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DUALITY FEATURES OF LEFT HOPF ALGEBROIDS

SOPHIE CHEMLA, FABIO GAVARINI, AND NIELS KOWALZIG

ABSTRACT. We explore special features of the pair (U*, Ux) formed by the right and
left dual over a (left) bialgebroid U in case the bialgebroid is, in particular, a left Hopf
algebroid. It turns out that there exists a bialgebroid morphism S* from one dual to another
that extends the construction of the antipode on the dual of a Hopf algebra, and which is
an isomorphism if U is both a left and right Hopf algebroid. This structure is derived from
Phung’s categorical equivalence between left and right comodules over U without the need
of a (Hopf algebroid) antipode, a result which we review and extend. In the applications,
we illustrate the difference between this construction and those involving antipodes and
also deal with dualising modules and their quantisations.
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1. INTRODUCTION

A characteristic feature in standard Hopf algebra theory is its self-duality, that is, the
dual of a (finite-dimensional) Hopf algebra (over a field) is a Hopf algebra again. In par-
ticular, the antipode of this dual is nothing but the transpose of the original antipode; see,
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for example, [Swl|. In the broader setup of (left or full) Hopf algebroids over possibly non-
commutative rings, this peculiar property appears to be more intricate; see [Bl] or §2f for
the precise definitions of these objects, we only mention here that, in contrast to full Hopf
algebroids, there is no notion of antipode for left Hopf algebroids: one rather considers the
inverse of a certain Hopf-Galois map and its associated translation map. Nevertheless, left
Hopf algebroids appear as the correct generalisation of Hopf algebras over noncommuta-
tive rings, whereas full Hopf algebroids generalise Hopf algebras twisted by a character,
see, for example, [Ko, §4.1.2].

Recently (after the first posting of this article), Schauenburg [Sch2|] showed that the
(skew) dual of a left Hopf algebroid (under a suitable finiteness assumption) carries some
Hopf structure as well without giving an explicit expression for the inverse of the respective
Hopf-Galois map or the associated translation map.

However, instead of one dual, a left bialgebroid U rather possesses two, the right dual
U* and the left dual U, which, on top, live in a different category compared to U as they
are both (under certain finiteness assumptions) right bialgebroids [KadSz]. There is no
reason why one should prefer one of the duals to the other. Hence, any question concerning
“the dual of U” should be converted into a question about the pair (U*, Us).

Dealing with full Hopf algebroids (see does notably worsen the situation as
there are actually four duals to be taken into account, two of which are left and two of
which are right bialgebroids. In this case, an answer to the question of the nature of the
Hopf structure on the dual(s) has only been given in certain cases, more precisely, in the
presence of integrals [BSzl §5].

1.1. Aims and objectives. As mentioned a moment ago, the object one should investigate
to discover the limits of self-duality in (left) Hopf algebroid theory is a pair of duals. In
short, our question reads as follows: if a left bialgebroid U is, in particular, a left (or right)
Hopf algebroid, what extra structure can be found on the pair (U*, Ux) of duals?

1.2. Main results. After highlighting in §3]a multitude of module structures that exist on
Hom-spaces and tensor products in presence of a left or right Hopf algebroid structure
and that will be used in the sequel, in §4 we review (and extend) Phiing’s equivalence (cf.
[Phul]) of comodule categories (see the main text for all definitions and conventions used
hereafter):

Theorem A. Let (U, A) be a left bialgebroid.

(i) Let (U, A) be additionally a left Hopf algebroid such that U, is projective. Then
there exists a (strict) monoidal functor Comod-U — U-Comod: if M is a right
U-comodule with coaction m — mo) ®a M(1), then

M —>U, @1 M, mw—mguy_ ®imye(mayy),

defines a left comodule structure on M over U.

(ii) Let (U, A) be a right Hopf algebroid such that .U is projective. Then there exists
a (strict) monoidal functor U-Comod — Comod-U: if N is a left U-comodule
with coaction n — n(_1) Q4 n(g), then

N—=N®y U, 1w e(nen)no ®anen-,

defines a right comodule structure on N over U.

(iii) If U is both a left and right Hopf algebroid and if both U, and ,U are A-projective,
then the functors mentioned in (i) and (ii) are quasi-inverse to each other and we
have an equivalence

U-Comod ~ Comod-U

of monoidal categories.
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Note that this equivalence works without the help of an antipode as there are objects
that are both left and right Hopf algebroids but not full Hopf algebroids (cocommutative
left Hopf algebroids, for example).

Starting from this result, under suitable finiteness hypotheses on U, one can construct
functors Mod-Us — Mod-U" resp. Mod-U"* — Mod-Us, and from this we isolate
maps U" — Uk resp. Ux — U™, which even make sense without any finiteness assump-
tions as proven in §5} and which are our main object of interest.

In §5.1)we can then give the following answer to the problem mentioned in that is,
elucidate the relation between the left and the right dual:

Theorem B. Ler (U, A) be a left bialgebroid.

(i) If (U, A) is moreover a left Hopf algebroid, there is a morphism S* : U* — U of
A€-rings with augmentation; if, in addition, both ,U and U, are finitely generated
A-projective, then (S*,id ) is a morphism of right bialgebroids.

@ii) If (U, A) is a right Hopf algebroid instead, there is a morphism S« : Us — U* of
AC-rings with augmentation; if, in addition, both .U and U, are finitely generated
A-projective, then (Sy,1d ) is a morphism of right bialgebroids.

(iii) If (U, A) is simultaneously both a left and a right Hopf algebroid, then the two mor-
phisms are inverse to each other; hence, if both .U and U, are finitely generated
A-projective, then U* ~ Ul as right bialgebroids.

Now, as said before, for a left Hopf algebroid (which is finitely generated projective
with respect to both source and target map) there is no canonical choice for which dual
to consider but in view of Theorem [B] in case the left Hopf algebroid is simultaneously a
right Hopf algebroid, both duals are isomorphic and hence can be seen as its dual, which
carries a Hopf structure by Schauenburg’s recent result [Sch2]]. This seems to be as close
as one can get to self-duality.

Theorem (B is a straight analogue of the construction on the dual for a (finite-
dimensional) Hopf algebra H (over a field) with antipode .S in the following sense: here,
one has H* = (Hx)gh,, and S* is exactly the transpose of .S and therefore the antipode
for the dual Hopf algebra.

Observe that this last case in Theorem [B] i.e., the presence of both a left and right Hopf
structure is given, for example, when U is a full Hopf algebroid with bijective antipode
but also in weaker cases such as for the universal enveloping algebra of a Lie-Rinehart
algebra. In the situation of a full Hopf algebroid, U* and U are additionally linked (in
both directions) by the transposition S of the antipode S : U — Uch,p- However, in
Theorem we show that the map %S in general does not coincide with S* or Sk, in
contrast to the Hopf algebra case mentioned above. Moreover, if a left Hopf algebroid U is
cocommutative with both .U and U, finitely generated A-projective, then U* = (Ux)coop
is a full Hopf algebroid (with antipode precisely given by S*), though U might be not.

We shall also see in §6]|that Theorem [B] actually extends to a larger setup, in particular,
it applies to some interesting cases (coming from geometry), where neither .U nor U,
are finitely generated projective but U* and U, are still right bialgebroids in a suitable
(topological) sense, such as when U is the universal enveloping of a Lie-Rinehart algebra,
or a quantisation of it.

In §6 we illustrate these results by considering some examples related to Lie-Rinehart
algebras (or Lie algebroids) and their jet spaces, as well as their quantised versions. More-
over, in §6.4] we consider further duality phenomena related to dualising modules, which
appear in Poincaré duality, along with their quantisations.
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thank G. Bohm and L. El Kaoutit for their valuable comments and remarks.
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2. PRELIMINARIES

We list here those preliminaries with respect to bialgebroids and their duals that are
needed in this article; see, e.g., [Bl] and references therein for an overview on this subject.

