system is cooled inside the
metastable region, it begins to develop finite amplitude fluctuations like droplets. This
process is known as nucleation. On the other hand, if we quench the system into the
unstable region, infinitesimal fluctuations appear that yield macroscopic pattern. That is
called spinodal decomposition. In late stages of phase segregation, the two process tend to
coincide.

Also if nowadays it is not believed that a sharp distinction between nucleation and
spinodal decomposition exists, we can formally define a line separating the unstable region
from the metastable one by requiring that a suitable susceptibility diverges on its points.
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In a mean field frame, the graph of the chemical potential as a function of the concentration
exhibits a Van der Waals loop: stable states correspond to points where the first derivative
is positive; unstable states are associated to negative first derivative; the classical spinodal
points are those where the first derivative vanishes. Indeed the susceptibility can be defined
as the inverse of dp/0dc.

1.2.6 Germination Of The New Phase

The first stage of phase segregation is characterized only by stability criteria, in the sense
that the growth or the disappearance of a concentration fluctuation rely on energy balance
considerations.

In the framework of a simple mean field theory, we expect that a fluctuation of the
concentration in a point r is favored or not according to the sign of the susceptibility in 7.
Indeed that sign corresponds to that of the curvature of the free energy as a function of
the concentration.

In the metastable region, the susceptibility is positive. As said above droplets start to
grow; but their size has to be such that the gain in free energy is greater than the loss due
to surface tension. Thus a critical size exists and if droplets are smaller than that, they
are going to disappear.

Below the spinodal curve, the susceptibility is negative, then in principle all fluctua-
tions may develop. But now also, if the size of the new structure is too small, it is not
energetically favored. On the other hand, large fluctuations have a very low rate of growth.
So a typical length arises here too, which corresponds to the fastest growing patterns.

1.2.7 Experimental Techniques

There are two main methods to study experimentally phase segregation and structure for-
mation: direct optical observation and small angle scattering of X-rays or neutrons. The
former gives interesting information on the spatial distribution of droplets and intercon-
nected patterns arising during nucleation and spinodal decomposition. The latter provides
an easy measure of the mean amplitude of the fluctuations which destroy the unstable or
metastable states, yielding to the thermodynamical equilibrium of two phases.

During an optical observation, one sees small droplets growing if initially the sample
was quenched in the metastable region. The interface between different phases is initially
diffuse but it sharpens more and more.

With scattering techniques the Fourier transform of the average of the product of the
concentration in two different points is measured. It presents a maximum corresponding to
the inverse length which characterizes the size of the droplets. It is so simple to estimate the
temporal dependence of the dimensions of the growing structures. We will see that a power
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law is expected and the exponents can be found by some properties of scale invariance of
the system.

1.2.8 Scale Invariance And Power Laws

As said above, nucleation and spinodal decomposition become indistinguishable in late
stages of phase segregation. Indeed droplets originated by nucleation can merge, thus
building up more complex structures characteristic of the spinodal decomposition.

Moreover the thickness of the interfaces vanishes and the only length scale of the system
is given by the average domain size, call it R. One can assume a space time invariance
of the evolution and then a power law dependence of R is expected. In other words, the
dynamics is such that if we get a shot of the concentrations, for example, at time ¢ and then
another one at time 5'/%t and we zoom out the latter by br, then they can be superimposed.

In general it may be necessary to scale the observable also by b=¢. So let F(r,t) be a
function such as the concentration; then we suppose that

F(r,t) = b=F(br, bat)
All the information is brought by F' at time 1, say. So we can put
bt =1
and write
F(r,t) = t“F(rt°,1) = R°F (1) , F()=F(,1)
where we introduced the length scale
R=1"

We are interested in the exponent a, because it can be measured experimentally. There
are large classes of system exhibiting the same exponents.

By our scale invariance assumption, using a simple model of a dissipative system with
a conserved quantity, it is possible, but not shown here, to establish the following formula

f :
or a 1

T d+2+C—h
where d is the dimension, ¢ and h are the scale exponents of a mobility function and of

a

an energy function respectively. Their values are determined by the physical specifications
of the system. If the surface mobility, that is the individual motion of atoms on the
interfaces, is predominant, then ¢ = 1; if, on the other hand the bulk mobility, that is the
individual motion of atoms inside the domains, is the most relevant, then ( = 0. For fluids
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the convective motion of the droplets determines the value ( = —2. As to A, if thermal
fluctuations are effective then h = 0; if surface tension dominates then h = d — 1.

In a solid (alloy) the bulk mobility and the surface tension are the most crucial effects
and then

1
a=—

For a liquid the surface tension is effective and ( = —2, so
a=1

Of course there are situations where those exponents are not obtained exactly.

A peculiar case is represented by highly viscous fluids or by polymer blends. In fact
they are liquid but they are expected to be ruled by dynamics of Mullins-Sekerka type,
which provides a growth law as R oc t'/3.

1.2.9 Reducing Gravity Effects

Any experiment on earth has to face the presence of the gravity field. Of course in a
great variety of situations its effects can be neglected, because with respect to other forces
involved gravity may be often considered weak. But it is obvious that in phase segregating
system the ultimate spatial configuration of the domains is ruled by gravity. Indeed the
lighter phase ends to stay on top of the heavier one. Convection flows arise that modify the
growth process of domains. In order to isolate the intrinsic characteristics of the process
of phase segregation it is useful to establish experimental methods able to reduce or even
to cancel gravity influences [BGP].

It turns out that the relevance of all known and remarkable effects of gravity is measured
by the product

gop

of the intensity g of the gravity field and of the difference dp between the densities of each
components. Then there are two ways: a) microgravity experiments, b) matching of the
densities through the modification of the proportion between different isotopes of one of
the components.

The validity of the approach b) has to be tested by comparing its results with those of
the experiments carried out in microgravity conditions. It has been done for mixture of
cyclohexane (C') and methanol (M). These fluids have densities very close to each other:

pc ~ 0.77g/cm?
par =~ 0.79g/cm?

In order to match more accurately the values of the densities it is possible to modify the
isotopic concentration of cyclohexane. Indeed a deuterated version of C, call it C*, has
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density
po+ =~ 0.89g/cm?®

Denoting with M, Vi and Mg+, Vo« the masses and the volumes of C' and C* respectively,
we require that

Vot Ve M
But M M
Vo=—2, Vo= —2
Pc P
SO Mot M
c c*
Mo e = PV (1.15)
pC po
Now let 2 be the concentration of C*:
Mes Me
r=——— l—o=——-"
Mc + Mc- Mc + M-

then, if in (1.15) we divide numerator and denominator on the left hand side by M¢+ Mc-,
we obtain

1
l—z r Pm
o T por
Solving with respect to x yields
= pc-(pm — pc)
pum(pct — pc)

It means that in order to match the densities of methanol and cyclohexane a deuteration
ratio x =~ 0.19 is expected to be necessary.

A subtle objection can be put forward regarding the actual nature of the mixture of
methanol, cyclohexane and its heavier isotope. Indeed formally it is a ternary mixture and
no more a binary one. Thus it might happen that the shape and position of the coexistence
curve and the value of the susceptibility are modified. Well, this is not the case. Accurate
experiments were done proving the strict equivalence of CM and C*C' M (density matched)
with respect to the process of phase segregation.

Moreover if some doubt still remains, a lucky circumstance makes the matched densi-
ties approach even more affordable. Indeed, though the densities of the components are
matched, those of different phases may not. It is a fact that in order to compensate such
a difference a smaller deuteration ratio is needed, its value being around 0.03 + 0.04.

As said above the validation of the measures carried on isodensity systems goes through
microgravity experiments. They are performed on rockets able to reach altitudes where g is
reduced by a factor of 10~*. In such condition the duration of an experiment can not exceed
a time of about 10 minutes. Then in order to observe a nearly complete phase segregation,
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the sample has to be prepared over the critical point and then quenched below 7, of a
small amount of about 10m K. It is not easy to perform that task. So the first experiments
gave results difficult to be understood, because no phase segregation was observed. Then
it was shown that a deviation from the critical point of about 1% is able to destroy the
fast linear in time growth process of domains and to slow the segregation, which spends
some hours to complete.

Subsequent experiments were performed, which showed a precise equivalence with earth
isodensity experiments. Indeed interconnected structures arise, whose pattern is identical
to that observed in laboratory.

Just a comment upon the images obtained by mean of direct observation. The droplets
seen are not the whole phase domains, but just a section of them along the thin layer next
to the observer.

Our model disregards completely any external force field and the two species of particle
involved have the same mass. The experiments described above legitimate our simplifica-
tions. Indeed, as we will show, we are able to reproduce the late stages behaviour of a
binary fluid (with very high viscosity) as expected by observation.
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Chapter 2

The Model

2.1 Preliminaries

We want to study phenomena of phase segregation in systems composed by two compo-
nents. In particular we are interested in the late stages of the process, when well defined
domains rich in each species are separated by surfaces called interfaces, whose width is
vanishing. The expression sharp interface is used for this situation. Physically it means
that the width of the interfaces is very small compared to the size of the container.

So two scales are present in the problem: a macroscopic one, that of the container,
which is used to describe the bulk properties; a microscopic one that allows to zoom in the
neighborhood of the interface and to see as regular and smooth the transition between the
phases, that macroscopically appears sharp and not continuous.

Our starting point is the more fundamental that we are able to deal with. In other
words we decide to put our model in a kinetic context, because the space and the time are
continuous but we still manage to perform our computations without too much difficulties.
This would not be possible starting, for example, from Newton equations.

Moreover, phase segregation of binary fluids is often driven by hydrodynamical flows,
which are best described in certain regimes by Boltzmann equation. So it is believed that
a proper coupling of Boltzmann and Vlasov equation can provide a complete description
of the motion of domains along the lines of the velocity field.

The model we propose is a modification of the Vlasov-Boltzmann equation, where the
collision kernel is replaced by a linear (Fokker-Planck) operator over the velocities. Thus
there is no more short range (and hard) interaction between particles, but the system is
put in contact with a reservoir at fixed temperature 3~!. Then energy and momentum
are not conserved and they can not play a dominant role in the diffusive limit which links
the kinetic scale to the macroscopic one. Only mass is conserved. The problem is easier,
but still rich of properties and the approach to equilibrium is not trivial because it is
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characterized by a rearrangement of the shapes of the domains, without the simplification
provided by the disappearance of one of the phase, as in models where no quantity is
conserved at all.

Probably we could admit a short range interaction, but it would have to be weak in
such a way that each component is in a high temperature regime or however far from a
vapour-liquid or a liquid-solid transition. Indeed we want that only two phases are present,
while from a two component mixture we can expect up to four phases.

2.2 Kac Potentials

Particles of the same species do not interact; between different components a long range
repulsive potential U, is active. It is modeled by a compact support smooth function U
and its intensity and range are modulated by a parameter .

Uy(r) =7"U(yr)

In our case d = 3 and U depends only on |r|. We mean that if two particles of different
species are at distance |r| their interaction energy is U, (7).

Kac potentials have been used with success to investigate the equilibrium properties
of a great variety of systems. In fact they solve the inconsistencies introduced by mean
field models. As it is well known, in the infinite volume limit, mean field gives a non
convex free energy. It is thermodynamically incorrect. With Kac potentials, if after the
thermodynamic limit, one performs the limit v — 0, then a convexification of the free
energy is provided. The sequence of limits L. — oo, L the size of the container, and v — 0
is called Lebowitz-Penrose limit. Of course inverting the order of the limits would give
a free theory. Interesting results come from the possibility to take those limits together
choosing, e.g., L = v~

2.3 The Equations

Let f; denote a distribution function on the phase space of a single particle of species
1, ¢ = 1,2. In the following we will write often equations where indexes 7 and j appear
together; we always mean that they may assume the values 1 and 2 and that they are not
equal, that is if 2 = 1 then j = 2 only and viceversa. The equations solved by f; are

where Lg is a Fokker-Planck operator modeling the contact with a reservoir at temperature

B
Lgfi =V, | MgV,
2 (ﬂ (Mﬂ
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and Mj is a maxwellian with mean zero and variance 8!,

3
M5 - (ﬁ) ’ e—ﬂ§
2T

The interaction between particles of different species is contained in F; which is the auto-
consistent Vlasov force

Fi==V. [V, —2) [ o)

The potential U, is positive, that is the force is repulsive. Integrating over positions and
velocities equation (2.1), we discover that the total mass of each component is conserved.
We work initially on a torus to avoid boundary terms.

2.4 Free Energy And Gradient Flux Equation

Now we want to underline the deep relationship between our equations and a wide class
of evolution equations for the density profiles of the system. The dynamics provided by
such evolution equations is, in many cases, directly justified by a microscopic model on a
lattice. Moreover it exactly captures the behaviour of the system at equilibrium. We are
speaking about gradient flux equations, whose form is

-5 (52

where p is the density, o is the mobility and F is a suitable free energy functional. F
decreases along the trajectories of the gradient flux equation and equilibrium is reached
when the density profile equals the minimizer of the free energy. It is well known that the
thermodynamics arising from the Lebowitz-Penrose limit is equivalent to that generated
by the minimization of a proper free energy over a well defined set of density profiles. This
fact allows to go from a microscopic scale to a mesoscopic one where lattice is replaced by
space continuum and powerful analytic tool become available. As to the non-equilibrium
dynamics yielding the free energy minimizing densities, it was proved in several cases,
through a scaling procedure, the convergence of the empirical densities over a lattice to
the solutions of a gradient flux equation. Those links with microscopic processes make us
confident in using gradient flux equations.

