Short communication

Performance evaluation of the COBAS/TaqMan HIV-1 v2.0 in HIV-1 positive patients with low viral load: A comparative study

Pierpaolo Paba, Lavinia Fabeni, Massimo Ciccozzi, Carlo Federico Perno, Marco Ciotti

Article history:
Received 7 December 2010
Received in revised form 4 March 2011
Accepted 9 March 2011
Available online xxx

ABSTRACT

HIV-1 viral load determination is a crucial step for monitoring the efficacy of highly active antiretroviral therapy (HAART) and predicts disease progression. Real-time PCR based assays are available for monitoring the viral load. They differ in sensitivity, genomic target region and dynamic range. In this study, the performance of the Roche Cobas Taqman HIV-1 v2.0 was evaluated on plasma samples from HIV-1 positive patients in parallel with the Abbott RealTime HIV-1 assay in a routine diagnostic setting. Overall, there was a good agreement between the two assays. However, some samples detected by the Abbott RealTime HIV-1 assay but below the limit of quantitation of the assay were found negative result when tested with the Roche Cobas Taqman HIV-1 v2.0. It is conceivable that signal anomalies or background noise may affect the lower-end precision of the Abbott RealTime HIV-1 assay. Based on these results, it is concluded that it is not recommended to switch platform during longitudinal viral load monitoring of HIV-1 positive patients.

© 2011 Published by Elsevier B.V.

1. Introduction

Quantitation of HIV-RNA is a critical step to monitor highly active antiretroviral therapy (HAART) and predict disease progression (Mellors et al., 1997). Viral load levels below the limit of quantitation usually reflect adherence to treatment and efficacy of HAART (Gross et al., 2001; Bagchi et al., 2007). On the contrary, quantifiable HIV-1 RNA may suggest poor treatment adherence or virological failure. In elite controllers, individuals who control spontaneously viral replication without antiretroviral drugs, low levels of viremia (down to 2 copies/ml) have been detected by ultrasensitive methods and were related to higher HIV-1-specific antibody responses and low levels of CD4+ (Pereyra et al., 2009). Understanding the meaning of very low viral load may be relevant for patient management (Di Mascio et al., 2004).

Currently, several commercial assays are available for quantitation of plasma HIV-1 RNA. They differ in sensitivity, dynamic range, target region, and amplification method (Peter and Sevall, 2004). Real-time PCR is the method used most widely and it offers a series of advantages over the conventional molecular methods: such as (i) increased analytical sensitivity, (ii) faster results, (iii) reduced risk of contamination, and (iv) wider dynamic range.

The extensive genetic variability of HIV-1 strains circulating world-wide has an important impact on the management of this infection, from the identification of infected persons to viral load determination and monitoring of treatment. There is currently no assay able to quantify the whole spectrum of circulating HIV-1 strains. Differences in primers/probe design, target region, technology used may be responsible for underestimation of the viral load or failure of detection with direct implications for clinical management and detection of treatment failure (Peeters et al., 2010).

Amplification of multiple targets of HIV-1 genome may improve the accuracy of viral load determination. In this study, plasma samples from HIV-1 positive patients were tested by the Abbott RealTime HIV-1 assay in comparison with the Roche Cobas Taqman HIV-1 v2.0 (Roche Diagnostics, Branchburg, NJ, USA), which uses a multiplex real-time PCR approach to amplify the gag and LTR regions within the HIV-1 genome. The goal of the study was to verify whether the Roche multiplex real-time approach improves the accuracy of viral load determination especially in samples with low or not quantitated viremia (<40 copies/ml) as measured by the Abbott RealTime HIV-1 assay.

2. Materials and methods

2.1. Study group

The study was carried out on 109 plasma samples from 59 HIV-1 positive patients (25 women and 34 men) admitted at the...
Table 1

<table>
<thead>
<tr>
<th>N. samples</th>
<th>Viral load range</th>
<th>N. samples</th>
<th>Viral load range</th>
<th>N. viral subtypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>28</td>
<td>40–100</td>
<td>3</td>
<td>TND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td><20 detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>20–40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>40–100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>>100^</td>
</tr>
<tr>
<td>Group II</td>
<td>12</td>
<td>>100</td>
<td>0</td>
<td>TND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td><40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>40–100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>>100^</td>
</tr>
<tr>
<td>Group III</td>
<td>69</td>
<td><40</td>
<td>17</td>
<td>TND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td><20 detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>20–40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>40–100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>>100^</td>
</tr>
</tbody>
</table>

TND: target not detected; NA: not available.

\(^a\) Viral load >100 copies/ml detected by Cobas Taqman HIV-1 v2.0 in group I.

\(^b\) Viral load >100 copies/ml detected by Cobas Taqman HIV-1 v2.0 in group III.

Infectious Diseases ward of the Polyclinic Tor Vergata. Of these patients, four were infected by the recombinant form CRF02_AG, one by CRF01_AE, five by subtype G, four by subtype F, one by subtype C, and 37 by subtype B. No information on the viral subtype was available for 7 patients. CD4+ count was also performed as part of the routine investigation.

2.2. HIV-1 RNA extraction and amplification

Two aliquots of 1 ml each of plasma were collected from each patient and tested independently by the Roche and Abbott systems.