Fix an (associative, unital, commutative) ground ring k. Unadorned tensor products
will always be meant over k. All other algebras, modules etc. will have an underlying
structure of a k-module. Secondly, fix an associative and unital k-algebra A, i.e., a ring
with a ring homomorphism 7, : k — Z(A) to its centre. Denote by A°P the opposite and
by A° := A ® A°P the enveloping algebra of A, and by A-Mod the category of left A-
modules. Recall that an A-ring is a monoid in the monoidal category (A®-Mod, ®,4, A)
of (A, A)-bimodules fulfilling the usual associativity and unitality axioms, whereas dually
an A-coring is a comonoid in this category that is coassociative and counital.

2.1. Bialgebroids. For an A¢-ring U given by the k-algebra map n : A® — U, consider
the restrictions s := n(— ® 1,) and ¢t := n(1l, ® —), called source and target map,
respectively. Thus an A°-ring U carries two A-module structures from the left and two
from the right, namely

avuab:=s(a)t(b)u, aru<b:=ut(a)s(b), VabeAuel.

If we let U,® 4, U be the corresponding tensor product of U (as an A°-module) with itself,
we define the (left) Takeuchi-Sweedler product as

UsxaoU = {Du Qui € Us®a4,U | X (a»us) @uj = Y ,u; @ (uf « a), Va € A}

By construction, U, X , ,U is an A®-submodule of U, ®, ,U; it is also an A®-ring via

factorwise multiplication, with unit 1, ® 1, and 7, , , , (e ®a) := s(a) ® t(a).
Symmetrically, one can consider the tensor product U, ®, ,U and define the (right)

Takeuchi-Sweedler product as U, x 4 ,U, which is an A®-ring inside U, ® 4 ,U .

Definition 2.1.1. A left bialgebroid (U, A) is a k-module U with the structure of an A°-
ring (U, s, t*) and an A-coring (U, Ay, €) subject to the following compatibility relations:
(i) the A®-module structure on the A-coring U is that of ,U. ;
(ii) the coproduct Ay is a unital k-algebra morphism taking values in U x , . U;
(iii) forall a,b e A, u,u € U, one has:

elavuab) =ae(u)b, elun')=-e(u<e)) =e(ew)»u). 2.1)

A morphism between left bialgebroids (U, A) and (U’, A’) is a pair (F, f) of maps F' :
U—-U',f:A— Athat commute with all structure maps in an obvious way.

As for any ring, we can define the categories U-Mod and Mod-U of left and right
modules over U. Note that U-Mod forms a monoidal category but Mod-U usually does
not. However, in both cases there is a forgetful functor U-Mod — A°-Mod, resp.
Mod-U — A°-Mod: whereas we denote left and right action of a bialgebroid U on
M e U-Mod or N € Mod-U usually by juxtaposition, for the resulting A°-module
structures the notation

av>mab:=s'(a)t’(b)ym, ar»m«<b:=ns'(b)t‘(a)

form e M, n e N, a,b e Ais used instead. For example, the base algebra A itself is a
left U-module via the left action u(a) := e(u < a) = e(a »u) foru € U and a € A, but in
most cases there is no right U-action on A.
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Dually, one can introduce the categories U-Comod and Comod-U of left resp.
right U-comodules, both of which are monoidal; here again, one has forgetful functors
U-Comod — A°-Mod and Comod-U — A°-Mod. More precisely (see, e.g., [B]), a
(say) right comodule is a right comodule of the coring underlying U, i.e., a right A-module
M and a right A-module map ;A : M — M ®, .U, m — mg) ®a m 1), satisfying the
usual coassociativity and counitality axioms. On any M € Comod-U there is an induced
left A-action given by

am := me(a »my), (2.2)
and ,,A is then an A°-module morphism M — M x, U, where M x , ,U is the A°-
submodule of M ®, ,U whose elements Zl m; ®4 u; fulfil

Do am; @au; =Y, m; @au; <a, Ya € A. (2.3)

The notion of a right bialgebroid is obtained if one starts with the A°-module structure
given by » and « instead of » and <. We will refrain from giving the details here and refer
to [KadSz] instead.

Remark 2.1.2. The opposite of a left bialgebroid (U, A, s, t¢, Ay, €) yields a right bial-
gebroid (U°P, A, t°,s%, Ay, €). The coopposite of a left bialgebroid is the left bialgebroid
given by (U, A°P,t* s, A7 ¢).

2.2. Pairings of U-modules and dual bialgebroids. Let (U, A) be a left bialgebroid,
M, M' € U-Mod be left U-modules, and N, N’ € Mod-U be right U-modules. Define

Hom 4or (M, M") := Hom oo (M,, M), Hom,(M,M') := Hom, (.M ,.M"),
Hom 4op (N, N") := Hom 4op (N, N,), Hom,(N,N’) := Hom,(,N,,N’").

In particular, for M’ := A we set Mx := Hom, (M, A) and M* := Hom oo (M, A),
called, respectively, the left and right dual of M.
The notion of pairing between A®-bimodules is also useful (see, for instance, [ChGal]):

Definition 2.2.1. Let U and W be two A®-bimodules.

(i) A left A®-pairing is a k-bilinear map ( , » : U x W — A such that for any u € U,
w € W, and a € A, one has

(uyavwy = {uda,wy, ww<aay = {aru,wy, {u,arw)y = {u<a,w),
(u,waay = {u,w)a, {avu,wy = alu,w).

(ii) A right A®-pairing is a k-bilinear map {, ) : U x W — A such that for any u € U,
w € W, and a € A, one has

(wweay = {avu,w), (warw) = {uta,w), Ww<a)y = {aru,w),
(uyarwy = alu,w), (u<a,wy = {u,wHa.

2.2.2. Duals of bialgebroids. Let U. resp. U* be the left resp. right dual of a left bial-
gebroid. If .U is finitely generated projective, then U is canonically endowed with a
right bialgebroid structure [KadSz|] such that the evaluation pairing between U and Ul is
a (nondegenerate) left pairing; similarly, if U, is finitely generated projective, then U* has
a canonical right bialgebroid structure for which the natural pairing between U and U™ is
a right pairing. If instead in either case the above finitely generated projective assumption
is not satisfied, then both U* and U are nevertheless A°-rings endowed with a “counit”
map, or augmentation.

2.3. Left and right Hopf algebroids. For any left bialgebroid U, define the Hopf-Galois
maps
ap WU @uor Us — U @4 >U7 UQpop U U(1) ®a U2)v,
o U @WU - U®a.U u®v — uwnv®aup).
With the help of these maps, we make the following definition due to Schauenburg [Schl]:
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Definition 2.3.1. A left bialgebroid U is called a left Hopf algebroid if oy is a bijection.
Likewise, it is called a right Hopf algebroid if o, is so. In either case, we adopt for all
u € U the following (Sweedler-like) notation

Uy @por u_ 1=y (u®4 1), Uy ®* g = o (1 Q@4 u), 2.4
and call both maps u — u; ®4op u— and u — U4 ®4 U] translation maps.

Analogous notions exist with respect to an underlying right bialgebroid structure, but
we will not give the details here.

Remark 2.3.2.
(i) Incase A = k is central in U, one can show that « is invertible if and only if U is a
Hopf algebra, and the translation map reads u; @u_ := u (1) ® S(u(gz)), where S is

the antipode of U. On the other hand, U is a Hopf algebra with invertible antipode if
and only if both o and «, are invertible, and then U @u[_] 1= u(g) ®5~1 (u(l)).

(ii) The underlying left bialgebroid in a full Hopf algebroid with bijective antipode is
both a left and right Hopf algebroid (but not necessarily vice versa); see [BSz, Prop.
4.2] for the details of this construction.