Our kinetic equations have got two points of contact with the gradient flux equations.
First, we can define a functional G of the distribution functions which is decreasing in

1

time if computed on the solutions of (2.1). Then, by scaling space as ¢~' and time as

£72 and choosing v = ¢ and sending ¢ to zero, we obtain an equation that can be put in
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gradient flux form. Moreover the corresponding free energy can be deduced by G when the
dependence on the velocity of the distribution functions f; is maxwellian.
Then let us introduce

(fi, ) = [ dodo(fitn fu+ faln fo)+ ) [ dodo(f + fo)o?+
+ﬂ/dxdyU7(x—y)/dvf1(x,v)/dv'fg(y,v')

The derivative of G with respect to the time is

_g (f1, f2) = Z/dmdvatf, [lnfz+1+—v2+ﬁ/dy7 \x—y|)/dv fa]

We notice that
3. 27 9

lnMﬂ———lnF—Ev

from which we can extract Sv?/2. Moreover we replace 0 f; with its expression from the
equations of motion, so we have

2
39050 =3 [ et 90 (1590 (1)) o v

+V,,fz--Vw/dx'73U(’)/|x—x'|)/dv"fj} [ln ]\J/ff; +1-— gln%%—ﬁ/dy’y?’U(fﬂx—y\)/dv’f]}

We recall that we are working on a torus; thus we can put to zero all boundary terms
coming from the use of the divergence theorem. Then it follows that

I 3 2 !
/da:dvvv : (Mﬁvv (%)) [1 -3 lng7r + B/dm?‘Y(vlm - yl) /dv fj] =0
[ tsavv. 59, [ deruia-s) [y [1 — 3w 4s [arpueie-y) [ dv'fy} =0

/dmdv(—v -V fi) [1 - gln 2%} =0

Now let us define

L = /dxdv(—v-vwfi) {ln ]\J;ﬂ +ﬁ/dy’ysU(fy\x —y\)/dv'fj}

= /dwdv (vai . Vm/dx'q/?’U(’ﬂx —x'|)/dv"fj> lnﬂj/f;
B
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Then

= [wiso-[v. ﬁg arUe —y) [avs)

I, = /dxdv(—f,-)
= /d:cdv(—fz-) [VyIn f; + ﬂv] . Vw/dx'v?’U(v\ac — ') /dv"fj

and

' PUGle - o) [ do's; =

So we have
L+ 1 :/dazdv [fzv Velnfi — fiV,In f; - V, /d:v VU |z -2 |)/dU”fj:| =
/dxdv [v Vafi—=VuofiVa /dm YU (ylz - |)/dv"fj] =0

Summarizing it survives only a term:

fz fz
E /dxde (MﬂV (Mg))l M,
But then

d , 2 Ji f - ME i :
£g—;/dﬂﬁdvvu' (M,BVU(MB))IHM __;/ [VU (Mﬂﬂ =Y

It shows that G is a Lyapunov functional for the evolution of the segregating mixture. It

also apparent that at equilibrium the solution has to be maxwellian in velocities, that is
in the form f; = p; Mg, where p; = f dv f; is the density and it depends only on position.

If we fill (2.1) with f; = p;Mp and we require that f; is stationary, that is 0;f; = 0,
then we find the equation

%mM@+/mUMHfMMﬂ=Q (22)

The constants C; are associated to the initial datum and they determine whether a solution
exists and it is unique or not and thus if it can be non homogeneous. If we now compute
G on functions of the form p;Mp, we get the following free energy

Fy(p1;p2) = /dl"(/h In py + pa +In py) + 5/dl‘dva($ —y)p1(x)p2(y)

where we disregarded some terms because we decided to work on a set of densities whose
integral, that is the total mass, is fixed. In this framework the disregarded terms are
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constants and they can not modify the behaviour of the free energy. It can be proved by
a suitable choice of the masses and if the temperature is quite low that F is minimized
by non homogeneous solutions of (2.2). In dimension d = 1, those solutions are called
fronts and from now on they will be denoted by w;. The fronts have good monotonicity
properties, reaching their asymptotic values exponentially fast. They describe the best way
to match the different densities of two coexisting phases. From a macroscopic viewpoint
they appear as step functions. We have that

im w(z) = o
zEI:Eoowl(z) Pi

where pgt is the equilibrium density of component 7 in the phase + or —.
We will prove rigorously in a later chapter that, solutions of (2.1) converge to solutions
of

B*0ipi = Dpi + B - (piVU * p;) (2.3)
in a proper scaling of time and space. The relevant observation is the possibility to rewrite
the above equation in a gradient flux form

)

() ro=(5 )

and F = F;. It means that the free energy which drives the evolution of the macroscopic

where

density p; coincides with that yielded by G when it is computed on distributions maxwellian
in velocities, which are the equilibrium states expected.

2.5 Results

Our results, both rigorous and formal, are obtained through scaling procedures. That tech-
nique allows to exploit the separation between the different scales present in the problem.
As we have already said in late stages of nucleation and spinodal decomposition, a big gap
arises between the size of the container and the width of the interfaces. The latter in our
model, using a non local potential, is determined by the range of the interaction between
different components. Then we can depict several physical situations, simply by adopting
a suitable scaling for ~.

2.5.1 The Macroscopic Equation

In order to converge to the gradient flux equation written above, we need to scale space as
g1 and time as ¢ 2. Moreover if we choose 7 = & we obtain, at macroscopic scale, a width
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of the interfaces which is finite and of order 1. Thus we avoid to loose information on early
steps of the segregation process and we can trust the resulting equation as we would do
with the Cahn-Hilliard equation.

We proved that for any e sufficiently small, the solution of the scaled kinetic equation
ff does not differ from Mgp;, being p; the solution of (2.3), more than a constant times ¢,
with respect to the following norm

h2:/ dxdoM ! h?
W= [ dwdodg? 3

i=1,2

2.5.2 Stefan Problem And Mullins-Sekerka Flow From Macro-
scopic Equation

I and time as ¢7¢

Starting from equation (2.3) we formally show that scaling space as €~
with ¢ = 2,3 we obtain well known dynamics for the densities and the interfaces. We are
now investigating the late stages of phase segregation. Choosing ¢ = 2 we get as limiting
system a Stefan problem, that is a parabolic equation for the densities with boundary
conditions on the interfaces moving with a velocity determined by the gradient of the
densities:

1
8, = 5V (POvi”) in the bulk
lim ﬁgo) (r+hv) =p&  on the interface
h—0%
,52(0) (r,0) = py(r) everywhere

where p; is a suitable initial datum and ﬂgo) is the chemical potential. The velocity of the
interface is given by

_ - v
 Blwi]E

where [-]T denotes the jump through the interface. Thanks to symmetry properties of the

1%

(2.4)

fronts the velocity is actually independent of the index .

When ¢ = 3, the density profiles have reached wherever the equilibrium values and
the dynamics is reduced to the reshaping of the domains following a flow given by a
combination of Mullins-Sekerka and Hele-Shaw motion. They both preserve the total area
of the domains (Hele-Shaw of each domain) while promoting a surface reduction. Spheres
are stationary solutions. We write the limiting equation in the subsection below.

We remark that in order to establish the limiting equation it is not necessary to consider
a dependence of the interface from the small parameter . It becomes essential, instead,
when we try to correctly determine the higher orders correction to the interface motion.
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2.5.3 Mullins-Sekerka From Kinetic Equation

We succeeded, formally, in combining the macroscopic limit and the sharp interface limit
by choosing v = 1 and scaling space as e~ and time as €79, ¢ = 2,3. In this notes we
report only about the case ¢ = 3. It yields a quasi-static motion of interfaces, which is a
superposition of Mullins-Sekerka and Hele-Shaw motion. The limiting equations are orga-
nized in two coupled sets of relations involving linear combinations of the first correction

in the small parameter € to the chemical potential. They are

Ay =0 in the bulk
KS
P = — on the interface
[wl]—oo
1 1 1
V=" |2~ @)[v - VY]" + =[pr-V(]"| on the interface
2B(pf = pr) LP p
and
AC=0 in the bulk
2lo| K
K]t = 9l - Of on the interface

B [wl]—oo
0=[v-V(]" on the interface

All notation will be clear later. We say only that K is the curvature and S the surface
tension.
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Chapter 3

Stefan Problem And Mullins-Sekerka
Flow From Macroscopic Equation

We start the presentation of our results with a formal computation. In the next chapter
we will turn to a rigorous approach which will clarify the relationship between our kinetic
model and the macroscopic equations used in this chapter.

Here we derive from the macroscopic equation arising from our kinetic model a limiting
dynamics for the densities and the interfaces of the mixture under study. At this stage it is
not necessary to consider a dependence of the interface on the scale separation parameter
. It will turn to be important when in a later chapter we will compute the corrections of
higher order in € to the limiting equations.

3.1 The Scaling

The macroscopic evolution of the density profiles of the two components is given by the
parabolic equation

B20,p; = Dp; + BV - (0;VU * pj)

We expect that the late stages of phase segregation are characterized by domains separated
by very thin interface. In order to explore that regime we scale space and time as

T=¢9%, x=¢'r
where ¢ = 2,3 discriminates between a situation where densities are not still equal every-
where to the thermodynamic equilibrium values and they keep evolving and one where in
the bulk there is nothing moving and only interfaces perform an almost static deformation
leading to the final equilibrium state.
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From a macroscopic viewpoint, € is the width of the interfaces with respect to the size
of the container. Let us define scaled functions

P 0) = (e )
which satisfy
BT 200" = DNpj T + BV - (p"VU® % p3?) (3.1)
and
Us(r) =e U 'r)
where d is the space dimension; in our computations we set d = 3. If we introduce the so
called chemical potential

1
= Blnp?q—}‘Ug*p;,q

we can rewrite (3.1) as a continuity equation:

€,q
I

1
SV (02T S
3 (07 1V ;)

Formally the scaled densities can be written as power series of the small parameter €.

—2 €d
eT70p; " =

Moreover we can imagine to use, just around the interfaces between domains, a special
functional form for the coefficient of the powers of €. Indeed we isolate the dependence on

the distance ¢(r) of the point r from an interface in a variable z, which is fast in the sense

that a variation of order 1 in ¢ corresponds to a change of ¢! in 2.

Thus we propose two expansions for p;’?. The former is

Z e"p (")

which is thought to be valid in the bulk. The latter is

_pz Zgn ~(n)

where ;7 = (2,7, t) and, if we denote with V the gradient computed keeping 2 fixed
and with v the unit vector in the direction of the normal to the interface, v - Vj;? = 0.
This expansion has to be used next to the interface.

3.1.1 Matching Expansions

Of course the two power series have to be matched in some point. It means that, for a
generic function f which can represent the densities or the chemical potentials, we require
that

(FO 4+ ef® 4+ 2fP 4 @) +e,t) = (FO +efY + 25D + . ) (2, 0)
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where z(r) is the intersection with the interface of the normal to it through the point 7.
Equating same orders in ¢ we get

f( )(r t) = f( Nz, t) (for r next to I’y and z very large)
. >
124w Vi + S w-v) f<°’ i " )

3.2 The Hat Series

The expansion in ¢ for the densities induces a similar power series for the chemical potentials

Hi
o0
Zgn ~(n) st = o = anﬁgn)
n=0

Filling (3.1) with those power series, a set of equations arises which can be solved step by
step. We begin writing the equations for each order, discriminating between ¢ = 2 and
q = 3. For the hat series we have

st 20, =§:§:g"+m V- (A V™)
=

n=0
(n- - 1
Z gnatpl( q+2) _ Z Z BV . (pE)Vu(l))
n=q—2 n=0
LI'>0
I+l'=n

Thus if ¢ = 2, for any n > 0

~(n 1 ~ ~(
= Y 5y (")
LU >0
I+l'=n
On the other hand, if ¢ = 3, then for n =0
1

5V AV =0

~(n— 1 ~ N
o™ = 3 5V (Vi)

LU >0

and forn > 1

I+U!'=n
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3.3 The Tilde Series

In order to write the equations for the tilde series, we need some formulas relating the
differential operators in 7 to those in z. We choose z = ¢71¢(r), noting that there is a
temporal dependence too, implicit in ¢ because the interfaces are moving. From that the
velocity V' of the interfaces arises. We have

Vi= 0. f+ Vi af=_vafvaf. Af= 00+ (V-0)a.f+AF
Then from (3.1) that can be rewritten as
0 = £ (VA VT
we arrive to

1 _ _
"B (7 w8577+ Vi) - (67 w0, + Vg 1)+
+0;7U e + e (V - )0, + A

g2 (5_1Vazﬁf’q + 0,p;9)

Replacing p;’? with its power series we get

o o
Z nvaz (" q+3) + Z ;) p(” q+2) — E Z e" Z azﬁz(l)az'az(l')_l_
n=¢—3 n=q—2 n=-—2 ,
LU >0
| I+1'—-2=n
g — 7 e 7
S T W Ye X b
n=0 , n=—2 ,
LU >0 LU >0
I+l =n I+U'—2=n
i 7 g — 7
+3 e Y (vl + Y e Y ARY
n=-1 LI >0 n=0 LI >0
l+l’—1:n l-I—l’:n ]
Now suppose that ¢ = 2, then for n = —2 we have
1 0) 9 -
B[azpz azlu’z + ,OZ a Mz ] 0
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Then for n = —1

1
B azlaz((])az/]z(l) + 8z/5z(1 8z/%(0)+
+"02 " + V02 + (v 00, |

Vazﬁz(()) =

Finally for any n > 0 the equations are

Vo,i\"tY + 9,5 = > a " + 2!+

LU >0

l+1'—2=n

+ > (vella "+ Y vV 4+ 50 A

LU >0 LU >0
I+ —1=n I+ =n
Now set ¢ = 3. For n = —2 we obtain again
1 (0) 2~
3[ .00 + 502" = 0
Let us choose n = —1:
L1, 04 -1 (1) q ~(0) |, ~(0)a2~(1
5 [azp§ 0.4 + 0.5 0.1 + i 02 +

+0 023" + (V- )i 0. | =0

For n = 0 we have
1

B
+Vp" - Vi + 002 + gV o2 + pP 2 +
+HV )0 + (V 0. + i A |

vo.p” = - |0.000.57 + 0.5 0.5 + 0.7 0.1+
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And at the end for any n > 1

n— 1 / ~ (1
vo.p” + o AR 0.5 0.1 + 2+

LI>0

I+1'—2=n

+ Y voilen+ Y ViV + a0 AR

LI>0 LU>0

I+l'-1=n I+U'=n

3.4 The Case q = 2: Stefan Problem

The late stages behaviour of the two species melt can now be established by looking at the
above equations. We start from the case ¢ = 2 because the result is more transparent and
it is easier to get it. From the hat series we deduce at the lowest order in ¢ the following
evolution equation

0 = EV (Vi)

where the order zero chemical potential is

1
PO = 5n A0+ U

and U = [ drU(r). Provided a suitable initial datum, we still need to specify the values of
(0)

hatp;

evolution, where the velocity of the interface is related to the derivatives of the densities.

