Prevalence of resistance mutations related to integrase inhibitor S/GSK1349572 in HIV-1 subtype B raltegravir-naïve and -treated patients

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Antimicrobial Chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>JAC-2011-0014.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original research</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>18-Feb-2011</td>
</tr>
</tbody>
</table>

Complete List of Authors:
- Malet, I; Pitie-Salpetriere hospital, virology
- Wirden, Marc; Pitie-Salpêtrière hospital, virology
- Fourati, Slim; Université Pierre et Marie Curie-Paris 6/INSERM/APHP, UMR S-943/U943/virology laboratory
- Armenia, Daniele; University of Rome Tor Vergata, Experimental Medicine
- Masquelier, Bernard; CHU de Bordeaux, Laboratoire de Virologie Fabeni, Lavinia; University of Rome Tor Vergata, experimental Medicine
- Sayon, Sophie; Pitie-Salpetriere hospital, virology
- Katlama, christine; Groupe Hospitalier Pitié-Salpêtrière, service des Maladies Infectieuses et Tropicales
- Perno, Carlo-Federico; University of Rome, Department of experimental medicine
- calvez, vincent; pitie-Salpetriere hospital, virology
- Marcelin, Anne-Genevieve; Pitie-Salpetriere Hospital, Virology
- Ceccherini-Silberstein, Francesca; University of Rome, Department of Biochemical Sciences and Experimental Medicine

Keywords: HIV/AIDS, Inhibitors, Resistant
Prevalence of resistance mutations related to integrase inhibitor S/GSK1349572 in HIV-1 subtype B raltegravir-naïve and -treated patients

Isabelle Malet1*, Marc Wirden1, Slim Fourati1, Daniele Armenia2, Bernard Masquelier3, Lavinia Fabeni2,4, Sophie Sayon1, Christine Katlama1, Carlo Federico Perno2,4, Vincent Calvez1, Anne-Geneviève Marcelin1 and Francesca Ceccherini-Silberstein5

1Laboratoire de Virologie, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, UPMC Univ Paris 06, INSERM U943, Paris, France; 2Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy; 3Laboratoire de Virologie, CHU de Bordeaux, EA 2968, Université Victor Segalen, Bordeaux, France; 4National Institute for Infectious Diseases (INMI) L. Spallanzani, Rome, Italy

*Corresponding author. Mailing address: hôpital Pitié-Salpêtrière, Service de Virologie, 83, bld de l’hôpital, 75013 Paris, France. Phone: 0033 142177401. Fax: 0033 142177411. E-mail: isabelle.malet@psl.aphp.fr

Short title: S/GSK1349572 mutations in HIV-1 patients

Keywords: resistance, failure, polymorphism, prevalence

Methods: Integrase (IN) sequences from 650 INI-naïve patients and 84 raltegravir-treated patients were analyzed.

Results: T124A mutation alone and the combination T124A/L101I were more frequent in raltegravir-failing patients than in INI-naïve patients (39.3% versus 24.5%, respectively, with p=0.005 for T124A and 20.2% versus 10%, respectively, with p=0.008 for T124A/L101I) as the S153Y/F mutations have never been detected in any integrase sequence.

Conclusions: T124A and T124A/L101I, more frequent in raltegravir-treated patients, could have some effect on raltegravir response and their presence could play a role in the selection of other mutations conferring S/GSK1349572 resistance. The impact of such changes mediated by raltegravir should be further studied on the virological response to S/GSK1349572.
Introduction

Integrase, the HIV-1 enzyme responsible for the integration of the viral genome into the chromosomes of infected cells, is the target of the recently approved antiretroviral raltegravir (RAL) and currently investigated elvitegravir (EVG). Despite activity against viruses resistant to other antiretrovirals, failures against integrase inhibitors (INIs) therapy were observed, in association with the emergence of resistance due to mutations in the integrase gene.\(^1\)