The following proposition collects some properties of the translation maps [Schl]:

Proposition 2.3.3. Let U be a left bialgebroid.
(@) If U is a left Hopf algebroid, the following relations hold:

Uy Quop u— € U X 400 U, 2.5)

Up) Qa gy = u®s1 €U:®4.U, (2.6)

Uy Raor U)—Uz)y = URar 1 €, UQuorUs, 2.7)

Uy (1) a Uy (2) Quor U— = U1) 4 U2) 4 Baor U2)—, (2.8)

Ut Qaor U_(1) ®aU_(2) = Upq Qaop U Q4 Uy, (2.9)

(uv) 4 Raor (WV)— = ULVy R o0 V_U_, (2.10)

uru_ = s'(e(u)), (2.11)

e(u_)»upr = u, (2.12)

(s°(a)t* (D)) 4 ®aor (s°(a)t’ (D))~ = 5°(a) ®ao» s (D), (2.13)

where in (2.3)) we mean the Takeuchi-Sweedler product
UXAopU = {Z1ul®vl € ,U@Aop U; | Zzul qaa@u; = Zzuz ® a »v;, Ya € A}
(i) Analogously, if U is a right Hopf algebroid, one has:

U4 ®* up_] € U x*U, 2.14)

UG U] Ra U412y = 1®su €li®a.U, (2.15)

u)—ua) @ U+ = 1®%u el.®*.U, (2.16)

urH) ®" U ®a ur+i2) = U+ O Uy Baue,  (2.17)
UpH ) O U @a U] = U] @ ug) @a U2, (2.18)
(W) @ (W) = Uy @ vy, (2.19)

U U[-] = te(a(u)), (2.20)

up<e(uy) = u, (2.21)

(" (@)t (D) @ (s“(@)t ()= = t°(b) ®" t'(a), (2.22)

where in ([2.14) we mean the Sweedler-Takeuchi product
Ux*U:= {Z,;Ui@Ui el.®.U |Y,avu; ®v; =Y ,u;@vi<a, Vae A}.

These two structures are not entirely independent:
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Lemma 2.3.4. The following mixed relations hold among left and right translation maps:

Ui[4] ® 00 U_ @ Up[—] = U]+ & p0p U[4+]— Q" U[-]s (2.23)
Ug @acp U_[4] ®* U_[-] = Ua)+ Dacr U(1)— ®* U(2), 2.24)
U] @ U1+ ®aor U] = UE)+] B U] Bacw U1), (2.25)

where, for example, in the first equation (2.23)) the second tensor product relates the first
component with the third, and mutatis mutandis for the other identities.

Proof. In order to prove (2.23)), we apply oy ® id to both sides (note that this operation
is well-defined on the considered tensor products); for the right hand side we obtain, by
definition,

(e ®id) (ups]4+ aer up)— @ up—)) = (U4 ®a 1) @ up,
and for the left hand side we have
(e @1d) (U 4] ®aor u— @ Ui [-]) = (Ui [1+](1) ®a Us[+](2)U-) ®" Uy []
= (U ()[+] ®a s (2)u-) @ iy () = (u4] ®a 1) @ -,
using (2.17) and (2:6). Since «ay is assumed to be an isomorphism, this proves (2.23).
Let us also prove (2.24); the remaining identity will be left to the reader. To this end,
apply id ® a,- to both sides in (2.24): for the left hand side, we obtain
(1 ® ar) (s @aor U4 ® U[-]) = Ut Barer (U [+]1)U~[] B U-[+](2)
= Uy Qqor (1@, u_)
by (2.13)), and where in the second equation the first tensor product relates the first compo-
nent with the third. As for the right hand side, we compute:
(id ® ) (u(1y 4 ®acr u(1y— " u(2)) = ugrys Dacr (U(1)—(1)U(2) ®a U(1)—(2))
= U1y 44 ®aor (U(1)-U2) ®a U1)1—) = Ut Ruor (1 @4 u-),
using (2.9) and (2.7) in the last step as follows: Eq. (2.7) yields (1) 4 ®aor (1) u(2)®41 =

U @400 1 ®,4 1 and applying %—1 to the first and the third component gives the required
equality. O

3. MODULES OVER LEFT OR RIGHT HOPF ALGEBROIDS

In this section we collect some general results about modules over left and right Hopf
algebroids. Some of them are known, while others seem to have passed unnoticed so far

(see Note[3.1.2] below).

3.1. Module structures on Hom-spaces and tensor products. Similarly as for bialge-
bras, the tensor product M, ®, .M’ of two left U-modules with left U-module structure
given by

u(m @, m') := uym Q4 u@ym’ 3.1
equips the category U-Mod for a left bialgebroid U with a monoidal structure. On the
other hand, for M € U-Mod and N € Mod-U, the A°-module Hom 4op (M., N.,) is a
right U-module via

(fu)(m) := f(u@ym)u).-

The existence of a translation map if U is, on top, a left or right Hopf algebroid makes
it possible to endow Hom-spaces and tensor products of U-modules with further natural
U-module structures. The proof of the following proposition is straightforward.

Proposition 3.1.1. Let (U, A) be a left bialgebroid, M, M' € U-Mod and N,N' €
Mod-U be left resp. right U-modules, denoting the respective actions by juxtaposition.

(i) Let (U, A) be additionally a left Hopf algebroid.
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(a) The A°-module Hom o0 (M, M") carries a left U-module structure given by

(uf)(m) := uy (f(u_m)). (3.2)
In particular, M * is endowed with a left U-module structure.
(b) The A®-module Hom (N, N') carries a left U-module structure via

(ue f)(n) == (f(nuy))u_. (3.3)
(¢) The A®-module ,N & 4o» M. carries a right U-module structure via
(N ® 400 M) QU 1= NUL ® 400 U_TN. (3.4)
(ii) Let (U, A) be a right Hopf algebroid instead.
(a) The A®-module Hom (M, M') carries a left U-module structure given by
(uf)(m) := upy (f (ugym)). 3.5)

In particular, M is naturally endowed with a left U-module structure.
(b) The A°-module Hom 4or (N, N') carries a left U-module structure given by

(ue f)(n) := (f(nu[ﬂ))u[,]. (3.6)
(¢) The A®-module N, ®* .M carries a right U-module structure given by
(n®* m) < u:=nup @ u_ym. 3.7
Note 3.1.2. These structures are well-known for D-modules (that is, when U = Dy,
see [Bol [Ka]) and were later extended to V*(L)-modules in [ChI]], [Ch3]. The results

about tensor products can be found in [KoKr], whereas @I) serves in [Schl, Thm. 3.5] to
characterise a possible (left) Hopf structure on a bialgebroid.

3.2. Switching left and right modules: dualising modules. We investigate now condi-
tions which imply an equivalence between the categories of left and of right U-modules for
a left bialgebroid U which is simultaneously a left and right Hopf algebroid. As in other
frameworks, this is guaranteed by the existence of a suitable dualising module. This is the
content of the next result, which generalises the well-known equivalence of categories be-
tween left and right D-modules (due to Borel [Bo] and Kashiwara [Ka]). It also generalises
the equivalence between left and right modules over a Lie-Rinehart algebra, cf. [Chl].

Proposition 3.2.1. Let (U, A) be simultaneously a left and right Hopf algebroid. Assume
that there exists a right U-module P, where P, is finitely generated projective over A°P,
such that

(i) the left U-module morphism
A — Hom oo (P, P), a— {p—a»p}
is an isomorphism of k-modules;
(ii) the evaluation map
» P @00 Homyop (P, N)o = N, p®aor ¢ — ¢(p) (3.8)
is an isomorphism for any N € Mod-U.
Then
U-Mod — Mod-U, M — ,P ® 40 M,
is an equivalence of categories with quasi inverse given by N' — Hom 4o0 (P, N').
Proof. For M € U-Mod and N, N’ € Mod-U, one checks with that the map
M.®.,,» Hom 4oo (N, N') — Hom 4op (N, s N’ @ qo0 M), m @4X — {n+— x(n)@0pm}

is a morphism of left U-modules, where the left U-module structure on the left hand side
is given by (3.1) combined with (3.6), and on the right hand side by (3.6) combined with
(3-4). 1t is even an isomorphism if IV, is finitely generated projective over A. On the other
hand, using (2.24) and (.11, one easily sees that the evaluation (3.8) is a morphism of
right U-modules; it is then an isomorphism by hypothesis, which finishes the proof. U
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Remark 3.2.2. A right U-module P with the properties as in the above proposition ap-
peared in various contexts in the literature: we shall call it a dualising module. We refer to
[Ch1l KoKr, Hue] for applications and details, and in particular to the situation in §6.4]

4. COMODULE EQUIVALENCES AND INDUCED MAPS BETWEEN DUALS

The aim of this section is to construct a map between the left and right dual of a left Hopf
algebroid, which in some sense replaces the missing antipode on either of the duals. This
can be essentially done in two ways, either by a quite straightforward generalisation of the
antipode construction on the dual of a cocommutative left Hopf algebroid as in [KoP], or
by considering Phuing’s comodule equivalence in [Phu] as a starting point, as suggested by
the referee of the present paper. To pursue the latter approach, we will review and slightly
extend the results in op. cit.