Then we rewrite the lowest order equation for the tilde series

8,10, 1"] = 0

on the interface. In fact we can consider the limiting problem as a free boundary

it is equivalent to
~(0
p( ) = C;

2

C; a constant. Well, it can be proved that this equation admits a unique solution. But
then
A =
where w; is the front, solution of
0.0 =0
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As a byproduct we see that C; = 0. The front has got a well defined behaviour at infinity,
where it reaches exponentially fast the values of the densities of each component in each
phase at equilibrium. In other terms
_ o+
zEI:Eloo wz( ) — P

where p; is the density of component 7 in the phase + and analogously for p; .
From the matching conditions we deduce that

llr(r)l p( (r + hv) = o

with r on the interface. The velocity V appear for the first time in the order e~! equation
of the tilde series:

Vo,p” = [6sz V0,1 + 5002t
<~

Vo,w; = ;a (w;d, ")

b . d ~(0)
eCause w; and as a consequence [,

) = Tlnw; + @ xw, are functions only of z. U is the

potential integrated over all variables but one.
Integrating in z we get

Vw3 = —[wz 0: ;S
and by using the matching conditions
6" - Vi
Blwi] %

where [T denotes the jump through the interface. Thanks to symmetry properties of the

V=

(3.2)

fronts the velocity is actually independent of the index .
The limiting problem is then

1
8, = 5V (POVi”) in the bulk
lim ﬁz(-o) (r+hv) = pf  on the interface
h—0+
,650) (r,0) = pi(r) everywhere

where p; is a suitable initial datum. The velocity of the interface is given by (3.2).
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3.5 The Case ¢ = 3: Mullins-Sekerka Flow

We now turn to the case ¢ = 3. We anticipate that the final equations will involve intricate
combinations of the first order corrections to the densities. Indeed the order zero densities
are simply constant because of the very late stages of phase segregation we are dealing
with.

The very initial datum is chosen constant and equating the values given by equilibrium
in each phase. From the lowest order equation in the hat series

5V GOvA) =0 3)
we deduce that ,620) has to be constant and then to coincide with the initial datum. This
follows from the fact that equation (3.3) admits constants as solutions, with the property
that if the value of the constant is in the unstable region of the phase diagram, then it in
also an unstable solution of the equation. On the contrary if, as in our case, thanks to the
choice of the initial data, the value corresponds to a stable region of the phase diagram,
then the solution is stable and it can not vary also at later times.

As to the lowest order in the tilde series, it is the same as in the case ¢ = 2. Then we
can easily conclude that

~Z(0) = w,

For n = 1 in the bulk we have

. 1 . . . .
o = 71V Ay + V- 5V (3.4)

but /32(0) and thus ,15") are constants, then (3.4) implies

AV =0

This equation is a fundamental ingredient in building the limiting problem. On the tilde
series side we write down the next order equation

1
_az wiazNZ('l) =0
3 (wi0:fi; )

which is equivalent to
wid: il = C;

By the matching conditions we know that

.1 = v - Vi
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as z — oo. But Vﬂgo) = ( because as seen above the densities at the lowest order are
constants. It follows that C; = 0. Thus

0.y =

It means that also ﬂgl) is a constant. Now let us introduce some auxiliary functions. We
begin from
pi = Locop; + Li>0p;

which is a step function through the interface. Then
=i -5, C= i + pi
It clear at once that v and ( are harmonic
AY =0, AC=0
Moreover it can be proved that
Ao Y + [ Y = KCS

where K is the curvature and S the surface tension. But by matching conditions and
symmetry properties of the fronts, it follows that

iy [un] £ + i Jwo [ £35 = ] F32
so that
Plun]I% = KS
In order to determine the dependence of the velocity from the density fields we need a
further order in the tilde series:
1
VO = 5[0.wd. A7 + widki”)
<~

V@w=%@@@%%

Integrating over z and using matching conditions we get
00 L N
Viw| % = E[Pil/ -V
If we introduce

p1+ P2 _:ﬁ1+ﬁ2
9 ¥ 2

ﬁ:
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it easy to show, but we will do that in a later chapter, that

1 1 1
V= (0% — Ay - Vol + ~lov - v+
2B =) ﬁ(p o°)v ¢]_+ﬁ[w M
and 2/ g| KS
[wl]—oo

At the end the limiting problem is given by the following two coupled system of equations

Ay =0 in the bulk
K
W = % on the interface
[wl]foo
1 1 1
V=t |2 = @)[v - VY]" + =[pr-V(]"| on the interface
28(py —p1) LP p
and
AC=0 in the bulk
2|l K
K]t = \<p|+of on the interface
[wl]—oo

0=[v-V(]" on the interface

More details will be given later.
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Chapter 4

Macroscopic Equation

4.1 Expansion

In this section we begin the study of the hydrodynamical limit for the Vlasov-Fokker-Plank
equations which constitute our kinetic model. We consider the diffusive scaling in which
the space is scaled as ¢! and time as ¢ 2 and v = ¢ so that the width of the interface is
of order 1 on the macroscopic scale. Define

i@, v,t) = fi(e 7w, v, e7%), i=1,2, €T veR.
The equation for f¢; is
& 1 3 1 & 3 1 &
Oufi + v+ Vaf + _Ff Vuff = S Lyl (4.1

Here Fy is the rescaled Vlasov force with v = e:

Fe(a,t) = -V, [ do'U(e — x'|)/

Td R

dvf5 (2", v,t) := =V,U x p5
d

We substitute in (4.1) the formal power series for ff and Ff

o o0
=Y F =Y EY

™ = —VzU*/ dvf;n)(x',v,t)
R4

3

We get
1

e2

ign {atfi(n) tv- wai(n+1) + Z (Fi(l) ) vai(l,)) N Lﬂfi(n—l_Z)} -
n=0

LU>0:104+1'—1=n

1
Lsf® + - { LofV —v v, f© O .y, fi«n} -

At each order in £ we get an equation. We write down here explicitly the first three orders:
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8_2) Lﬂfi(O) _
e ) v Vol + FO.v, 1O = L5
) atf +0v-V f(l) +F f(l) +F f(o) ,3fi(2)

From £72) we deduce from the properties of Lg that fi is the Maxwellian M3z multiplied
by a density factor depending on x and t:

FO = pi(z,t) Mg (4.2)
Replacing this expression in the second equation (order e~!) we get
Myv - (Vopi + BpiVa(U % pj)) = Lo i
So a solution has to be of the form:
SV = Ms(A+ B -v)

where A will be fixed by the equations of the next orders and B is the vector

1
B = _B(Vzpi + BV (U * p;))

If we put these expressions of fi(o) and fi(l) in the £%) equation and integrate over wv,

1
/]RS dUMﬁ’UZ"Uj = Bdij’

we find the equations for the zero order densities

remembering that

G (Bapict BV (Va(Up3)) =0 (43

Now our aim is to show that a solution of equation (4.1) does exist and its limit as €

375 Pi —

goes to zero is given by (4.2), with p; satisfying (4.3). We try to solve (4.1) in terms of a
truncated expansion

K
= Z gnfi(n) +e™R; (4.4)

n=0
Replacing expression (4.4) for ff in equation (4.1) we get:
For any n between 0 and K

0S4 u- V[
> [‘W* / dva‘”]'va,-“”—Lﬁf;"):o (4.5)
R3

LU >0+ —1=n—2
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f,(s) =0, s < 0 and for the remainder

1 1
(%Ri + _['U ‘ szz + F‘is * VURZ + Bz * Fz] - _QLﬂRz — SK_m_lAi (46)
g g

where we defined

K
B;=Y "V, f", Ti=-V,Ux / dvR;
n=0 R3

2K—-1
A= 05 40 Vo f wea 0+ 3 ek S EY v, fY
n=K-1 o<LI'<K

I+l —1=n

We will find solutions fi(") to equations (4.5) in next section and we will study the equation
for the remainder R; in section 5. Here we state the results:

Denote by (-, -)_ the following L, scalar product and with || - ||_ the associated norm
(hg)_ = / dzdo My (v) 3 [ha(, v)gi (o, ).
TdxRd i=1,2

Put A = {Ai}i:l,Q and R = {Ri}i:l,Q. Then

Theorem 1 Given a classical solution p;(z,t) of the macroscopic equations (4.3) in the
time interval [0, T), there is a constant C' depending on T, such that a unique solution to
(4.6) exists and satisfies the bounds

sup ||R(-,)[|- < Ce"Im[| A
t€[0,T]
As a consequence,

Corollary 1 Under the assumptions of Theorem 1 and m > 1, K —1 —m > 0 there is a
positive constant €y such that for e < g¢ there is a smooth solution ff(x,v,t) to the rescaled
Viasov-Fokker-Plank equations (4.1) satisfying for some constant C

sup ||fi — Mppil|- < Ce
t€[0,T]

4.2 Expansion Terms

In this section we show existence and regularity properties of fl-("). For simplicity, we write
down the proof only for K = 2, but the argument goes on for any K. The structure of
equations (4.5) is very simple: they are of the form

Lgf =h (4.7)
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with h a given function. In the Hilbert space with scalar product

(hyg)m = /Rd dvh(-,v)g(, v)MB_1

the kernel N/ = ker(Lg) is made of constants in velocity multiplied by Mz. Hence this
equation has a solution iff 4 is in the orthogonal to the kernel of Lg namely iff

/ dvh(v) = 0. (4.8)

Moreover, the solution is determined but for a term in the kernel which is of the form
a function of z,¢ times the Maxwellian. Starting from the lowest order, we will see that
h(z,v,t) = P(x,t,v)Mz with P a polynomial of the velocity with coefficients eventually
depending on z,t. If P is a polynomial in v the equation (4.7) can be solved uniquely in
the orthogonal to the null space of Lg. The solution is again a polynomial of the same
degree of P multiplied by the maxwellian Mg. In other words, if MzP € N+ with P a
polynomial, then there exists a unique f € A'* such that (4.7) holds. This statement can
be shown by finding explicitly solutions to the problem (4.7) for different choices of the
polynomial P. We are interested to polynomials of degree up to the second.

For n = 0,1 the equations 4.5 are of the form 4.7 with A = 0 and h = b;v; respectively
and have already been discussed in the previous section. We recall that f(!) can be found
as Mg(A; + B;jv;), with B; = —%bi. A; would be determined by the compatibility condition
at the order n = 3. Since we are truncating the expansion at n = 2 we can safely choose
A; equal to zero.

Let us now deal with a polynomial of degree two:

P(’U) =a-+ bi’l)i —+ Cijvﬂ)j.

By gaussian integration, the condition (4.8) becomes

1
a—+ —=Cj = 0. 4.9
3 (4.9)

We look for a solution of (4.7) of the following type:
f(v) = Mg(A + Byv; + Cyjvv5).
Plugging this ansatz in our equation we find
Oy, (Mg0y, (A + Biv; + Cjjvv,)) = MgP(v).

Recall that 0,,v; = dp; and 0,,v;v; = 0kv; + O;v;; then the left hand side of the above
equation simplifies to

k

6vk (Mﬂ(Bk -+ ijUj -+ C',kvz)) =
Mpg(—Bvg(By + Crjv; + Cigvs) + 05jCrj + 0iCik) =
Mg (20“ - /BBZ’UZ - 2ﬁ0ijvivj)
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and identifying the coefficients of the corresponding powers of v; one gets
1
g

with the redundant relation a = 2C;; which is automatically verified, thanks to the com-

1

patibility condition (4.9). In order to fix the parameter A we impose the analog of (4.9):
A+ Cy;/B = 0, namely as before we are choosing equal to zero the projection on the null

space of Lg. Thus
a

35

In the context of our problem the known term is always in the form of a polynomial

A=

multiplied by a maxwellian and the coefficients of the v; are functions of the position. In

the case where only first powers of v appear, i.e. P(v) = a,(:)vk, the a,(:) are given by

a® = Vap; + BoiVa(U * p;)

here 4,5 = 1,2 and i # 7. When P(v) = a® + bg)vk + cgf,zvhvk the coefficients are the
following:

at = Bypi + Vo (U x p;) - %(pri + BpiVa(U * p;))
B =0
C;ZI)C = _%&ch (O, pi + BpiOs, (U * p;j)) = On,, (U * p;) (0, pi + BPiOa, (U * p;))

Summing up we denote by fi(k), k = 0,1, 2 the following functions of v and x:

fz'(l) — _%M/BIU . (Vmpz + B,Ozvm(U *pj))

fi(Z) — —%Mﬁ Owpi + V(U % pj) - %(prz + BV (U * p;))

—0+ 5950 (Vaps + Bpi(ValU % 7)) = v+ ValU 5 p3)0 - (Vapi + BpiVa(U 5 7)) |

where p; is solution of

1
atpz' - @(Ampz + 6vx ) (pivm(U*pj))) = 0.