In the case of Roche assay, the COBAS Ampliprep instrument was used for automated specimen processing and the Cobas TaqMan48 for the automated amplification and detection (Roche Molecular System, Inc., Branchburg, NJ, USA). Samples tested by the Abbott assay were run on the m2000 system, a platform capable of automated RNA extraction and PCR set-up, followed by amplification/detection (Abbott Molecular Inc., Des Plaines, IL, USA).

The Cobas Ampliprep/Cobas Taqman HIV-1 v2.0 can quantitate HIV-1 RNA over the range of 20–10,000,000 copies/ml, while the Abbott HIV-1 RealTime test quantitates over a range of 40–10,000,000 copies/ml.

When the samples were discordant qualitatively (positive/negative), an “in-house” nested PCR targeting a 220bp fragment of the V3 region within the gp120 gene was performed. The sensitivity of the method is 10 copies/ml (data not shown).

Primers sequences are available upon request. Viral RNA was reverse transcribed using the SuperScript® One-Step RT-PCR System (Invitrogen, Milan, Italy) according to the following thermal profile: 1 cycle at 50 °C, 30 min, then 1 cycle at 94 °C, 2 min, 40 cycles at 95 °C, 30 s, 51 °C, 30 s, 72 °C, 50 s; with a final extension step at 72 °C, for 10 min. In the second round PCR the conditions were: 1 cycle at 93 °C, 12 min; 40 cycles at 95 °C, 30 s, 52 °C, 30 s, 72 °C, 40 s; followed by 1 cycle at 72 °C, 10 min. Precautions were taken to avoid contamination and controls were included in each PCR run. The amplicons were checked on a 2% agarose gel under UV light.

2.3. Statistical analysis

Linear regression and correlation analysis were employed to determine assays relationship. The method of Bland–Altman was applied to assess the agreement between the two assays.

3. Results

Of the 109 plasma samples tested by the Abbott HIV-1 RealTime assay, 28 had a viral load between 40 and 100 copies/ml (group I), 2, B; 1, F, 2, CRF02_AG; 2, F; 1, B; 1, G; 2, NA; 3, B; 1, G.

Finally, in the group III, where all 69 samples tested by the Abbott assay were <40 copies/ml, 17 were undetected, 22 were positive but <20 copies/ml, and 14 had a viremia between 20 and 40 copies/ml, 11 between 40 and 100, and 5 >100 copies/ml.

In the group I, three patients had a subtype G, two a subtype F, two a CRF02_AG recombinant form, one CRF02_AE recombinant form, two an unknown genotype, and 22 were infected by subtype B.

In the group II, one patient had subtype C, one subtype CRF02_AG, two an unknown genotype and eight a subtype B. Group III, three patients were infected with the recombinant form CRF02_AG, two with subtype F, two with subtype G, one with

![Fig. 1. Correlation of viral load results obtained using Abbott HIV-1 RealTime PCR and Cobas TaqMan HIV-1 v2.0. The linear regression trend is shown.](https://example.com/fig1.png)

Abbott HIV-1 real-time assays have detected an increasing number of positive samples with viral load below the limit of quantitation of both assays (Wirden et al., 2009; Slioma et al., 2009). Similar results were reported in studies comparing the Cobas TaqMan HIV-1 v2.0 assay with the Cobas Amplicor assay (Lima et al., 2009; Gatanaga et al., 2009) where several samples were detected but not quantified by both assays. The clinical meaning of such findings is still unclear. Some studies showed that these low-level viremias do not necessarily reflect the appearance of drug-resistant strains or virological failure (Manavi, 2008; Smit et al., 2009), while others hypothesized that these viremic blips are linked to altered specimen-processing procedures (Rebeiro et al., 2008). Similar results were obtained in this study where several samples were below the limit of quantitation by both assays irrespective of the viral subtype tested.

Finally, 17 samples positive by the Abbott assay but below the limit of quantitation of the assay gave a negative result when tested by Roche assay. This negative result were confirmed by an “in-house” PCR when plasma was available for further testing. Since all patients examined in in this study were HIV-1 positive, artefacts due to cross-hybridization of primers/probe can be excluded. It is conceivable that in some circumstances signal anomalies or background noise may affect the lower-end precision of the Abbott RealTime HIV-1 assay (Shain and Clemens, 2008).

In the light of these findings, virological follow-up should be performed using the same assay and viremic blips should be interpreted with caution. This effect may be linked to the limit of amplification of multiple viral targets by real-time PCR represents an important step forward for a virus with high genetic variability such as HIV-1. It should improve the reliability and accuracy of the virological follow-up.

4. Conclusions

Accurate determination of HIV-1 viral load is crucial for evaluating the response to treatment and the adherence to therapy. Achieving low levels of viremia during antiretroviral treatment predicts a sustained virological response. For this reason, samples with low viral load were selected and tested in parallel by two commercial kits: the Cobas TaqMan HIV-1 v2.0 and the Abbott RealTime HIV-1 assay. Both assays are based on real-time PCR with a wide dynamic range and high sensitivity. Overall, a good agreement was found between the two test systems when considering the samples quantified within the dynamic range of both tests, although this result is partly biased by the low number of samples with high viremia tested. Bland–Altman analysis showed a good agreement between the two assays (Fig. 2).

Of the 17 discordant samples, negative by the Roche assay but detected (<40 copies/ml) by the Abbott test, extra plasma of 9 samples was available for further testing. The nested PCR targeting the V3 region of the gp120 gene was negative on all samples tested, confirming the result observed with the Roche assay.

References