4.1. A categorical equivalence for comodules. The following theorem, originally due to
[Phull, shows that under the given conditions every right U-comodule can be transformed
into a left one (resp. vice versa in the second case). We repeat it here for future use and
also slightly extend it by saying that the two given functors are quasi-inverse to each other
and that they are (strict) monoidal:

Theorem 4.1.1. Let (U, A) be a left bialgebroid.

(i) Let (U, A) be additionally a left Hopf algebroid such that U, is projective. Then
there exists a (strict) monoidal functor F' : Comod-U — U-Comod; namely, if
M is a right U-comodule with coaction m +— moy ®a M(1), then

Ay M —->U, M, m— m(1)— Qa m(o)e(m(1)+), 4.1)

defines a left comodule structure on M over U.

(ii) Let (U, A) be a right Hopf algebroid such that .U is projective. Then there exists
a (strict) monoidal functor G : U-Comod — Comod-U; namely, if N is a left
U-comodule with coaction n — n_1) ®a 1), then

py i N = N@i:U, 1= en1)no) ® -, 4.2)

defines a right comodule structure on N over U.

(iii) If U is both a left and right Hopf algebroid and if both U, and ,U are A-projective,
then the functors mentioned in (i) and (ii) are quasi-inverse to each other and we
have an equivalence

U-Comod ~ Comod-U
of monoidal categories.

Proof. Let us first prove that (.1) is well defined. For any right U-comodule M with
coaction p : M — M ®, U, there is a well-defined map id,, ®, ¢ : M ®, U — M. Its
restriction to the Takeuchi product M x , U is a left A-module map as shows the following
equation: for any >, m; ® u; € M x , U and any a € A, one has

Zmie(a >u;) = Zmie(ui <a) = Zamie(ui).
Thus, there is a well-defined map

idM XAEZMXAU—>M, Zmz®u1n—>2mze(ul),

and hence, in particular, the map
(b = (id}w X A 6) ®Aop ldU : (M X 4 U) X go0p U—-M X gop U (4,3)

is well-defined, too.



10 SOPHIE CHEMLA, FABIO GAVARINI, AND NIELS KOWALZIG

On the other hand, any right coaction corestricts to a map M — M x , U; similarly, the
translation map 371 (u ®4 1) = uy ®4op u_ of U corestricts to a map U — U X 4op U.
Combining these two maps gives a map

z/;:MHMxA(Uonp U), (4.4)

and it is clear that if we could combine ¢ in #.3) with ¢ in (#.4) followed by a tensor flip,
this would yield the map @.T).

Now the problem is that usually (M x 4, U) X 4op U and M X 4 (U x 400 U) are different,
hence the two maps might not be composable. Let us introduce as in [T}, Def. 1.4] the triple
Takeuchi product

M x4 U X 400 U = {Zimi®ui®vi EM®@4U®ao0 U |
Duam; @ui <b®@u; =Y, miQ@u; «a®bruv;, Va,be A}
It can be seen that v actually maps to M x , U X 4op U but it is a priori not clear whether

¢ can be directly defined on M x , U x 40 U so as to make the two maps composable.
However, in any case there are always maps

M x4 (Uxpoo U) > M X, U Xpop Uy M@ U@ pop V= M@y U 00 U
and
a: (M X,U)xpqo0 U > M X, U Xpop U M4 U 00 V> M4 U yop V.

If now U, is projective, « is an isomorphism [T}, Prop. 1.7]; then the composition 7 o
¢ oa ! oo of well-defined maps (where T is the tensor flip) yields a well-defined map
again, and on an element m € M it is an easy check that this gives the map \,, in @.I).

That the so-defined map \,,; is A°-linear follows from the A°-linearity of the right
coaction along with (2.13). That X,, indeed defines a left U-coaction is an easy check
using (2.9) and (2.8), the counitality of the bialgebroid U, and the coassociativity with the
A°C-linearity of the right U-coaction on M again: we have for m € M

(Ar ®id)Ay (m) = m(1y— 1) @a M(1)—(2) ®a M(0)e(m(1))
= m1)— @a M1)+- ®am 0)6( (1)++)
= m)- ®a (t'e(my)ma)+m) - ®a moe((HFemay+@)ma+n) )
= m()- ®a (tzﬁ(m@w)m(l))f ® maye((t'e(me)+ma)) )
= (1d ® Ay )Au (m).
The counitality of A, follows from (2.3)) along with the second equation in (2:1)).

As for the claim that the so-given functor F' : Comod-U — U-Comod is (strict)
monoidal, observe first that for any two M, M’ in the monoidal category Comod-U, their
tensor product M ®, M’ is a right U-comodule by means of the codiagonal coaction
m®,m — (m ) ®a m ) R m (1) (1) that is, with a flip in the factors in U. On the
other hand, the tensor product of two N, N’ in the monoidal category U-Comod becomes
a left U-comodule again vian®, n’ — n(,l)n’(fl) ®a (n(0) ®a n ) By the bialgebroid
properties, (2.10), and (2.3) it is then simple to see that

(m/(1)m(1))— ®a (m(o) ®a m/(o))f((m/(l)m(l))+)
= m@y-m{y_ ®a (m(o) ®x migye(miyy, 5 (e(m)1))))
= m()- m (1)— ®a ( 0€(m1yy) ®a m/(o)€<m/(1)+>)7

thatis, F(M ®, M') = F(M) ®4 F(M’). Also, the unit object in both Comod-U and
U-Comod is given by A with coaction a +— t(a) resp. a — s‘(a), and F(A) = A
now follows from (Z:13). Moreover, note that F' does not affect the underlying A°-module
structures of the comodules in question, and hence its (strict) monoidality follows.
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The proof of (ii) is similar, and the last claim follows by the preceding two combined
with a direct computation: applying GF' to a right comodule M € Comod-U, the result-
ing right coaction on M reads

M — MU, m— e(ma)_[+)mo)e(ma)+) ®a may—[—]-
By using (2.24), the coassociativity and counitality of the original right coaction on M,
@3), @), and (2.12)) one obtains
e(m -+ e(may+) ®a may—-1 = e(m)-)mye(ma)+) ®a me)
= mye(e(m)-) »m)+) @a mz)
= m(o)e(m)) ®a m(2) = M) ®a M),

that is, the right coaction on M we started with. An analogous consideration holds for F'G
using (2.25), (2.21), and the Takeuchi property that holds for left U-comodules analogous

to 2:3). O

Remark 4.1.2. Note that the equivalence in Theorem[4.1.1|does not boil down to the usual
equivalence of left and right comodules via the antipode (as there is no antipode for left
or right Hopf algebroids, not even if the bialgebroid is simultaneously both). Even if we
dealt with a full Hopf algebroid, this is still a different kind of equivalence (compared to
the construction in [B, Remark 4.6]), as follows from the considerations in and
below. For example, if the left Hopf algebroid U is considered a right comodule over itself
via the coproduct, the left U-coaction on U from is given by

U_)U<1®A>U7 u’_)uf®Au+7

that is, the “flipped” translation map. On the other hand, for Hopf algebras the construction
in Theorem[4.1.1]is exactly the equivalence induced by the antipode.

4.2. Constructing maps between the duals. We now want to construct a map between
the right and the left dual of a left Hopf algebroid. To this end, we first need to recall
from [Ko, Theorem 3.1.11] the following bialgebroid generalisation of the classical bial-
gebra module-comodule correspondence, which, however, in its first part comes somewhat
unexpected at first sight:

Proposition 4.2.1. Ler (U, A) be a left bialgebroid.

(i) There exists a functor Comod-U — Mod-Us, namely, if M is a right U-
comodule with coaction m — mgy ® 4 M1, then

M@p Uy — M, m®g Y — mey(m)), 4.5)

defines a right module structure over the A°-ring U,. If .U is finitely gener-
ated A-projective (so that U, is a right bialgebroid), this functor is monoidal and
has a quasi-inverse Mod-Ux — Comod-U such that there is an equivalence
Comod-U ~ Mod-Us: of categories.