The known term A; appearing in the equation for the remainder becomes

3
Ai=0fY + 0.V, @ +eo, @ + Za”fl Z FO.v, "

n=1 0<LI'<2 I+l —1=n
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where we recall that
F™ = —Vw/ dz'U(|z — x'\)/ dv'fj(")
eQ R3
It is easy to show that the sum over [,1' is given by
~Vo(U % pj) - Vo

indeed Fi(l) =0= FZ-(Q) because the functions fi(l) and fi(z) belong both to N+ and Fi(o) =
_Vz(U*pj )

In conclusion, the fi(n) are always of the form My times a polynomial in v times a
function of z,¢ which depends on the derivatives of p;(x,t) solution of the macroscopic
equations. If we fix an initial datum for (4.3) in C?(T?) then the corresponding unique
solution will be classical as shown in section 4.4 and the f(™ = {f™}; as well A4; will
satisfy the regularity properties

™) <o, |4-<C

4.3 Remainder

In this section we will find a solution to equation (4.6), which is a weakly non linear
equation if m > 1, K — 1 — m > 0, by considering first the linear problem with the force
term F; assumed given so that general results will grant the existence of this linear problem
in a suitable space. Then, a fixed point argument applies by using ¢ as small parameter.
From here on we will simplify notation by setting M = Mj.

Define f = f/M and

U | .
Lgf=—V,-(MV, .
5f = V0 (MY.(F))
Moreover, we introduce the Hilbert space associated to the Lo scalar product (-,-)as

weighted by the maxwellian and with || - ||»s the associated norm. In this Hilbert space Lg
is self-adjoint and non positive:

(gla IN/,BQZ)M = (I/,Bgla g2)M

- 1
(0. Logh = [ dodvMg V.- (MY, (9) = ]|V
TdxRd

If we put R; = ¢; M, the equation for the remainder becomes

Fe -V (Mvy;) B;-T;
3t7,bi+6_1[v-vw7,bi+ d VM( w)+ i

- A,
= e 2 ), — K-I-m 4.1
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In order to estimate ||1);||, one multiplies the above equation by M1); and integrates over
z and v. So the first term on the left hand side becomes

1
Sl

while the gradient with respect to the position disappears because of the periodic boundary
conditions.
We assume that the force terms FY are given functions that we will call F; and are such
that
1Bl < 0

Hence

< N1 ool il |aa |1V o5 | s

/ dzdvip; Ey - V(M)

= ‘/dxdvl:} - (M3 M3, V)

where we integrated by parts (F depends only on z) and we used Schwartz inequality.
Now the term with the convolution of the remainder with the gradient of the potential is
estimated in the following way:

[ dsdvito o)Vl M) - [ arv.00e -2 [ ararwn )

= ‘/dmdvaé(U)Mé(v)vvwi(x,v)-/dx'dv'VwUMé(U')Mé(v')wj(x',v')

< [T sup |p| sup [VoU| [[%5]Iar [|Vothil[ar.
Td Td

As before we first integrated by parts and then we applied Schwartz inequality twice. Here
it has been considered only the lowest order in € of the sum which constitutes B;; the other
terms are treated similarly. The last estimate is the one for A;:
Ai

<
M. =

/dxdm/ziA,- :/divdUM;wi

1
2
- 1 _
[l (172 Adl [ < Sl T3 + (1M Ail ).

Summing up, we have

1 B _ B
SOl < —e [Vl iy + (2 + e )l [l lal Vothil lar + eope 10l lnal [ Vil e

K—-1—-m

2

€

+ (i3 + [[M_1A;]]30)-

Note that ¢; contains powers of € greater than e !. Now one exploits the inequality
e 2x? 1

g0y + 09)?
5 + (01 +¢&~ 02):1cy§M 2

2

(4.11)
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but first we need to introduce the norm |[9||3, := ||¥1]|%; + [|%02]|%;, so we have

Lol < eIV + Vatal ) + (e + e ea) (Il 19,5 o
[l Vot [ar) + cope™ (101 [ael [V otdn || ar + |92 ar] [ Voo a1)
Lo 21 112, + 11l2,) + (1M1 Ay + || M1 As]2,)]
: L;FCZ)Z(H%H%HH%%)+%%(||¢1||§4+H%%)
+ gK;’”[(leH?w 1l ,) + (1M1 AR, + M 1 As|2,)]

where we used the inequality (4.11) in two different ways; in fact we divided the negative
term in two halves and then once we chose ¢; = o7 and ¢y = 09 and once we put ¢; = 0
and ¢y = .

Multiplying by 2 both members one gets

Ol [¥1ar < All¢lla +d

where A = Aap) = a% 4 (ec1+c2)? +e" 717 and d = 71| | M AL 5,4 || M7 Aq[3))-
Integrating over the time, by the Gronwall inequality:

¢ t
ft) < K(t) —l—/\/ drf(r) < K(T) + )\/ dr f(r)
0 0
= f(t) < K(T)eM < K(T)eM
where f = [[¢)|[3;, K(t) = [, drd() is a non decreasing function of time and we used the

initial condition f(0) = 0.
Now consider the sequence of forces

PP = —v,U * /R dv nﬁ‘a enfiV) — emV,U * /R R
with £ > 1 and R\ = 0. Let oy, = max{||F"™||so, [|F{"]|o0}, then
o < a+ SmC/dde|R§k_1)|
where j is chosen such that it corresponds to the maximum in the definition of o4 and

K
V.U % / dvy e fi
n=0

a = sup
z€eT4
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Write de|R§-k71)| = de|M'l/JJ(-k71)‘ = fde%\M%wj(-kfl)h using Schwartz inequality we
get

J Rl S
Thus, recalling the estimate for ||||2,, we can conclude that
ap < a+ep(og-1)

where the non decreasing function y is defined by u(oy) = C(|T¢| K (T) exp(A(oy)T))2.
By induction on k£ we show that o < 2a Vk. In fact

o < a < 2a.
Then suppose a1 < 2a; we have
o < a+eplag-1) < a+e"pu2a) < 2a

because we applied the inductive hypothesis, exploited the monotonicity of ;2 and chose ¢
so small that e™u(2a) < a.
Denote with (Wz(k) the difference @/Jgk) — zp}’“*”. The equation solved by 57,/)1(’“) is

L EY vy - BV v, ey | BT
M M

= e 2Ly(oy™)

360 + e |v- Va(60)

where is understood that I['; contains (51/)](-]“) and no more %;. Summing and subtracting the
quantity Fi(k) . Vv(Mwi(k*l)) one has
ER v, (My®) = EF D v, (M) = ER v, (M) + 6EP - v, (MyE V)

2

where
SEM = F® — FFD = _emy U« / dv' My
1 [ 7 x j .
If one multiplies the equation for 5¢§’“’ by M (sz(k) and integrates in space and velocities, it
is possible to replicate the above estimates for the norm of the remainder. Only one thing

is worth noting: the known term with A; is now replaced by the following quantity

/ dzdvsy®SER . v, (MypE) = — / dzdoMypFVsER v, (5yM)
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which one estimates in this way:

6m

dzdvM (v) (@ IV, 008 (2, 0) [ de' VU (|z — 2'|) [ dv' M@)oy (@', v")
j

< e™sup |V, U| (/ dxdv|M¢§k_1)V05¢§k)|> (/ dx'dv'M|5¢](.k_1)|>

1 _ _
< ™42 sup (VU | [ |arl [ Vo0l ar| 0035 [ ar

m k k—1 ec k k—1
< emel| Voo ael 10w llar < = (IVu0% 5 + 1160V 1130).

In ¢ the bound for ||w§k_1)|| a is also present. In brief we have the following situation:

i £Cfi+0fi

for some C; # depends on ¢ and is small as we like if m > 1, and of course f;, = ||§®)|[2,
with the same notation as above. By integrating in time and using Gronwall inequality we
obtain

T T T
fr < / 0fr_1e°T < / HeCT/ 0eCT fr_y < ... < const(0eCTT)k
0 0 0

thus, by a standard argument, we conclude that the sequence {1;(k)} is a Cauchy sequence
and the limit ¢ is the unique solution of (4.10) with bounded norm |[9}||a.

4.4 Limiting equation

We follow a strategy similar to the one used in the previous section: we consider first
a linear problem, prove existence for it and then use a fixed point argument to give the
existence for the full non linear equation. Since we do not have at our disposal a small
parameter we use compactness arguments and the Schauder Fixed Point Theorem. We

seek for weak solutions in the following sense:
Let W be the Hilbert space

W(,T; H', H™) := {f : f € L*(0, T; Hl)’% € L*(0,T; H 1)}.

H'(T¢) and H~*(T¢) Sobolev spaces on the torus with norms

w2 = / o2, ol = [ol2 + Vol
'[[*d
oK)
foll-s = sup 2(u,0) = [l ) = [ ar O
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(-, ) scalar product in L2

T
o[l = /O @I+ [ (@)]124]dt
with v' = dv/dt. Let W, be the convex subset of W

Wi={veW: | v(x,t)=1 aein[0,T]}
Td
We say that p is a weak solution of the linear problem (4.12) below if for p € L*(T¢) and
for all v € H}(T%) and a.a. 0 <t < T

B*(v,p') + (Vo,Vp+ BpVU xh) =0

and p(-,0) = p(-).
We remark that since p € W implies p € C([0,T]; L?(T¢)) we have that p(0) € L?(T¢).

Theorem 2 For any h € L*(T?) and u € L?(T?) there ezists a unique solution in W, to
the following Cauchy problem

B0 = Au+ BV - (uV(U % h))
u(-,0) = a() (4.12)

Proof. Since h € L'(T?) and VU as well as V2U are bounded we have V(U % h) and
V(U x h) in L*>([0,T] x T?). Hence by standard arguments there exists a solution in W.
Since the equation is in form of divergence, the total mass is conserved so that the solution
is in Wj.

Moreover, we have some useful a priori estimates for the solution of (4.12) (indeed the
proof of existence can be achieved by approximation methods and these a priori estimates).
Denote by |ul, the norm in L*(T¢) :|u|3 = [L.dz|u|*(x,t). We have that

Ld
2dt

w2 =~ (vul2— L [ deue ) Vule, VU * B) (@, ) (4.13)
B2 B Jra

Since h € L'(T¢) and VU is bounded

sup |[V(U x h)(z,t)| < €

z,t
Then, for any § > 0
1d 1 C
5%'”'3 < —@|VU|§+E|VU|Z|U|Z
1 1
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By Gronwall there exists a constant C' such that
[ul3 < |ufze”
so that
T T
| atuwB <clag, [ (vup < clad
0 0
for some constant C. Here and below C denotes a running constant. Moreover,

1
B

c

1
[|u'||—y = sup {— Vu[=VU x h) + 3

veH:||v|[1=1 Td B

1
Vu} < Zluls + @Wub

Hence .
/ atl (8)| 7, < Clal}
0

Consider now functions u : T¢ — R%. We define the Hilbert space W in this case as
before, simply using as scalar product (-,-) the scalar product in L?*(T¢; R?). We use the
same notation for W and W;. We say that p = (p1, p2) is a weak solution of (4.3) if for all
ve H (T4 R?) and ae. 0 <t < T

B2(v, i) + (Vv, Vi + BpiVU % p;) = 0

Theorem 2 defines a map A from L?(0,T; L?(T%; R?)) in itself by applying it to a set of
two equations for u;,7 = 1,2 with a given term depending on g¢;,7 = 1,2 in the following
way

ui(+0) = wu(")
i,j=1,2, i #j (4.15)

We use g = (91,92) and u = (u1,u2), |9/5 = > ,_;,|gil5. Then, since the L' norm of g;
is bounded by a constant times the L? norm, namely L' ([0, 7], T¢) € L?([0, T], T%), there
exists a solution u in W and we can write

A(g) = u

1A(9)Il < Clal;

We now prove the existence theorem for the non linear set of equations by proving that
A is continuous and maps a closed convex set in a compact set.
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Compactness. We consider the closed and convex set X € L%([0, 7], T%)
X = {h:||hlt20rz2 < K}

Since A(h) is in W and W is compactly imbedded in L?([0,T],T¢) the image of X is
compact.

Continuity. Consider g,§ € L?(0,T; L?). Let u = A(g) and & = A(g) the corresponding
weak solutions. We have that, for 7 # j

(== ) = = 5 [ V=) =% [ (= )V =) V(U xg)
1 Td Td
- 5 a5 VU (5~ ) (4.16)

1d
2dt
We have used that the L' norm of (g — g) is bounded by the L? norm. Therefore,

lu; — G5 < —C|V (u; — @) |5 + e1|us — Gl3 + c2lg; — G513

[[u = [ 20,11,22) < Cllg = dllz20,m1,22)

which proves the continuity of A in L*([0, T}, L?).