S/GSK1349572 is a next generation HIV-1 strand transfer INI with high potency (IC\(_{50}\) measured in presence of human serum = 38 nM).\(^2\) In vitro, serial passage experiments identified five single or combined amino acid substitutions that could confer S/GSK1349572 resistance: T124A, T124A/S153F, S153Y, T124A/S153Y and L101I/T124A/S153Y.\(^2\)

S/GSK1349572, showing low fold changes in activity against site directed molecular clones, including Y143C/H/R, Q148K/R/H and N155H, seems to have limited cross-resistance to raltegravir- and elvitegravir-resistant mutants\(^3\) and may have a higher genetic barrier to resistance than raltegravir.\(^4\) In vivo, preliminary results in 10 HIV-1 infected patients INI naïve and treated by S/GSK1349572 in monotherapy (50 mg once daily) during 10 days reported a HIV-1 plasma viral load decrease of \(-2.46 \log_{10}\) copies/mL.\(^5\) Another recent study evaluated the short-term antiviral activity of S/GSK1349572 (at day 11) in 27 raltegravir-experienced patients with raltegravir-resistant viruses. Results showed a HIV-1 plasma viral load decrease of \(-1.45 \log_{10}\) copies/mL in 100% of patients harboring mutations linked to the N155 and Y143 pathways. In contrast, a viral load decrease of \(-0.72 \log_{10}\) copies/mL was observed only in 33% of patients harboring the Q148 pathway associated with L74, E138 or G140 mutations.\(^6\)

In INI-naïve patients, there is a limited degree of natural polymorphisms in the integrase gene from subtype B HIV-1, since 65% of HIV-1 integrase residues are conserved (< 1% variability). Residues involved in protein stability, multimerization, DNA binding, catalytic
activity, and in the binding with the human cellular cofactor LEDGF/p75 are fully conserved.7

It has also been shown that all primary signature mutations emerging in patients failing raltegravir (Y143C/R, Q148H/K/R, N155H) or elvitegravir (T66I, E92Q, S147G, Q148H/K/R, N155H), as well as secondary mutations (H51Y, T66A/K, E92A/G/Q, F121Y, E138K, G140S/A/C, Y143C/H, K160N, R166S, E170A, S230R, D232N, R263K) were completely absent or highly infrequent (< 0.5\%) in INI-naïve patients infected with HIV-1 B subtype.7 The aims of this study were to explore potential primary genotypic resistance to S/GSK1349572 in INI naïve patients and the ability of this compound to treat patients with raltegravir resistance. Thus, we evaluated the proportion of patients carrying viruses with resistance mutations previously described to S/GSK1349572 in HIV-1 subtype B raltegravir-naïve and -treated patients.

Materials and methods

In this report, sequences of the entire integrase gene from 650 INI-naïve patients and 84 raltegravir-experienced (all raltegravir-failing) patients, all infected with subtype B HIV-1 strains, were analyzed for the presence of previously described \textit{in vitro} mutations to S/GSK1349572. At the time of the genotypic resistance test, INI-naïve patients (143 HAART (Highly Active Antiretroviral Therapy)-naïve and 507 HAART-experienced) and raltegravir-treated patients (all HAART-experienced) received, in their optimized regimen, at least one NRTI (Nucleoside Reverse Transcriptase Inhibitor) with one boosted PI (Protease Inhibitor) or one NNRTI (Non-Nucleoside Reverse Transcriptase Inhibitor) plus, for some of them, enfuvirtide or maraviroc. INI-naïve and raltegravir-treated patients showed a median viral load of 4.2 (3.6 - 4.9) \(\log_{10} \) copies/mL and 3.8 (2.5 - 5.1) \(\log_{10} \) copies/mL, respectively.
RNA was extracted from 500 µL of plasma, and a 1086 base pair fragment encompassing the entire IN gene was amplified, as described previously. The PCR products were purified and sequenced using a cycle sequencing reaction with the Big Dye terminator kit (Applied Biosystems, Foster City, California, USA). The sequences were aligned using SmartGene software (SmartGene GmbH, Zug, Switzerland) and the amino acid sequence of HIV-1 integrase (288 amino acids) of clade B consensus was considered as a reference.