(ii) Likewise, there exists a functor U-Comod — Mod-U*; namely, if N is a left
U-comodule with coaction n — n(—1) ®a 7(0), then

N@,U*— N, nQ®i¢— o(n—1))no, (4.6)

defines a right module structure over the A°-ring U*. If U, is finitely gener-
ated A-projective (so that U* is a right bialgebroid), this functor is monoidal and
has a quasi-inverse Mod-U* — U-Comod such that there is an equivalence

U-Comod ~ Mod-U* of categories.

The case (i7) of the above Proposition can also be found in [Schll, §5]. An
explicit proof and a description of all involved functors is given in [Kol §3.1], along
with the respective structure maps of the right bialgebroids (Usx, A, sk, th, AL, 0«) and

(U*, A, sr, tr, Ay, 0%), in case the respective mentioned finiteness assumptions are met.
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Observe that when (U, A) is both a left and a right Hopf algebroid and both U, as well
as ,U are finitely generated projective over A, then (&.8) here below is a commutative
diagram of monoidal equivalences.

We shall also need an explicit expression of the induced coaction on M € Mod-Ux in
case U is finitely generated projective as in (i): let m ®y 1) — ma) denote the right Us-
action on M and {e;}1<i<n € U, {€'}1<i<n € Ux a dual basis (see, for example, [AnFul
p- 202] for the notion of dual basis of a finitely generated projective module). Then the
resulting right U-coaction on M can be expressed as

m — Zmei R4 €5, 4.7)

see [Kol, Eq. (3.1.23)]. Consider now the diagram
Comod-U —— Mod-U,
l (4.8)

\
U-Comod —— Mod-U*
of categories, where the left vertical arrow is that from Theorem[d.1.1](i). Under the finite-
ness assumption for .U, the upper horizontal arrow is invertible. One therefore obtains
a functor that corresponds to the dotted arrow if U, is A-projective and .U is finitely
generated A-projective. Explicitly, by using @.7), @.I), and (.6) one obtains on a right
U.-module M with U,-action m ®x, 1) — ma the following right U *-action:

M,U* - M, m—m=<g¢:=q¢(e;_)me'e(ei,) = meie(eiJrse((b(ei_))), 4.9

where the second expression follows by taking the Takeuchi property (2.3) of the right
coaction (@.7) into account, along with (2.13).

Consider now the case M = U, as right module over itself by right multiplication; then
as in it also carries a right U*-action, which is equivariant with respect to the regular
left U,-action, that is

(W'") < ¢ =" (¥" < ¢). (4.10)
In particular, this implies ¢ < ¢ = ¥ (1y, < ¢), which leads us to consider
S*p =1y, <p =€< . “4.11)

With , we see that $*¢ = e < ¢ = e's] (e(e;4 s*(d(e;_)))). Hence, for any u € U,
S*p(u) = le< d,uy = <ei3: (e(ei+sz(<q§, ei_>))),u>
= <ei’ u><6’ ei+sé(<¢7 ei*>)> = <67 Sz <<ei7 u>)ei+te (<¢7 ei7>)>’

where we used [Kol Eq. (3.1.3)] in the third step and (2.T) in the fourth. Inserting now into

(@.12) the identity

4.12)

Uy Qo0 u_ = 5°((€l, uy)e;y Qaop €;_,
which is seen by applying the bijective Hopf-Galois map o from (2.4) to both sides (as
we assumed U to be a left Hopf algebroid), one further obtains

S ¢(u) = (e s (e' w)ei st ((p e ) = e(ust'($(u-)))- (4.13)
As will be discussed at length in the next section, this yields a map S* : U* — U, (asis
seen using (2.13) and (2.1)) of A®-rings that even makes sense without any projectiveness

or finiteness assumptions.
By means of (#.5) and (&.13), the action (4.9) can then be written as

m = ¢ :=mS*(p), (4.14)

which, without assuming any finiteness conditions on U, still leads to a functor
Mod-U, — Mod-U* between the categories of modules over A°-rings.
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If instead U is a right Hopf algebroid, where U, is finitely generated A-projective and
+U is A-projective, one obtains by analogous steps a map S, : U, — U™ given by

Sutp(u) = e(upsys (Y (ur)))
for any v € U, to which analogous comments apply as above.
We will discuss the properties of these maps in detail in the subsequent

5. LINKING STRUCTURE FOR THE DUALS OF LEFT HOPF ALGEBROIDS

In this section — the core of the present work —, we find that the map S* constructed in
the previous section is linking the right dual to the left dual of a left Hopf algebroid, which
is apparently as close as one can get to an explicit formula of an antipode kind-of structure
on the dual. Note, however, that even in the case of a full Hopf algebroid this map is not
simply the transpose of the antipode, as discussed in §5.2] In some sense, this special map
amounts to sort of a generalisation of (the antipode in) a full Hopf algebroid as explained
in Remark

As mentioned before, the definition of the map S* (and S,) actually makes sense even
without any finiteness or projectiveness assumptions. Indeed, one can trace their first ap-
pearance already in [KoP] in the role of the antipode in the example of the bialgebroid of
jet spaces.

In what follows, we will prove the fact that S* and S, are morphisms of A°-rings in a
direct way, whereas the fact that under suitable finiteness assumptions they are bialgebroid
morphisms is shown by using the comodule equivalence discussed in the previous section
(note, however, that even the latter can be achieved by direct computation).

In particular, since the finiteness assumptions are not needed for all properties stated
below, we will be able to apply S* and S, in greater generality to the examples in

5.1. Morphisms between left and right duals. Let (U, A) be a left bialgebroid. If it
is additionally a left Hopf algebroid, its right dual U* (see §2.2)) carries a left U-module
structure as in (3.2)); (re-)define

S*(@)(u) == (up)(1y) = e (ust*(p(u))),  VoeU*, uel. (5.1)
Likewise, if the left bialgebroid (U, A) is a right Hopf algebroid instead, its left dual U
(see again) carries a left U-module structure as in (3.5), with the help of which one
(re-)defines

Se(¥)(u) i= () (1y) = €v (upsy s (P(ug—y))), Ve e Us, ueU. (5.2)
The following result presents the key properties of the maps S* and Si:

Theorem 5.1.1. Let (U, A) be a left bialgebroid.

(i) If (U, A) is moreover a left Hopf algebroid, defines a morphism S* : U* — U
of A¢-rings with augmentation (the “counit”); if in addition both .U and U, are
Sinitely generated projective as A-modules, then (S*,id,) is a morphism of right
bialgebroids. In any case, S* is also a morphism of left U-modules for the action

3.3) on U™ and the left action on U, given by right multiplication in U.

(i) If (U, A) is a right Hopf algebroid instead, defines a morphism S« : Ux — U*
of A¢-rings with augmentation (the “counit”); if in addition both .U and U, are
finitely generated projective as A-modules, then (S.,id4) is a morphism of right
bialgebroids. In any case, S« is also a morphism of left U-modules for the action
(@) on Uy and the left action on U* given by right multiplication in U.

Proof. We only prove part (i) as (ii) follows mutatis mutandis. For the explicit computa-
tions, we will again use the notation and description of the structure maps of the two right
bialgebroids (U, A, s7, 5, AL, 0x) and (U*, A, sy, t., Ay, 0*) — where the coproduct A7,
or A, only make sense if U, resp. .U is finitely generated A-projective — as given in
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detail in [Ko, §3.1], together with the respective properties of left and right pairings <., .)
as in Definition Direct verification shows that S* takes values in Us. Besides, for S*
to be a bialgebroid morphism, we need to show the following properties:

(a) Stsy =sh,  S*tr =1L, 08" = 0%,
(b) S*(¢¢') = S*(¢)S*(¢)
(c) ALS* = (§* ® S*)Ar,

(where, as said before, (c¢) only makes sense if U, and ,U are finitely generated A-
projective).
As for (a), we find for u € U, a € A by direct computation using (2.12) and @.13):
S*(sr(a))(u) = e(u+t[(s:(a)(u_))) = e(u+t€ (e(u_se(a)))) = e(u)a = si(a)(u).

Likewise, the second identity follows from

S*(tr(a)) (u) = e(u+tf (tr(a)(u-))) = e(u+tz(ae(u_))) = e(ut®(a)) = t5(a)(u).
The last identity in (a) regarding the respective counits is for ¢ € U™ proven by the line

0:5%(¢) = 5*(¢)(1v) = ¢(1y) = 0%¢.