By Schauder’s theorem the map A has a fixed point in L?([0, T], L?) which is the weak
solution we were looking for.

Uniqueness. The proof is standard.

Summarizing, we have proved the following

Theorem 3 There exists a unique weak solution in Wy to the following Cauchy problem

B0 = Api+ BV (piV(U * pj)),
ij=1,2  i#j (4.17)

Regularity. 1f VU % p € C°([0,T]; C') and p € C?(T¢) then the linear equation has a
classical solution. Since the weak solution p is also in C°([0,T]; L?) we have that indeed
VUxp € C°([0,T]; C') and therefore the weak solution p corresponding to an initial datum
in C?(T%) is a classical solution.
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Chapter 5

Mullins-Sekerka From Kinetic
Equation

5.1 Sharp interface limit

In this section we study the solutions of (2.1) in the sharp interface limit in a 3-d torus
. We introduce again the scale separation parameter £, which has the meaning of ratio
between the kinetic and macroscopic scales. Then, we scale position and time as e~! and
g3 respectively, while keeping fixed (equal to 1) 7. The width of the interface on the
macroscopic scale is then of order €, so that in the limit ¢ — 0 the interface becomes
sharp. The rescaled density distributions ff(r,v,t) = fi(¢~'r,v,e73¢), are solutions of

Off+e 2w -V ff +e °Ff -V, ff =¢ Lgft. (5.1)

(1) = v, / ar'e U (e — ) / Q' 5 (1,0, 1) = — V.

In this section F7 depends on € through the function f; but also through the potential since
we are keeping fixed v. We consider a situation in which initially an interface is present.
Since the stationary non homogeneous solutions of (2.1) are given by the Maxwellian
multiplied by the front density profiles we let our system start initially close to those
stationary solutions and choose as initial datum f7(r,v) = Mg(v)p;, where the density
profiles are very close to a profile such that in the bulk its values are p;°, the values of the
densities in the two pure phases at temperature 7', and the interpolation between them
on the interface is realized along the normal direction in each point by the fronts. We
put pi = p* and use the symmetry properties of the segregation phase transition giving
ps = p~. Consider a smooth surface I'y C Q. Let d(r,I) be the signed distance of
the point 7 € Q) from the interface. Consider an initial profile for the densities p; of the
following type: at distance greater than O(e) from the interface (in the bulk) the density
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profiles pf(r) are almost constant equal to pi; at distance O(g) (near the interface) we
choose
pE(r) = wi(e td(r,Ty)) + O(e) (5.2)

where w;(z) are the fronts, which are one dimensional stationary solutions of (2.3) with
asymptotic values pz?t. Since these solutions are unique up to a translation we fix a solution
by imposing that w;(0) = ws(0).

Let I'; be an interface at time ¢ defined by

0 ={reQ:pi(rt) =p(r,1)}

and T be such that I'{ is regular for ¢ € [0,7]. Let d*(r,t) be the signed distance d(r, ')

of r € Q from the interface %, such that d® > 0 in Q7" and d° < 0 in Q" where

Q=T:UQy" Uy, For sake of simplicity we drop from now on the apex . For any r
1

such that |d(r,t)| < =, k(I';) = sup k(z) with k(z) the maximum of the principal
k(T z€eTy

curvatures in z, there exists s(r) € I'; such that
v(s(r))d(r,t) +s(r)=r
where v(s(r)) is the normal to the surface I'; in s(r). Hence,
v(s(r)) =Vd(r,t), rely, rel.
Define the normal velocity of the interface as
V(s(r)) = 0wd(r, t).

The curvature K (the sum of the principal curvatures) is given by K = A,d(r,t), r € I'y..
Define, for £ small enough,

NG == {r: |d(r,)] < 5}

where § = L, m = maxyepo,r,0<e <0 k().

We follow the approach based on the truncated Hilbert expansions introduced by Caflish
[C]. This method, which has been used in the previous chapter to prove the hydrodynamic
limit for the Vlasov-Fokker-Planck equation, has been improved by including boundary
layer expansions in [ELM], to prove the hydrodynamic limit for the Boltzmann equation
in a slab. Here we try to adapt the arguments in [ELM] to the fact that the boundary is
not given a priori and has to be found as a result of the expansion. The Hilbert expansion
is nothing but a power expansion in ¢ for the solution of the kinetic equation

fe=) e, (5.3)
n=0
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Since we expect that the behavior of the solution will be different in the bulk and near the
interface, we decompose f( in two parts: the bulk part f® (r,t) and boundary terms f®
which will be fast varying functions close to the interface, namely they depend on r,¢ in
the following way

FO = FO (e Yd(r, 1), 7, t)

while f( (r,t) are slowly varying functions on the microscopic scale. More precisely, a fast
varying function h(r,t) for r € N can be represented as a function h(z,r,t), 2 = ¢ 1d(r, t),
with the condition h(z,r + fv(s(r)),t) = h(z,r,t),V¢ small enough. Hence in N we can
write

1 = 1 1 1 —
Veh = —v0:h+ Vb Oh=—Vo:h+0h; Ah= 50 h+—(V,-v)0:h+Ach (54)

where the bar on the derivative operators means derivatives with respect to r, keeping
fixed the other variables. Note that v - V,h(z,7,t) = 0.
To write the expansion for the force term Ff we introduce U%Y > E"pgn) =3 " g(")

and Fi(") =-V, g§n).
We expand also the signed distance

d(r,t) = is"d(”) (r,t) (5.5)

We will denote by v™ the gradient V,d™, with 7 := v(0). The condition |V,d|?> = 1 is
equivalent to:

j-1
V. dY? =1, Vv, dOv,dV =0, V,dOV,d" = _% Zvrd(i)vrd(j—l)’ ji>2

=1

so that d® can be interpreted as a signed distance from an interface that we denote by T',.
As a consequence of (5.5) the velocity of the interface I'; has the form

ZsiV(i), V.=vO,
i=0

We remark that giving the velocity V' determines the curve evolving with it. The
velocity V' will generate an order zero interface I';. The interface generated by >, %40
will be a deformation, small for small ¢, of T';. We define

NOo(m) == {r : |dO@r, t)| < m}, Ty == {r: |dO(r,t)] = 0}, 27 := {r: [dV(r,t)| > (<)0}

and fix m so that N°(m) C N (9).
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We assume that in Q \ N°(2)
fe= ign fm. (5.6)
n=0
and that in N°(m), the solution is of the form
fr= S e 6.1)
n=0

In N(m) \ N°(Z) the inner and outer expansions have to match. Hence, we require as
|z| = oo [CF]

fi(O) _ fi(O) + O(e—aIZI)
FO = JO L O (0 (5 — gDy — DGO 4 om0kl
FO = fO L v, fO O — g0y — )OOy

3

+V’"fz~(0) (=@ 4+ D (7 — gV = D g4
1 .
+§a’hafkfi(0)(’/(0)(z —d®) — W d®y, (O (z — @V — B dO), + O(e

FO Z fO Ly, fO L (0 (5 — gy — 50404

3

—|—V7,fi(1) ) (_V(O)d(2) + V(1)(z B d(l)) _ I/(Z)d(o))-|-
1 .
+50nOr, WOz — dV) — vWd®), (O (2 — dD) — D)+

+Vrf,~(°) (= Od® — )W g® 4 )@ (5 — g — B GO
+0r, Or, ﬂ(o)(V(O) (z — dM) — pW @), (= Og@ 4 O (z — W) — A GOy, 4

_,_éarharkanﬂ(o)(y(o) (z = dD) — O @), (O (z — gDy — pOgOY, (O (7 — 1)) — DGO, 4
+0 (o)

The hat functions are computed on the interface, from the side + when z — oo and from
the side — when z —+ —o0. Moreover, we require that the previous condition is satisfied
in N(m). For that, it is necessary to define f{™ also in A°(m). We take functions
satisfying (5.8) below in QF \ T'; and extend them smoothly beyond the interface. We
denote by (f™)* the smooth extensions of £, in QF \ T,. We replace (5.6) and (5.7)
in the equations and equate terms of the same order in ¢ separately in QF \ N°(2) and
N%(m). We will use the notation p§”) = dvfi("), and we denote by h, & a function h(fi("))
whenever is evaluated on f™, fi™).
Outer expansion
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In OF \ N°(2), n > 0

of" ™ vV f VN BV v i = L, (5.8)

LU >0:0+H=n—1

with fio‘ =0,a<0.
Inner expansion
In N°(m) n > 0 we have

S V@04 Y 8w, f 1y, 4 g,

LS00+ =n—2 k+k'=n
_ Z 0,3 (l) f(l Z v ~(l .V f Lﬂfi(n)a (5'9)
LU >0+ 1 =n LU >0 =n—1

with f;“ = 0,a < 0. We will look for solutions fi(n) of the differential equations decaying
exponentially in z at infinity, because we want boundary layer corrections sensibly different
from zero only close to the interface. Finally, we stress that the terms fz-(n) of the expansion
do not depend on ¢ but for being computed on z, which depends on & because of the
rescaling and also because the interface at time ¢ still depends on €. The latter is a new
feature in the framework of the Hilbert expansion due to the fact that the boundary is not
fixed but is itself unknown.

The strategy for a rigorous proof is to construct, once the functions fi(") have been
determined, the solution in terms of a truncated Hilbert expansion as

N
=) e f"+emR (5.10)
n=0

where the functions are evaluated in z = e~'dN (r, 1), with d¥(r,t) = SN 2 d™ (r, t) and
then write a weakly non linear equation for the remainder. In this approach it is essential
to have enough smoothness for the terms of the expansion. On the contrary, they would
be discontinuous on the border of N°(m) since ™ are not exactly equal to f™ there
but differ for terms exponentially small in €. One can modify the expansion terms by
interpolating in a smooth way between the outside and the inside getting smooth terms
which do not satisfy the equations for terms exponentially small in £, that can be put in
the remainder. With this in mind, we did not put in the equations the terms coming from
the force such that in the convolution r is in N%(m) and 7’ in Q \ N°(m). That is possible
because the potential is of finite range.

In this section we show how to construct the terms fi("). The argument is formal
because we do not prove boundedness of the remainder nor the regularity properties of the
terms of the expansion. We plan to report on that in the future.
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Now we go back to the Hilbert power series and start examining the equations order
by order. We will find explicitly only the first three terms in the expansion to explain the
procedure.

Quter expansion

At the lowest order 3 (n = 0):

Lﬂfi(o) —

which implies that fi(o) has to be Maxwellian in velocity with variance 7" times a function
pg )( t). The latter is found by looking at the equations at the next two orders. At order
e?(n=1):

vV O+ B9 v, fO = 15", (5.11)

The solution is of the form

7= My = MypPv -V, i (5.12)
where 15 (p°) = T'ln pf + U x p5 and p; =) " € ,uz(n)
The order e~! equation (n = 2) is

v - Vrf;(l) + Fz‘(O) . va;(l) + Fi(l) . va;(o) — Lﬁfi(Q)- (5_13)

The solvability condition for this equation says that the integral on the velocity of the 1.h.s.
has to be zero. By integrating over the velocity and using the explicit expression for fi(l)
we get

~TV, - (", i) = 0.

Hence the solvability condition for the equation n = 2 gives the equation determining ,52(0).

The choice of the initial data implies that the only solution of that equation is the constant
one, with values pz-jE in OF. We look at next order n = 3 to find p ( ) by the solvability
condition. By integrating over v the equation n = 3 and taking 1nt0 account that f(O is

Maxwellian in velocity, we get the following condition on 4, where u = [dovf; (”
v, -a{? = 0. (5.14)
Then, fi@) is determined, by replacing (5.12) in equation (5.13), as

FP = =Mp®v - Vi) + o7 M, (5.15)

] ]

where ji{") = Tpgl)/ A+ gt
We use f as given by (5.15) to get 47 TA(0 Vrﬂgl) and plug it in (5.14) to get the
equation for /j,z(

A =o.
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We consider equation (5.8) for n = 3

o +0-V, [P+ 3 EV-V Y = Lsf, (5.16)

LU >0:0+1'=2

whose solution is
T
1 = =Mpo - POV + B0V + My 0 (0 V) (0 VR + 07 Mp. (5.17)

The equation for /1(2) = T,éz(?) / ,61( -7/ 2(,0Z / pzo)) + g( ) comes from the equation for

n=4
atfi(l) +o- Vrf;(3) _ Z Vrggl) . vai(l,) _ L,Bfi(4)
LU'>0, 1+1'=3

(3

which gives as solvability condition V, = —Op ,02 ) where u = [dv f . By using

(5.17) we get

L oo Vi) Vol S

= 0 %tPi ~(0 = T (0)°
Tp" Y A

A Si = Bonpl = v,p" - V!
Inner expansion
At the lowest order (n = 0)

v 00, [0 - 5-V,f0,5° = Ly fO.