Results

The prevalence of in vitro selected mutations by S/GSK1349572 in naïve and raltegravir-treated patients is presented in Table 1. Mutations L101I and T124A seem to be polymorphic in INI-naïve patients with frequencies of 45.8% and 24.5%, respectively, the two associated mutations L101I/T124A being present with a frequency of 10%. In raltegravir-treated patients, the genotypic resistance test performed at raltegravir failure, showed that mutations L101I, T124A and L101I/T124A occurred with frequencies of 56%, 39.3% and 20.2%, respectively. Consequently, only mutations T124A and L101I/T124A were more frequent in raltegravir-failing patients than in INI-naïve patients (p = 0.005 and 0.008, respectively). The mutations S153Y/F, and consequently the profiles T124A/S153F, T124A/S153Y and L101I/T124A/S153Y, have never been detected in any sequence from both INI-naïve and raltegravir-failing patients (except for S153F alone, only detected in one INI-naïve patient).

Discussion

In conclusion, some previously in vitro selected mutations by S/GSK1349572 (T124A and L101I/T124A) are polymorphic but significantly more frequent in raltegravir-treated patients.
than in raltegravir-naïve patients. This result suggests that these mutations could have some
effect on raltegravir response, at least as secondary resistance mutations. The fact that these
mutations are increased in raltegravir-failing patients and selected in vitro by S/GSK1349572
also suggests that they can participate to raltegravir and S/GSK1349572 cross-resistance. The
mutation T124A, alone or associated with L101I, is among the first mutations that appear in
culture, under S/GSK1349572 pressure, at day 56, suggesting a role in the resistance to
S/GSK1349572. A recent study has shown that baseline viruses with L101I and/or T124A do
not seem to have an impact, at day 10, on S/GSK1349572 response in INI-naïve patients. However, considering the higher prevalence of T124A and L101I/T124A mutations in
raltegravir-treated patients, we could not exclude that their presence in raltegravir-failing
patients could favour the selection of other mutations conferring S/GSK1349572 resistance.
Thereby, it should be interesting to study the response to S/GSK1349572 treatment in patients
failing to raltegravir to evaluate the impact of IN polymorphisms and to study if these
polymorphisms can affect the selected resistance mutations in case of failure to
S/GSK1349572.

Funding

The research leading to these results has received funding from Sidaction, the Agence
Nationale de Recherche sur le SIDA (ANRS), the Association de Recherche en Virologie et
Dermatologie (ARVD) and the European Community’s Seventh framework Program
(FP7/2007-2013) under the project ‘Collaborative HIV and Anti-HIV Drug Resistance
Network (CHAIN)’. We thank G. Le Mallier and P. Grange for their technical assistance.

Transparency declarations

None to declare
References

Table 1. Evaluation and comparison of prevalence of L101I, T124A, S153F and S153Y mutations in INI-naïve and RAL-failing patients

<table>
<thead>
<tr>
<th>Integrase mutations</th>
<th>Integrase inhibitor-naïve patients (n=650)</th>
<th>Raltegravir failing patients (n=84)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>L101I</td>
<td>298</td>
<td>45.8</td>
<td>47</td>
</tr>
<tr>
<td>T124A</td>
<td>159</td>
<td>24.5</td>
<td>33</td>
</tr>
<tr>
<td>L101I + T124A</td>
<td>65</td>
<td>10.0</td>
<td>17</td>
</tr>
<tr>
<td>S153Y</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S153F</td>
<td>1</td>
<td>0.2</td>
<td>0</td>
</tr>
</tbody>
</table>

*p values shown in bold are valid after multiple comparison tests