As for (b), let us first more generally compute an element S*(¢)v for ¢ € U* and ¢ € Us:
by [Kol Eq. (3.1.1)], Eq. (2:8), and the properties of a bialgebroid counit, we have

(SH(D)v,uy = <, t (Cugzy, S*(@))uqay) = Wt (e ugz)+ 1 (( uiy-))))uay)
= @, t" (e, us @t (b, u—))))us (1))
= <wa te(<€7 u+(2) Se(<¢? ’U,,>)>)’U,+(1)>
= <wa t€(<€7 ’U,+(2)>)U+(1)t£(<¢, u—>)> = <wa U+t€(<¢, u—>)>
With the help of this property, by [Ko, Eq. (3.1.2)] along with (2.9), (2.13), and the fact
that the counit in U gives the unit in Ux, one sees that for all ¢, ¢’ € U*
<S‘k (¢¢/>7 u> = <65 u+t£ (<¢¢/a u—>)> = <€a u+tz (<¢/a 8Z¢(u7(1))u7(2)>)>
= <€a u++t£(<¢/7 se¢(u_)u+_>)>
= (e (ust'd(u)) 1t (@', (us t*d(u-))-)))
= (5*(¢)e, ust’(u-)) = (5*(¢)S*(¢'), w).
Observe that if ,U is finitely generated A-projective, then (b) follows by the fact that (#.14)
defines an action, but in general we do not want to assume this at this point.
For proving (¢) — when U, and .U are finitely generated A-projective —, one could
equally do this by a straightforward somewhat technical computation. A quicker way is to

use the results in §4} denoting the right coproduct on U resp. U™ by Sweedler superscripts,
one has

S* () ®4 5%(9)?) = (@4 €)5*(9) = (€®a€) <&
= (ex ¢(1)) Qu (€< ¢(2)) — S*((b(l)) ®a 5*((]5(2))’
where in the first equation we used the monoidal structure on Mod-U,, and in the third
the fact that all functors in {#.8) are strict monoidal.

The second part in (i) — about the U-linearity of S* —, which is straightforward, is left
to the reader. O

Remark 5.1.2. When U is just a Hopf algebra over A = k with antipode .S, we have U* =
(Ux)2b,ps and S* is nothing but the transpose of S. If U* itself is in turn a Hopf algebra —
namely, if the transpose of the multiplication m,, in U takes values in the tensor square of
U* —, then S™ is just the antipode of this dual Hopf algebra U*. In this context, Theorem
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[5.1.1] simply expresses the fact that the antipode in a Hopf algebra is an antimorphism of
algebras and of coalgebras.

In particular, in case U is both a left and right Hopf algebroid we have:

Theorem 5.1.3. Let (U, A) be simultaneously a left and a right Hopf algebroid. Then the
maps S* and S+« are inverse to each other. Hence, if both A-modules .U and U, are, in
addition, finitely generated projective, (S*,id,) and (S«,1d,) are isomorphisms of right
bialgebroids which are inverse to each other.

Proof. As for the first statement, we directly compute by means of the bialgebroid axioms

along with and (2.20), for any ¢ € U*:
(S5*¢) (1) = e(ups' (S d(ur))) = €e(upys” (ev (u—yt lu—1-))))
= e(uppyupt°(up-)) = e(u@)ue -t elua)))
= d(u())e(ug) = ¢(u),

which proves that Si o * = id«. Likewise, one shows that S* o 5. = idy,,. O

5.2. The case of a full Hopf algebroid. If A is a full Hopf algebroid with bijective an-
tipode S in the sense of [BSzZ], then it is, in particular, both a left and right bialgebroid (see
the short summary below): therefore — still assuming that .4 and H, are both finitely
generated projective as A-modules —, there is a right bialgebroid analogue to the previous
constructions concerning the maps S* and S«. On the other hand, the antipode S induces
by transposition new maps S%, %S, etc., for the dual spaces. Hereafter we discuss links
between these various maps, in particular showing that, while for the Hopf algebra case
one has identities like S* = !5 (¢f. Remark , this is no longer the case for the general
setup of full Hopf algebroids as illustrated in §6.2] below.

5.2.1. Reminder on full Hopf algebroids. Recall that a full Hopf algebroid structure (see,
for example, [B]) on a k-module H consists of the following data:
(i) aleft bialgebroid structure H® := (H, A, s*,t*, Ay, €) over a k-algebra A;
(ii) aright bialgebroid structure H" := (H, B, s",t", A, 0) over a k-algebra B;
(iii) the assumption that the k-algebra structures for H in (i) and in (ii) be the same;
(iv) ak-module map S : H — H,
(v) some compatibility relations between the previously listed data for which we refer
to op. cit.
We shall denote by lower Sweedler indices the left coproduct A, and by upper indices the
right coproduct A, that is, Ag(h) =: h(1) ®4 h(z) and A,.(h) =: M) ®, k3 for any
h € H. As said before, a full Hopf algebroid (with bijective antipode) is both a left and
right Hopf algebroid but not necessarily vice versa (as illustrated in §6.2)). In this case, the
translation maps in are given by

hy @aor he = WD @400 S(AP) and iy @por hi_ = B ®@per STH(RW), (5.3)
formally similar as for Hopf algebras.
The following lemma [B},[BSz]] will be needed to prove the main result in this subsection.

Lemma 5.2.2. Let H be any Hopf algebroid. Then

(i) the maps v == 0s' : A — B°P and ji := es” : B — A°P are isomorphisms of
k-algebras;
(ii) the pair of maps (S,v) : H* — (H T)zgop gives an isomorphism of left bialgebroids;

(iii) the pair of maps (S, ) : H" — (He)zgop gives an isomorphism of right bialge-
broids.

The next observation might let us consider S* and Sx as sort of an analogue of the
antipode on the dual:
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Proposition 5.2.3. Let (U, A) be a cocommutative left bialgebroid (in particular, A is
commutative and s° = t*). Then (U, A) is a left Hopf algebroid if and only if it is a right
Hopf algebroid; in this case, assuming in addition that .U and U, are finitely generated
A-projective, (U*, A) = ((Ux)coop; A) is a full Hopf algebroid with involutive antipode
S = 8%= 8.

Proof. The first claim directly holds true by the very definitions. The rest of the proof
follows verbatim in the footsteps of the one of Theorem 3.17 in [KoP], which considers
the special case for U = V*(L). O

As mentioned before, one can also link the duals of a Hopf algebroid (H, S) by trans-
posed maps %S, which usually do not coincide with S* or S« (see also §6.2). The next
result explains a relation between them.

Theorem 5.2.4. Let H be a Hopf algebroid such that .H and H, are finitely generated
A-projective. Then the diagram

(H)E,) —— ()’
Ik

((H")cgop) (H").

of right bialgebroid morphisms is commutative.

s

Proof. Let us identify B°P and A by means of the k-algebra isomorphism v : A — B°P
mentioned above; then the left algebroid (H")" o 1s described by the sextuple

((HT)Op7 *;\e = STV, IQ = try7 Aioop’g:: V—la).
Moreover, the Hopf algebroid ((H")Z5 (HO> (S,p) : (HT)P  — H*) is the one

coop’ coop’ coop

we have to consider to compute Sy For ¢ € ((H,)h,,), and h € H we have

(1S 0 57)(9), hy = &(S(h) ) (6, S(S (M) 1y ))) = (v08) (B (¢, S* (W)
= (Rt (o, S*(KP))))
= (R ((5(9), S(MP)))) = (S} 0 1S)(9). ),

where we used the explicit form (5.3) of the translation map and the fact that S is an anti-
coring morphism between left and right coproduct, which proves S o Sy = S, oS as
claimed. ]

Remark 5.2.5. In general, both maps S* or S can be thought of as an extension of the
notion of antipode for a full Hopf algebroid, in the following sense. As mentioned in
Lemma the antipode in a full Hopf algebroid H yields a bialgebroid morphism
S : H* — (H")Z, . On the other hand, if U is a left Hopf algebroid, for which .U
and U, are finitely generated projective as A-modules, then we have a similar situation
replacing (H*, H", S) with the triple ((U*)°P, (Us)coop, S*), and one might be tempted
to define a Hopf algebroid as a triple (U, V, S) of a left resp. right bialgebroid U resp. V/,
where the underlying ring structure is not the same: this way, the apparent asymmetry of a
Hopf algebroid consisting of two coring structures but only one ring structure (that makes
it difficult to obtain self-duality) would be somewhat attenuated. On the other hand, in
case a left Hopf algebroid is simultaneously a right Hopf algebroid, by Theorem[5.1.3]both
duals are isomorphic and hence can be seen (under the stated finiteness conditions) as its
dual (right) bialgebroid, which carries a Hopf structure by the results in [Sch2].
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6. EXAMPLES AND APPLICATIONS

In this section we present some further developments and some applications to specific
examples.