In Appendix B it is proved that any solution of this equation has the form Mg(v)ﬁ(o) with

1 7
,650) a function of z. Plugging back in the equation we have

0.5 + 80,0 x ) =0 = 8,5 =0, (5.18)

where U is the potential U integrated over all coordinates but one. We solve this equation
with the conditions at infinity p;‘-t, given by the matching conditions, and call w; this front
solution. The exponential decay of w; has been proved for the one-component case [DOPT]
and the same argument should provide the proof also in this case. We can conclude that
in €)

7O 1) = (") + (0 )0

with x,, the characteristic function of N°(m). This solution differs from the front solution
w; in € for terms which are exponentially small in € and has the disadvantage of not being
continuous on the border of N°. As explained before, it has to be modified as

d(r,t)

FOr,t) = Mglw(==)h(d(r,t)) + (1 — h(d(r,))p" (r,1)]
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with h a smooth version of x,,.
We now find fi(l) by examining the e~ order (n=1)

v-ﬂazfi( —-v-V f<°)a;<1) v-V f zgz Lﬂf-(l). (5.19)

The term involving vV, v() . (v9, f(O f zgz ) Bv - v Mgp(o)azﬂ( ) = 0, because

(3
f( is solution of the lowest order equation and the bar operators vanish because p( ) |

function of z only. In Appendix B we show that the solution is necessarily Maxwellian in
velocity so that we can write fi(l) = ﬁgl)Mg with ﬁgl) to be determined by the following
equation

0.0" + B 0.5 + Bp"T x 0.5 = 0. (5.20)

Taking into account that —AU * azﬁj = 0, Inw;, from the equation for the front, we get
8, (Tp“)( D7+ g(”) —0—= 8,i" =0. (5.21)

We now find the value of ﬁgl) — /lgl) in z = 0 which is enough to find ,Eé — ,u2 ) for any z.

From
RO =T w) " + 040 + K [ 2= )00 - £)uy(?),
where K = A,d(r,t) is the curvature of the interface I'; (see Appendix D), we want to

find ,551) as determined by /121). We define the operator £ as (Lh); = Thy(w;) "' + U x h;.
The previous relation reads as

(L), ~(1 K/dz z—2U(z — 2)w;(2'). (5.22)

The operator £ has a zero mode since Lw' = 0, so that the equation (£5(")); = h; has a

Z/dzh = 0.

1=1,2

solution only if

Hence (5.22) implies

Z /dz,uZ =K Z /dzdz (z = 2\U(z — 2")w;(2). (5.23)

1=1,2 1=1,2

which implies because [LQ)

,  are constant

A5 (0,7, O)[wi ]2 + 587 (0, 7, ) wal T8 = K (r,4) Y [ ded2'wi(2) (2 = 2)U (2 — 2')w; (2).
1,47
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In Appendix C it is shown that the sum in the right hand side is the surface tension S for

this model, so we have (since [w;]T2 = —[w,]™)
(A = 5500, . )[wn]*% = K (r,1)5. (5.24)

The matching conditions impose that /1§” - ﬂgl) — (,zlgl))i - (ﬂgl))i for z — o0, so that

for r € Ty
[()E — () H][wi |72 = K (r, 1)S. (5.25)

The conservation law for the equation at the order e™! (n = 2) will give the velocity of
the interface. By integrating over the velocity this equation

WV +8,(m-a?) =0 (5.26)

where the maxwellian dependence of tilde fi(o) and fi(l) is crucial for several cancellations.
By integrating over z
Vw2 = [7- a2 (5.27)

By the matching conditions ﬂz(-z) — (11(2))jE at 400, so that for r € T

—Vw]te =@ -at — @)~ rel,. (5.28)

] %

Summarizing what we got so far: we have constructed functions ﬂgl) harmonic in Q*.

Their smooth extensions (,111(-1))jE are harmonic and satisfy (5.25) and (5.28). We define
now functions ﬂz(-l) in 2, not necessarily smooth, equal to (ﬂz(-l)):t in O\ I'; and such that

lim y0) () 0+ ﬂgl) = (ﬂz(.l))i|ft and the same for the derivatives. From now on all the
)

quantities overlined will refer to these functions. This means that p; satisfy:
Aﬂgl) = 0, re \ Ft;

Y~ BT~ ) = K(rt)s, reQ\T,

where p* = w;(+00). Let us write the last equation as
VBlo*t = p=[(p+@)v - Vel Tt = [(¢ = p)v- Vot ] (5.30)
e (1) + () (1)~ palr)
_ pi(r) + p2(r _ pi(r) — pa(r
plr) = 5 , o) = 5

with p;(r) the step functions p;(r) := p/x* + p; x~, x* the characteristic functions of
the sets d®(r,t) > 0, d®(r,t) < 0 respectively. We know, because of the symmetry of
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the phase transition, that p is constant while ¢ is discontinuous in 0 and ¢(r) = +|4| for
r € Q*. The previous equation implies

2V Blpt — p7] = plv - Vo (il — mNE + (v - Vo () + )] (5.31)

0=p7- V(2" + 5] + g7 - V. (5" — 1))t (5.32)

We introduce the function ((r,t) = (puft” + pais?) (r, ) = p(aS" + 5”) + @ (S — ") so
that A,C(r,t) = 0in Q\ Ty and (5.32) gives [ - V,(]T = 0. Moreover, it is discontinuous
on I'; because of the function @. The jump is

¢H(rt) = ¢ (rt) = 21" = 5$Y), rely

In conclusion, ¢ satisfies

A ¢(r,t) =0 reQ\ I
[C1E =2[@|SK(r,t)/[wi] 1% rel (5.33)
0=[z-V.(" rely

It is possible to show by using the Green identity that this problem for a given function
K (r,t), has the unique solution

¢(r,t) = / ds(¢t — ¢ )(s,t)v- VG(r,s) = 25‘('50‘0 dsK(s,t)v - VG(r,s), re€Q\Ty
T\ [wi]*% Jr,
M(r, t) = 25/l dsK(s,t)v - VG(r,s), reTly
2 [wl]i—g T

where G is the Green function in Q. We notice that ((T+ (™) = ,5(/1(1) + ).

We consider now the function £(r, t) = (p1u§ )~ P2/ﬁg ))( t) = (ﬂ _(1)) + @(ﬂgl) +

ﬂgl)), which is discontinuous on I'; and satisfies

AE(r,t) =0 reQ\T;
(€T = Ig0|(C++C) rel, (5.34)
V:%[[:frs]] TEft

The problem is well posed because given the current configuration of the front the problem
has a unique solution and this solution in turn determines the velocity of the front.

In conclusion we have determined M1 ) and u(l) In N°(m) i ) is constant equal to the

value ,u( )(r t), r € Ty, which is determined by solving the hmltlng equation. Hence ,u( )

(1)

1

RO
/lz(-l) = T% + Uﬁ;l) while ,51(-1) are found as solutions of (5.22) with the r.h.s. decaying to

and fi, ) are known at this stage. As a consequence, p; ' are known through the relation
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a constant as z — oo and the decay is exponential if w; do so. Then, a modification
of the argument in [CCO1] leads to the exponential decay of /351). We notice that ﬁgl) is
determined by (5.22) but for a term aw; which is in the null of £, with « independent of z.
To fix a it is enough to put the condition 3 (0,7, 1)) = 557(0,7,t), r € N°(m). Since we
have fixed p5 = p5 on ' we are allowed to choose 3.7 (0,7, 1)) = p$7(0,7,¢), € N°(m)
for any k.

We proceed now constructing the higher orders of the expansion. For n = 2:

V@zﬁ(0)+17 v0, f(Q) +v-V f(l) zgl V f zgz -V f()
—0,5"5 -V, fM +v,5" . v f Lgf® , (5.35)

2) 1

Again, the terms involving v? and v(!) are zero thanks to the previous equations. The

matching conditions require for z large
FO(£lz],mt) = (FO)E(r,6) + Vo i - (0O (2 — dV) — vDd Q) + O(e ), r € NO(m).

Hence, we have to solve a stationary problem on the real line with given conditions at

infinity. We replace in (5.35) fi@) = (22(2) + ,5(-2) Mpg where (j@) is in the orthogonal to the

(2) (2 1

kernel of Lg, namely f dvg;” = 0; the scalar product is

(. 9)ns, = / oM fg

We have

Mp[Vo,w; + 7 - v9,5 + vV, 5 + 80,670 - vw; + 0,50 - vp® + 80,57 - vp)

— BV, vwy] = Lpd® — 700,62 + 0,50 - V,i?. (5.36)

2

By using the equation for the front w; and the fact that (‘32,1121) = ( together with /]Em =
5(1)
Zﬁ(Q) T(p1 ) + g( ) we get

w; 2 1
Myp - 0[0.57 + Buid.g;” + 65 0:5,” + 50.3. ")
~(2)
= Mﬂﬂ-vwiaz[p&}' +B§§2) g(Pz )?] = BMgi - vw; 3Z,uz
Hence we can write the equation (5.36) in the form

BMp - vwid ilY = LG — 7- 00,4 + 0.5\"7 - Vo + BMpwyv - Vg~
— Mo -V,5") — MgV a,w; (5.37)

From (5.15) the conditions at infinity are:

FO el t) = My | (577 = (50 VoiiV)* 4 (9,57 - (10 (2 = dO) = 0dO)) % | +0(e )
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A7l 1) = (7)) + (Ve (70 (2 = ) = v D)) + Ofe)

1

lim [ dvP(v ) (z r,t) = — < vP(v) >3 '(Vrﬂg )) (/31(0))

z—to0

where P(v) is a polynomial in the velocity and < - >4 are the moments of the Maxwellian
Mpg: < vP(v) >p= [ dvvP(v)Mg. From the definition (5.39) of /11(2) we deduce its asymp-
totic behaviour:

i~ 1P 4 By (pV) + Bo(p)+
T o

+erpl ( (0)(2 — d(l)) — y(l)d(o)) + 0 % (VrpAg_l) ; (V(O) (Z _ d(l)) _ l/(l)d(o)))

(3

where z is very large and r next to the interface, from one side or another depending on
the sign of z and By, B, are defined in Appendix D. If

. . T
Ci = Bi(p )+ Ba(0)+—r Vot (0 (2=dD) v D)4 U(V,07 - (v (= d®) =00

7

let us define
li = 1z<OC_ + 1z>00+

where C* is C; with all the hat quantities computed on =+ side of the interface. Now it
follows that

wi(+00) (A7) — w;(—00) (A7)~ = [wi(A® — )]

The left hand side can be written as
/w@m< ]—/Mm — L)+ (i — 1)

We need to eliminate the dependence on ,uZ . Then we multiply (5.37) by v, = 7 - v and
integrate over v

w;0 Z,uSQ) =—0, /dvv q; ) (5.38)

We used q§2) € [KerLg]* and v- V() = 0 and also L/jcjg = Lﬁfi . By matching conditions
we have that for z large

/B’QEZ) . 17(:|:|z|7', t) (,0 - vrﬂz(l ) + O(e—a|z|)
Introduce the following function:
ji = 1Z<O(D ) V’”/“L'Sl)) + 1z>0(17 ’ Vrﬂgl))+

and note that
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Hence, we get
wiaz( —1;) = -0, /dvv q; ( ) _ w;Ji
Then

wi(+oo)(ﬂ§2))+ — wi(—oo)(ﬂ?))’ /dz[ﬁu —l—w,j,] +/dzw§ﬂ§2) — /dzwgli

because the matching conditions force [ dvv2q"”

7
tion 7 - 1252)

) to vanish at infinity. Moreover the func-

is known because
V! + 0,7 -3 =0

It follows that

(2) W; — P ﬁ(O) (1) 15(0) (1) ia(O) (1)
v-u = (z—y'vrﬂi )__(Z D'Vrﬂi )+ _(Z 2 rﬂi )_

So only the last term involving ,Ec@)

.~ needs to be computed. But we know that

o T o TV, . S0
i) = —p) - S 8 = £ + D ). (5.39)

The solvability condition is

+o0o
Z/ dz|jiy” — Dyl = 0. (5.40)

Summing on i = 1,2

>, [ dzw! il =3 [T dzDw, =
=3, [72 dzwl(Bu(2) + Bo(5")) (5.41)

We introduce functions ,u( ) defined as explained after (5.28) in terms of ( ) We have

[plug )+,02u2 Al Z/dz[ﬁz/u -i-w,jz]-i-Z/dz[Bl pZ )+ Ba( pZ Z/dzwl

(5.42)
We are now in position to find the first correction to the velocity of the interface, V()
This is given by the solvability condition for the boundary equation for n = 3:

3 V(l’af + 0y v-z/(l)azfi‘l')+vVTﬂ‘2)+atf§°)—

LU>0:+1= LU>0:0+1=
_ Z 0,3 ( ) v/ f(l ) Z V ~(l vvﬂ(l') — Lﬁfi(?’)
LU 1> 0:04-1=3 11> 0: /=
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After integration on v we get
Vil + Vo) + V0o + 0.0 - ) + 0.0V - iP) = 0

Taking into account that

V0245V, (7-0)+0 (e~ ) = V,- 4P +0(e=") = O(e™*)), 2 large

v, i +0,74) =V, -4
because V, - 122(2) = 0, we can integrate over z
VBT + VO]t = — / dz[V, - 8% + 0,(7 - a)] — W - aP)re. (5.43)
By the matching conditions we have
i ~ 8P+ [(0(2 — dV) = Mgy . v,]a?
Let us introduce the functions
ni = l,co |[(P(z — dV) = Vd@) . v, 15 - a?’] ST [[(17(,2 —dD) = W) .y 15 - a?]
and
mi = 0.m; = Lico[? - Vo (7 7)™ + Liso[7 - Vo (0 7))
Thus
/ &V, - i? + 0, - 1)) = intd2[V, - i + mi +0,(7 - & — ny)] =
“53)]t = A+ 7))