6.1. Mixed distributive law between duals. A direct application of the existence of the
bialgebroid morphism S* (or Sx) is to the setup of distributive laws. Indeed, a particular
kind of mixed distributive law (or entwining) in the sense of Beck [Be] can be constructed
via the following recipe. Combining a morphism (¢1, ¢g) : (V, B) — (V’, B’) of right
(say) bialgebroids with a Hopf-Galois map yields

X: V@V -V, ®:. V', v®%v— oW, vew?),

which can be easily seen to define a mixed distributive law between V' (thought of as a
coalgebra) and V' (thought of as an algebra, although its coproduct appears in x). Applying
this to the two duals of a left bialgebroid U along with S*, one obtains

XU @ U* > U @4,Us, 0@ ¢ ¢ @, 05 (¢?)

as a mixed distributive law between U* and U, to which any standard construction based
on mixed distributive laws can be applied.

6.2. Lie-Rinehart algebras and their jet spaces. Let (A, L) be a Lie-Rinehart algebra
(cf. [Rill, geometrically a Lie algebroid). Then its (left) universal enveloping algebra V(L)
carries not only the structure of a left bialgebroid over the commutative algebra A (see
[Xul) but also of a left Hopf algebroid [KoKr]: on generators a € A and X € L, its
translation map is given by

Cl+®A0p a_:G;®Aop 1, X+®Aop X_:X®Aop1—1®Aop X. (61)

Moreover, as V(L) is cocommutative, it is also a right Hopf algebroid.

Full Hopf algebroid structures on V*(L) are in bijection with right V*(L)-module
structures on A which play the role of possible right counits, expressed by suitable maps
0 : VE(L) — A (cf. [Kol §4.2] or [KoP] for more information). The corresponding an-
tipode S : V¥(L) — V¥(L)92, is then uniquely determined by the prescriptions

coop
S(a) =a, SX)=-X+0X), Vae A, VX € L, (6.2)

on generators. For a general Lie-Rinehart algebra (which does not arise from a Lie alge-
broid), such a map ¢ and hence the antipode might or might not exist.

Let us consider the (right) jet spaces J"(L) := V¥(L)* and "J(L) := V*(L)«. If L is
finitely generated projective as an A-module, then J” (L) and "J(L) are right bialgebroids
in a suitable topological sense, as their coproduct takes values in a topological tensor
product; concerning this, we quickly recall some non-trivial key facts, referring to [KoPl
CaVdB] for further details.

First, V¢ (L) is the direct limit of an increasing bialgebroid filtration (i.e., the strict ana-
logue of a bialgebra filtration) of finitely generated projective modules V¢(L),,; it follows
that J"(L) in turn is the inverse limit of all the J"(L),, := (V*(L),)*, which are finitely
generated projective as well. Similar remarks apply to "J(L). As V(L), - V¥(L), <
VE(L)p4q (for all p,g € N), the recipe used to define the coproduct in U* when U is a
left bialgebroid such that U, is finitely generated A-projective (see can be applied
again and yields maps

gr
* n
—

T (L)n = (V(L)n) 2 (VL)) ®a»(VHL)g)* = 5 I (L)pe ®a»J" (L)

p+g=n ptq=n
whose inverse limit A" := lim A7’ is the coproduct of .J"(L). Similarly, one constructs

“coproduct-like maps” A"/ for the "J(L),, := (V*(L),, )« and then takes their inverse limit
A" :=1im A"/ as a coproduct for "J(L).
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Now, because of the very definition of the V*(L),, and of the explicit form (6.1)) of the
translation map of V*(L), one easily finds that the translation map itself (much like the
coproduct) maps every V¢(L),, into Yptq=n VL), ®uo0 VE(L),. Then formula
makes sense again, and thus can be used to produce a well-defined map

Sp it JT(L)n = (VHL)y)* —— (VH(L)n), ="T(L)n.

L=
Moreover, the arguments used in the proof of Theorem to show that S* preserves the
coproduct apply again in the present situation, and yield a commutative diagram

Ai; ' T
J"(L)n 2 S (L)p«®asJ"(L)q
pt+qg=n
S: lwr%ns:@Sf (6'3)
"J(L)n - 2 L)y« ®a "I (L)g
Ay p+g=n

Taking the inverse limit of all these S;, we get a well-defined (continuous) map
S* . J"(L) = VH(L)* —— VYL), = "J(L).

It follows by construction that this map necessarily coincides with the same name map
in hence it respects all A°-ring structure maps of J"(L) and "J(L) as well as their
counits; from (6.3) follows that this map also respects the coproduct on both sides. All
in all, this means that S* is a morphism of (topological) bialgebroids. As V(L) is also a
right Hopf algebroid, also provides a map S« : "J(L) — J"(L), which again turns
out to be a morphism of (topological) bialgebroids, inverse to S*. The outcome is that
Theoremholds true (in full strength) for U = V*(L)

(replacing the formulation “morphism of right bialgebroids” by “morphism of topological
right bialgebroids”), although the left bialgebroid V*(L) does not comply with the finite-
ness assumptions required (in general) for that result.

Finally, note that both J” (L) and ".J(L) are commutative (because V*(L) is cocommu-
tative), so they are also left bialgebroids. Identifying J" (L) as the coopposite of "J(L)
and with the cocommutativity of V¢(L), one finds that S* and S are equal and yield an
antipode for J"(L), which in this way becomes a full Hopf algebroid. In other words,
Proposition holds true for U = V(L) and U* = J"(L) = "J(L)eoop = (Us)ecoop»
although V*(L) is not finitely generated projective.

6.2.1. Difference between S* and 'S. In this specific example, one can explicitly observe
the difference between S* and the transpose of the antipode S on V*(L) in . Apart
from the fact mentioned above that S* always exists while %S does not, this is already clear
on an abstract level since these are maps of different nature as pointed out in Theorem
Nevertheless, one directly sees here that with respect to the A-module structures
coming from left and right multiplication in V¢(L), the map S*(¢) is left A-linear whereas
tS(¢) is A-linear from the right, for ¢ € V*(L)*. Evaluating both maps on an element in
L < V*(L), one obtains

'S(#)(X) = —o(X) + 2(X)o(1) Vo e VH(L), X € L,
on one hand, and on the other hand
S*(9)(X) = =¢(X) + X(4(1)) Vo e VA(L), X € L,

where L — Der(A4,A), X — {a — X(a)} denotes the anchor of the Lie-Rinehart
algebra (A, L). Using the property Xa — aX = X(a) with respect to the product in
V(L) as well as the right A-linearity of 0, one obtains d(aX) = 0(X)a — X (a) and
therefore 'S (¢)(X) — S*(¢)(X) = d(¢(1)X), which in general does not vanish.
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6.3. Examples from quantisation. In this section, we adapt our main constructions and
results to a different setup, that of quantisations of universal enveloping algebras (of Lie-
Rinehart algebras) and other associated objects. In particular, this means that we deal with
yet another kind of topological bialgebroids, so that we have to clarify the nature of these
objects and how the analysis and results of the preceding sections fits into this modified
context. Hereafter, k is assumed to be a field.