= /dz[vr-ﬂz(?) +m|+ P-4

where we still have to compute A;. Essentially we need to know V #?. Tt can be derived
from (5.37) multiplying for v, - v, where v, denotes one of the two directions orthogonal
to 7, and integrating in v. After some computations we have
— 1 —

M2, . Vrpgl)

_a, / do(ws ) 0)? + - V.50 +

we have to sum over the two orthogonal

(2
Z( ), we can conclude

,BV 1 ’INLE =
In order to obtain the overlined divergence of u( )
directions; then remembering the asymptotic behaviour of [ dvP(v)§

that ) .
A= [ s [Ewﬁ,-v,gg 4 Ve Vo m,

Here we recall that uf depends only on quantities of the previous order in e, which are

known. Moreover by (5.17) we have also

i = ~T(p - Vi + v - V, i)

76



so that

1A0_ ~(2 1 ~(1 ~(0 1/\ — N 1/\ 1
Bwhwvmyﬁ=VWWf+VmWWf—EWWhVMWf+&—BM9¢ VA

(5.44)
We consider the functions ¢?) = ﬁlﬂ?) + 52ﬂ§2) and €@ = p ,15 ) Dol (2). We have from
(5.42)

(€21 = H{(r,)

and by summing in equation (5.44)

2

7 V(@1 = BV + g1+ 3 {1005 VT + 84 = [0V V0] = P

Moreover, we have the identity [¢?)]t = ¢(@+ 4 (@)~
We get the velocity V(! by taking the difference in (5.44) on the index i

2pt —p IV = —[v Vo EOTE =V [p{) — g7 + [A“ v, it -
——[p 20 Vi [h = Ayt Ay + [ﬁl 2 -w& It~
—B[ﬁé‘”u@ Vo= 205t - 71Q
Notice that [, V) is not necessarily zero as was I, V. This implies that the volume

enclosed by the interface I'{") evolving with V(© + V(1) is not conserved.
In conclusion, £ and ¢® are solutions of

AL (r, 1) =51 = S, re Q\ Ty
€N (rt) = 2@+ +¢O7)  rely (5.45)
vl =Q r el
and
AC@&t) Si+8 reQ\T
(PN = H(r,1) rel, (5.46)
[V vrC(Z]_—P TEFt

S;, Q have been determined before. The terms H and P depend on d® which has been
already found and also on d™ which is unknown and has to be determined by V(" = 9,d")
These equations are different from the first order equations because the surface T'; is given,
so that we are not facing a free boundary problem. In this sense they are “linearized” even
if the equations remain non linear. The problem is well posed because given dV) on I’y the
problem has a unique solution and this solution in turn determines the velocity V(. Then,
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d® is found in N°(m) through the condition Vd()Vd(® = 0. The argument is analogous
to the one in [ABC].

Once ,RZ(Q)
We have now the asymptotic values needed to solve (5.37). If the solution exists, it decays
exponentially at infinity, because the known terms have this property. This equation
admits a solution if the conditions at infinity satisfy suitable conditions. The matching
conditions require that the solution at infinity grows linearly. This is a problem analogous
to the so-called Kramers problem in the half space [BCN]. It can be reduced to a Riemann
problem with fixed asymptotic value at infinity in the following way:

Since the solution f has to be approximately Agh + ZBZ-:t at infinity the functions Az-i =
Mg((ﬁ@)ﬂE —v-(p (O)V,«u( )) ) and B = Mg(v - Vr,i)gl))i have to satisfy

] ]

are found as solutions of these equations we can find ,61(2)

in terms of [Lg?).

(B + MppUR"7 - V.o pi)*) + Myo - (5" Voi))* = Ly(Af +2B5)
because all the other terms in (5.35) vanish at infinity. This is equivalent to
Ls(Bf) =0, LpAf = v-o(Bf + MU v Vap")*) + Myv - (57 Voi")*.

This is true by direct inspection. Then, the problem is reduced to a well posed problem of

finding a solution h; to eq. (5.35) decaying to Mg (pA(-z))jE

i at infinity.

Similar arguments lead to the computation of higher order terms.

We conclude this section by remarking that our expansion is different from the one in
[CCO1] which is more similar to a Chapmann-Enskog expansion because the terms of their
expansion fi(n) still depend on € and are determined by equations which are nonlinear in
the interface at every order in the sense that they are free-boundary problems determining
for any n an interface '™ moving with velocity Yoo V@ Our approach is intermediate
between [ABC] and [Yu|, where it is proven the hydrodynamic limit for the Boltzmann

equation in presence of shocks.

5.2 Interface motion

In this section we discuss the equations for the interface motion. We start by rewriting
them in terms of the quantities { and ¢ = _(1) ﬂgl). The equation for 1 is similar to
the Mullins-Sekerka equation but for the fact that there is an extra term determining the

velocity

Apip(r,t) =0 reQ\TI}
u(r,) = 2200

e rely (5.47)
V=g |57 — @7 - Vill + Ll - V(D | rely
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The jump of @gv - V,( in the last term on the r.h.s. is indeed 2|p|v - V,((r,t),r € I'; and

A((r,t) =0 reQ\I
(1T =2|¢|SK(r,t)/[wi]t< rely (5.48)
0=[v-V.(]* rely

Hence there are two contributions to the velocity of the interface: Vg, the velocity of
an interface in the Mullins-Sekerka motion, and Vyg, the velocity of an interface in the
two-phases Hele-Shaw motion (5.48). The latter describes the motion of a bubble of gas
expanding into a fluid in a radial Hele-Shaw cell and is a free-boundary problem for the
pressure P

A.P(r,t) =0 reQ\T;
[p|" =CK(r,t)/[wi]*2 rely (5.49)
V=v-V,P rely

Equations (5.47) and (5.48) are identical to the equations in [OE], describing the sharp in-
terface motion for the dynamics of incompressible fluid mixtures driven by thermodynamic
forces, modeling a polymer blend. In this paper the macroscopic equation is a modifica-
tion of the Cahn-Hilliard equation for a mixture of two fluids that includes a lagrangian
multiplier p ("pressure”) to take into account the constraint of constant total density

Opi =V - (piV(pi +p)) i=1,2

This produces in the macroscopic equation for the concentration a convective term
which in turn gives rise to the Hele-Shaw contribution Vg to the interface motion. The
macroscopic equations (2.1) with u; = 6F /§p; differs from the ones above for the constraint
and hence for the pressure term. It is easy to see that the formal sharp interface limit is the
same for both equations with V( in the bulk a divergence-free field appearing as a velocity
field in the equation for the total density which is constant in the bulk at the first order.
Moreover, thermodynamic relations give that V¢ = Vp(") with p{!) the first correction to
the effective pressure. Hence, the role of V( is exactly the same as the lagrangian multiplier
p in [OE].

We refer to [OE] for the discussion on the behavior of the interface as given in (5.47)
and (5.48). Here we want just to remark that the Hele-shaw motion has more conserved
quantities than the Mullins-Sekerka motion. In fact, the former conserves the volume of
each connected component of both phases, while the latter conserves only the total volume

as we can easily see by starting from
d
— Q= |V
ot = [
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where ) is the region enclosed in the surface I'. We consider now a situation in which
there are N closed curves I'; dividing €2 in N connected components Q}LI. In the Mullins-
Sekerka problem the velocity is proportional to the jump of the normal derivative of the
harmonic function f and this implies by using the divergence theorem

=% [vn=% [ ars [ ar=o

where Q7 is the complement of U;(€ UT;). In the Hele-Shaw problem the velocity is
proportional to the normal derivative of f and

d
%\Qm:/y-w: Af=0
T; Q;ri

In the problem (5.47), (5.48) this fact has consequences on the evolution of the droplets
of the two phases. The relative importance of the two contributions Vgzs and Vjsg is
ruled by the coefficients: if (p7)~! — (p7)™! << 1 (near the critical point) the V35 term
dominates, while for deep quenches the Vg term prevails.
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Chapter 6

Conclusions

The phase segregation process is a challenging non equilibrium phenomenon, whose un-
derstanding and modeling are far from being complete. Multi-component mixtures can
have very complex phase diagrams. Each model has to face two kinds of limitations: it is
expected to be reliable in a certain set of values of the thermodynamical parameters and
it reproduces the behaviour of the system in some, but not all, stages of its evolution.

We focus on the late stages of phase segregation. Our model is able to provide the same
limiting dynamics given by a totally phenomenological equation such as the Cahn-Hilliard.
It has a kinetic origin and is deeply related to models directly arising from microscopic
systems on the lattice.

We proceeded mostly formally, but in such a way to make easier a future rigorous
approach. It goes through the proof of all the properties stated for the functions introduced,
starting from the fronts. Then a precise control of the remainder is needed. The choice
of the right norm is related to the stability properties of the stationary solutions of our
equations.

The main difficulty we faced to was to clarify the procedure to get the corrections to
the limiting motion. Indeed at order zero some peculiarities of the problem still not arise.
For example no dependence on the orthogonal coordinates to z is relevant till the first
correction, when one has to find the way to compute it.

Matching conditions are a very natural choice, but with deep consequences. They
allow to determine the value of the bulk quantities on the moving interface in terms of the
asymptotic behaviour of the layer functions. In other words they are essential in order to
make the double expansion approach meaningful.

Several extension of the model are possible. The most interesting is provided by the
replacing of the Fokker-Planck operator with the Boltzmann one. In this case energy and
momentum are conserved and a complicated hydrodynamics is expected.
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Appendix A

Geometric Curvature

We want to recall some properties of the curvature in a point of a plain curve, which is
assumed quite smooth. Curvature can be defined as the inverse of the ray of the osculating
circle, that is the circle which best approximates the curve in the point in consideration.
Alternatively let A and B be two point of the curve and call Af the angle between the
direction of the tangent vectors in the points A and B; then, if As is the length of the arc
joining A and B, the curvature in A is

lim a0 (A.1)

Since the cartesian equation of a circle depends on three parameters, we can ask at most
for an approximation of the second order. In other words if we substitute to the curve
the osculating circle, we make an error which vanishes faster then (As)? when B goes to
A, but not then (As)? in general. Consider a reference system where the curve can be
locally parameterized around A by the coordinate x and a function f: (z, f(x)); and such
that (0, f(0)) = (0,0) and (1, f'(0)) = (1,0). Suppose also for definiteness that f”(0) > 0.
If f”(0) = 0 the curvature is by definition put equal to 0 and one says that the ray of
curvature is infinite. A generic circle is

(z —20)” + (y — w0)* =77

By geometric intuition we can see that y, has to be positive and that the interesting
semi-circumference is

y=10— V1’ — (x —z)
We impose that
lim

flx) —yo+ /7% — (x — )2 _0
x—0 :122 o
from which we deduce the first condition
—yo + m =0 (A.2)
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because the numerator has to vanish in 0. Now we can apply De L’Hopital:

f/(x) - 2ac—mo 2
lim vrizlmml?

z—0 2x

and write down the second condition

0 — (A.3)
r? — x}
Repeating again the above procedure we get
f”(x) - 2 . 2 - gx_z0)2 2
lim Ve GO R Y o Y
z—0 2
and the third condition
1 x2
"0) = —— (14+ =2 ) =0 A4
1(0) r2—x§<+(7“2—x8)2> (A4)

From conditions (A.2), (A.3) and (A.4) we can compute all the parameters of the circum-
ference: . 1 1

Ty = = — r=

0 » Yo f”(O) ) f”(O)

From the above calculations it appears clearly that we can not expect a better approxima-
tion. We learnt that in that system of reference

1 1 .
T =%~ frop " o)

and that the curvature, call it &, is

k= f"(0)
The same result can be obtained from the definition of curvature given in (A.1). In
fact in the previous system of reference, Af is simply the angle « between the tangent in

(z, f(z)) and the z axis. Thus tan(a) = f'(x) and we can consider = as a function of «
and compute the first derivative of x with respect to a:

dz 1+ tan® o
_(a,) =
do f"(z(a))
In 0 we have
dx 1

--(0) = 70) (A.5)
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In order to conclude it suffices to show that As and z differ by a quantity that is of order
superior to «. Indeed from (A.5) we deduce that z and « have the same order and if
As =z + o(z) then

. As . z+0(a) 1

lim — = lim =

a—0 a—0 0% f”(())

We know that f'(z) = f"(0)z + o(z) and that

As = /0 dty/T+ [f' (02

then actually
As =z + o(z?)

If the curve is a circumference, the equivalence of the two definitions is obvious because
Af coincides with the angle between the vector rays joining A and B to the center and As
is just rA#6.

Now we deduce an expression for the curvature of a generic curve described by (z, g(z))
in a point (xg, g(xo)). It is just a change of coordinates. Define the normal versors ¥ and

v to be o (1, ¢'(x0)) . (—9¢'(20), 1)
T+ [ (50) L+ g (wo)]?
then

()= s L ) (60

) VIA@P \ g 1 )\

Then the new coordinates (X, f(X)) of the points on the curve are such that
Xo+ f(X)v = (z — zo)er + (9(z) — g(z0))ez

from which we get

v = T+ (g(z) — g(20))g (o) (A.6)
T+ [P
x) —g(xo) — (x — 20)g' (x
) < 2ol =~ g )
1+ [g'(20)]
The variable x can be regarded as a function of X implicitly defined by the former of the
above relations. So we can compute f”(X):

" _ 1 " d_ﬂ? ? () — o' ( d2—.’IJ
P = [gu(dX) e g(o>)dX2]

and in X = 0 which correspond to x = x,
2
X:0>

" _ g”(:L‘o) d_x
T = o ar (i
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By deriving (A.6) we find

dz 1+ [g'(z0)]?
dX 1+ ¢'(x)g'(x0)
and
dz B 1
AX|xmo V1419 @)
Thus at the end "
h= (o) = — 9@ (A.7)
(1+ [g'(z0)]?)2
Now we work in a more general setting. Let z(s) = (x1(s), ..., Z,(s)) be the parametric

representation of a curve in R” with respect to its curvilinear coordinate s. The angle Af
is function of s and it can be computed starting from

_z(s) - x(s+ As)
0s(80) = o) (s & A)]

Indeed we can introduce

()
%) = e

and note that - 9" = 0 because 20 - ¢ = D%? = D1 = 0. Then, if we Taylor expand
z(s + As) and cos(Af) we obtain

1— (A;)2 = B(s) - [0(s) + 0'(s)As + %@”(5)(A5)2] +o((As)?)
= 1+ %v -9"(As)? + o((As)?)
thus N
dim s = EV =00

where we can adopt a suitable convention to choose the sign. For example we can assume
that the angle Af is the acute one and we choose the plus sign if 2/(s + As) goes to z'(s)
rotating clockwise. By computing the second derivative of o we get

PO b e [ A
[ER

That expression can be greatly simplified recalling that s is the curvilinear coordinate.
Indeed let X (t) be a generic parametric representation of the curve, then

s= [ [1X'(7)lldr (A-8)

to
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and s = s(t) with X (t) = z(s(t)). If now we derive twice this relation we can solve with

respect to 2’ and z:
XI — .’,E,SI, XII — xlI(SI)Q +$ISII

X' 1 s"
I __ n __ n !
= =g (V)

and

But from (A.8) we have

X'. X"
= X, o =
X
so that Xt . Xt
I: II: XII_ X,‘X”
TR ||X'||2< ( )||X'||2>

We learn that if s is the curvilinear coordinate, then z’ is a versor orthogonal to z":

Iz'|| =1, 2'-2" =0

We can also evaluate the norm of z”, thus, at the end:

VIXTPIXP — (X7 - X7)

k=4V"0-0" = £|a"] = £ X

If X = (z,¢9(x)) we easily reproduce formula (A.7).

We now turn to a new topic. We want to show that the curvature can be computed as
the second derivative of the function which measure the distance of a point from the curve.
We put ourselves in the simplest system of reference, as above, and let f be given by

f(x) = 3702 + os?)

where f”(0) > 0. Fix § > 0 quite small and call x(Z) the point where the function

F(Z,7,2) =/ (@ —2)°+ (7 — f(2))?

attains its minimum. x(Z) has to satisfy 0,F(Z, 7, x(Z)) = 0, then the relation defining it

is the following:
z—x(@) + (= fF(x(@)f'(x(2)) =0 (A.9)
By geometric arguments we know that if 7 is sufficiently small, then x(0) = 0. The existence
and well posedness of the function y is guaranteed by the implicit function theorem when,
see (A.9),
—1+5f"(0) #0 (A.10)

and this is the case if y is quite small. Now we write x as a power series of z:
x(Z) = X'(0)7 + o(z)
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Thus x(Z) has the same order of Z. Of course, from the definition of f, one has f'(z) =
f"(0)x 4 o(x). Filling (A.9) with those expansions one obtains

z+ (yf"(0) = 1)x'(0)z + o(z) = 0

and ,dividing by x and taking the limit z — 0,

1
"0)= ——— Al
Introduce the function
¢(z) = F(z,9,x(2))
Note that we are not writing explicitly the parametric dependence on 3. We are interested
in evaluating the second derivative of ¢ in (Z, ) = (0,0). First of all

d2
ﬁﬁb = a:‘cc‘cF + 2a:cc'cFXl + awa(Xl)2 + achX”

but the last term vanishes thanks to (A.9). The other derivatives are

= (7))2
aa‘:wF(xvgaX(f)) = % - w
azi (j’gaX(j)) = _%
1
0ua (2,9, X(2)) = =7 (=1 = (F (x(@))” + (7 = f (x(@)))f" (x(2)))
Using these expressions and (A.11) we get
ra )
2l g-0g) 1 9f"(0)
Thus
d_2 — 0)
4z’ (=9)=00) f(

but in our system of reference the right hand side is just the curvature x. So condition
(A.10) can be reformulated by saying that § has to be smaller than the ray of curvature.
If © is a versor, the double sum

Z Z j (ariarj f)ﬁj
i=1 j=1

is not but the second derivative of f in the direction of 0. Indeed it is a straight consequence

df
%—U Vf

of the equality
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Given a surface of codimension one, we can construct a function ¢ as the distance of a
point from the surface. The matrix dr,0,, ¢ defined by continuity and evaluated on points of
the surface can be diagonalized, an eigenvector of eigenvalue 0 being the outward normal.
The other eigenvalues are, because of what seen above, the curvatures of the curves given
by the intersection of the surface with the planes which contain each eigenvector and the
outward normal. The trace of the matrix is n — 1 times the mean curvature.
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Appendix B

Uniqueness

In this Appendix we prove that the equations for the f(z,r,t) we examined in section 5
have solutions whose dependence on the velocity is necessarily gaussian. We will omit for
simplicity the dependence on the other variables.

We consider the following set of equations for h;(z,v), i=1,2, (z,v)€ R xR?

where F; = =0, [d2'U(|z — 2'|)p;(¢') == —=8,V;, @ # j, pi(z) = [dvhi(z,v), with the
conditions at infinity
hi(£o00,v) = M (v)p (B.2)

and show that it has only a solution of the form M (v)p;(z).
Put h; = 1;(z,v)M (v)e=#%i. V; is bounded due to the assumptions on U. Then,

0,0,9; + F0,,%; = Ly (B.3)
where 1
L"/)z = ﬁﬂvv : (M,vawz)

with the conditions at infinity
hi(Fo0, v) = eTPVitEe) o

Multiply by Mgs1); and integrate over v

1 d .
5@(%%‘, Vi) my + Fi(i, %%‘)Mﬂ = — (i, Lbi) m, (B.4)
where (h, g)um, = [ dvh(v)g(v)Mg(v). We have
1d :
(vt g, — 5 Rt i), = —e 7 (Tuth, Vuth, (B.5)
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that we write as p
@[(Uzwia wi)MgeiﬁW] = —Q(Vv%’, vvwi)MgeﬂVi (B6)

We notice that (v,1;,1;)(£00) = 0 because of the boundary conditions. Hence, by inte-
grating over z we get
+oo
| s vy =0
—00
which implies V,1; = 0 a.e. since V; is bounded, so that 1; = g(2), a function only of the
position. Going back to the original equation we see that g(z) has to be the front solution.

Next order equation.

We discuss now equation (5.19). We consider boundary conditions such that the func-
tion decays to zero at infinity. A solution has been explicitly found as a Maxwellian times
the density ). Suppose that there are two different solutions A and &' such that p, = pp.
Then, the equation for the difference is of the form investigated above, so that h — h' = 0.
This means that there is a unique solution of the form Mpg(v)p(z) in the class of solutions
with fixed density p. Then, putting this expression back in the equation we determine p.
The next order equations for fi(") have a similar form, but the solutions are not anymore of
the form Maxwellian times a polynomial. The existence and uniqueness have to be proved
by a different argument.
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Appendix C

Surface Tension

The surface tension can be defined as the difference between the free energy of an equilib-
rium state with an interface and a homogeneous one [B]. The free energy for this model
is

(1, o) = / d f(ma (z), ns(2))

1 1
f(n1,ng) = T(nglogny + nylogns) + EnlU*ng + ian*nl'
We have that [B]

o= lim hm/ dy; .. / dyq 1/ dyd[f wl,w2) (PfLapg)]

L—oo 2L (2L)d-1 M—oo

where pT, pi are the equilibrium values of the densities in presence of a phase transition
and w;(q) are the front solutions, smooth functions satisfying the equations

Tylogui(o) + [ 4T (g~ l)uy(e) = . (eR)
R
where U(q = [ dyU(y/q? + y?) and C; are constants determined by the conditions at

infinity p;°. Notlce that f(pf,py) = f(pr,ps) since pi = p7.
We rewrite the surface tension by using integration by part and the condition at infinity

+0o0 d

. /_ Oodz[f(wl’wQ) — f(ni'ny)] = _/_ dzz f (w1 (2), wa(2))-

o o0

We have

d 1, -~ . . .
%f(wl’ we) = T[(logwy+1)w]+(log w2+1)w;]—|—§[w'lU*wg+w§U*w1+w1U*w'2+w2U*w'1].
By using (C.1) we get

d

1 3 3 3 .
%f(wl’ Wo) = 5[—w£U*w2 —wylU xwy +wi U xwhy +weU xwi] + Crw!| + Cowsy + T (w] + ws)
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and for the surface tension

—%/dzdz' zZ[—w;(z)ﬁ(z—z')wj(z')+w,~(z)[7(z—z')w;(z')]—# oodzz[w'l—kw;]

i#] >

where C'is the common value of C; and C,. This is a consequence of the symmetry p = pF
and
Ci=Tlogp] +V pi, Cy=Tlogp;, +V pi.

We show now that the last term vanishes. The fronts w; satisfy the following property
[ detwie) = )+ (wale) = p) =0,
where p;(z) = pf,2 > 0, pi(z) = p;,2 < 0. This condition amounts to saying that the

mass on the surface is zero. By integrating by parts, the previous condition is equivalent
to the vanishing of the last integral in the expression of the surface tension. In conclusion,

o= %/dzdz'(z -2 Z[w;(z)ﬁ(z — 2Nw;(2")]-

i#j
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Appendix D
Forces

(n)

%

We show how to compute the terms g; ° and f]z-(") up to order 3. The procedure can be
easily extended at any order.

For a slowly varying function h(r,t) we have that
U xh(r,t) = / e3U ™ r —r'|)h(r', t)dr’
R3
- /lﬂ@—x%%@ﬁﬂ—h@mﬂMﬂ+Mnﬂ/lﬂh—xﬂ@'
R3 R3

= [ Ul =aD[eta =) Vohir

3
52 , , 82 . , , .
+ izj(:c —a)i(z — )jmh(r, t) + 'Ry (x, x )]dx 4 h(r, )0
= h(r,)U + " Ah(r,t)U +€*U % Ry, (D.1)

where U = [U(r)dr, U= %frzU(r)dr. We have used the isotropy of U. Hence we have

0" =Up" n=01 g7 =07 +UASY, 57 =Up +UApY.

To compute the expansion of U® x h for a fast varying function h(z,r,t) it is more
convenient to use a local system of coordinates. For a given curve I' and for any point
s € I we choose a reference frame centered in s with the axes 1,2 along the directions of
principal curvatures k; and 3 in the direction of the normal. Consider two points r and 7’
and choose the reference frame centered in s(r) : r = s(r) + ezv(r). We denote by y; and
y: the microscopic coordinate of r and 7’ in this new frame. Then y; = yo = 0,y3 = z and
¢; = e 'r}, the microscopic coordinates of 7/, are related to y. by a linear transformation
q; = Ay, Moreover, 2’ is given in terms of y; by ([GL])

Z{y)) =yt i %[gkigf — 26%k2y ] + 233 kYD )?
—e3 1> (07 Ky vy (4ks(1 — 6i5) + 3 = 28i5)] + O(*), (D.2)
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where 2’ : r' = s(r') + ev(r')2
We denote by h(y}, yb, y4,t) the function h({eAwy,}, 2'({y!}),t). We have

(U % h) (=1 t) = / U1y — v DR v s e 1)
RB

. 1 ~ 0%h
= [ vy -y .00+ DU w g
oh
+ _ZUZZ aI4ZT't Z UQ” 6/2/2 Q
1=1,2 1,j=1,2,i#7]
where
Us,i(lys—yél)Z/ dy dyyU(\/|ys — y412 + 112 + [wh]?) >
R2
Onss = | dotdssU (/s = G + WA+ PPl
R2
We have 5
oh _ L 7
= =Y V;hA;
9y, ‘E; T 5z oy
d’h oh 02 9®h, 0h 9?7
o2 = ¢ ZA]kAngﬂh-i— [eA]kV ia; ayzﬁ]Jr@W%

By using the relation between z" and y D.2 we see that the second term equals to

oh ) .
a(0, 0, ys5, ) (eky — 72ky}).

It is true that [B]

[ avvs=y50.050 X 50 = T [ a2 - 500 ~p o). (03

i=1

To compute the contributions at different order in £ we go back to the specific curve
¢ and use the expansion d*(r,t) = Y. e"d™(r,t) which implies k&f = ) snkgn) and
A5 =30, S”Az(?). In conclusion,

(U*xh)(z,7) = (Uxh)(z,7)+ 5% /Rdz'(z' —2)U(|7 = 2))h(Z,7)

—+ z [ U1 J * D1 z(h) -+ ﬁg,i * DQ,Z(h) =+ Z (727ij * DQ’ij(h) +

1=1,2 YE)

T xh)(z,7) + Y €"By(h) + R, (D.4)

where R}, is of order €* and
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’h
022’

oh 3 — 6y;
D i(h ZA RAR Vb = T2k s Dag(h) = =

, k)

C) = [ a2 = D00~ Dh(or), Do) = OO T
R

We do not write explicitly the long and uninteresting formula for B;. Hence we have

30 = 0% 0

“) = Ox 0 4 Bi(O) ()
<2) 0+ 50 4 Bu(i) + Ba(6®)
53) =059+ BU() + BaoD) + Bo(70). (D.5)
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