Definition 6.3.1. Let (U, A, st m, A, e) be a left (resp. right) bialgebroid. A quan-
tisation of U (or quantum bialgebroid) is a topological left (resp. right) bialgebroid
(Uh, Ap, 5‘,;7 tfb, mp, Ap, eh) over a topological k[[h]]-algebra Ay, such that:
(i) Ay, is isomorphic to A[[h]] as a topological k[[h]]-module, and this isomorphism
induces an algebra isomorphism Ay, /hAj, = A[[R]]/hA[[R]] = A;
(ii) Up, is isomorphic to U[[R]] as a topological k[[h]]-module;
(ii) Up/hUy = U[[R]]/RU[[R]] is isomorphic to U as a left A-bialgebroid via the
isomorphism Ay, /hAj, = A[[h]]/hA[[R]] =~ A mentioned in (i);
(iv) the coproduct Ay, of Uy, takes values in U, X4 » Un, where

UnX a, Up 1= {2 @ € Up, ®a, nUp | X (a»w;) @u) = > u; ® (uf <a)}

is the Takeuchi-Sweedler product, and where Uy, , @ a5, »Up denotes the completion
of Uy, ®., U with respect to the h-adic topology.

In this setting, we shall say that Uy, is a quantisation, or quantum deformation, of U.

Remark 6.3.2.

(a) The notions of quantum left or right Hopf algebroid are defined replacing the ordi-
nary tensor product by a suitable completion, just as for J” (L) above.

(b) When dealing with k[[h]]-modules, any morphism (i.e., k[[h]]-linear map) is auto-
matically continuous for the h-adic topology on the source and target k[[h]]-module; we
shall tacitly use this fact with no further mention. In particular, for a quantum bialgebroid
U}, both its (full linear) duals (Up,)* and (Uy)« are also topological duals.

(c) For a left bialgebroid U with a quantisation U}, assume that U is also a left Hopf
algebroid. Then Uy}, is automatically a left Hopf algebroid (in a topological sense) as well
by a standard argument in deformation theory. By assumption, we have U, =~ U[[h]] as
modules over A, = A[[h]]; from this isomorphism one deduces similar isomorphisms
for modules of homomorphisms or tensor products of modules. Moreover — because

Un / hUp, = U as bialgebroids —, all bialgebroid structure maps of U}, taken modulo A

reduce to the same name structure maps of U. Now, for the (topological) left bialgebroid
U, we have a well-defined Hopf-Galois map

(e)n : »Un ®aor Ung = Upa ®a, oUn u@A;;PU = ) ®a, Ug2)v,

which belongs to Homy iy (+Un (Q)Aszhq,Uhq@Athh ): as mentioned above, this
module is isomorphic to Homy, (,U ®aor Us,U. ®, »U)[[R]], so that (o), expands
as (ag)n = D,en anh™ for some a,, € Homy (,U ®@aor Us, Us ®4 »U). In addi-
tion, as all structure maps of Uj, modulo h are just those of U, one has ay = (ay)n
mod h = ag. But U was a left Hopf algebroid, hence ay = ag is invertible, and therefore
(ag)n = 2,en anh™ is invertible too, so that U, is a left Hopf algebroid as well.

6.3.3. Universal enveloping algebras and deformations. As in [ChGal, one can con-
sider a quantum deformation V*(L);, of V*(L): as the latter is both a left and right Hopf
algebroid, the same holds true for V‘](L) n as well, by Remark( c) above.

On the other hand, the dual (right) bialgebroids J" (L), := (V¥(L))* and "J(L)), =
(V4(L)y)« are deformations of J"(L) = V¥(L)* = (V*(L)«)coop- This common “limit”
is a full Hopf algebroid (with bijective antipode) by the above, hence in particular it is a
left and right Hopf algebroid with respect to the underlying right bialgebroid structure. It
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then follows that the same is true for the right bialgebroids J" (L), and "J(L)y, but usually
they are not full Hopf algebroids. Nonetheless, we can apply our constructions of to
Uy, := VY(L);, and find the maps S* and S, as we now shortly explain.

By construction, the maps S* and Sx as in (5.1)) and are given in terms of structure
maps and translation maps of the (non-topological) bialgebroid U: when U is replaced
by Uy, all those maps are continuous, hence both definitions still make sense and provide
maps S* : (Up)* — (Up)+ and Sx : (Up)+ — (Up)* as announced. Once these maps are
propetly defined (for U, = V*(L)},), the proof of all their properties still works untouched
(all arguments and calculations make sense and go through in the proper setup of topo-
logical bialgebroids). In particular, Theorem [5.1.3]then assures that the two deformations
JT(L)y, := (Up)* and "J(L);, := (Up)x of VH(L)* = (V¥(L)+)coop are isomorphic (as
right bialgebroids) via S* and Ss.

6.4. Cases where a dualising module exists. In this section, we will come back to the
situation of dualising modules as in §3.2|by investigating their (deformation) quantisation.
To this end, we first need to introduce some extra notation, terminology, and definitions
with respect to decreasing filtrations; see, for example, [[Ch2,Schn] for further basic results
and details.

Let A be an algebra endowed with a decreasing filtration (F), A),en and consider a
filtered F'A-module denoted by F'M, whereas its underlying A-module will be denoted by
M. If FM and FN are two filtered F'A-modules, then a filtered morphism Fu : FM —
FN is a morphism v : M — N of the underlying A-modules such that u(FsM) < FN.
A filtered morphism Fu : FM — FN is strict if it satisfies uw(FsM) = w(M) n FsN.
An exact sequence of F'A-modules is a sequence

FMES N 2% pp (6.4)

such that Ker (Fsv) = Im (Fsu), where Fyv := ’U‘FSN and Fyu := u!FqM; hence F'u is
strict. If moreover F'v is also strict, then (6.4) is a called a strict exact sequence.

The filtration of a filtered module gives rise to a topology and even a metric if the filtered
module is separated, that is, if (), .y FnM = {0}. For any r € Z and for any F'A-module
FM, we define the shifted module F M (r) as the module M endowed with the filtration
(Fs+rM)sez. An F A-module is called finite free if isomorphic to an F'A-module of the
type @Y_, FA(—d;), where di, . ..,d, € Z. An F A-module F'M is called of finite type
if one can find my € Fyy M, ..., my € Fy, M such that any m € F;; M may be written as

p
m= augm
i=1

where aq_q, € Fy_q, A. We will be dealing with the case where M is a k[[h]]-module and
F,M = h™M, the so-called h-adic filtration.

Remark 6.4.1. The existence of a translation map if Uy, is a left or right Hopf algebroid
makes it possible to endow

— Hom-spaces with values in a h-adic complete space, and
— complete tensor products of Uy-modules

with further natural Up-module structures. Let us make this explicit for the cases we will
use, i.e., adapt Proposition[3.1.1]

If Py, is aright Up-module and Ny, is a left Uy, -module, then , Py, ®A§ip Ny, ., is endowed
with a right Uy -module structure as follows: if u € Up, then u ®AZ" u_ €,Up ®A‘ip U,

can be written as u 4 ®acp u— = lim wy p ®acp U— . For x ®acr y € » P ®acp Np.,
oo : 3 ,

one defines

(T ®g[an Y)u = nlgrolo TU4 5 @acp U— Y € »Ph @ace Npg.
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As lim t“(a)uy , @aop Uy = 1M Uy @ aop u_ ,t(a), we have thus defined a right
n—oo n—o0

action of Uj, on , Py, ®AZ‘“ Ny ..
If Pp, and N), are right Up,-modules, then Hom ,o» (Pr, Np,) is endowed with a left Uy, -

module structure as follows: if u[ R4 up_) = linéc U[+],n @4 U[—],n € Un« @Ah sUhn,

one sets for ¢ € HomA;T(Ph,Nh) and u € Uy, p € Py,

un¢(p) = ¢ (pu[+],n) U[-],n>

and argues similarly as above that this defines, indeed, a left Up-action on
HOmAt;p(Ph,Nh).

Lemma 6.4.2. Ler (Up, Ap) be a quantum left Hopf algebroid, and let Py, be a right
Up-module such that Py (respectively ,Py,) is a finitely generated projective A;"-module
(resp. Ap-module). Then
(i) Pp is complete for the h-adic topology.
(it) For a right Up-module N}, any element of Hom ,o» (Pr, Ni) is continuous if we
endow both modules with the h-adic topology.
(iii) If Ny, is a left Up-module that is complete in the h-adic topology, then so is the right
Uy,-module Py, ®A‘;’B’ Np..
(iv) If Ny, is a right Up-module that is complete in the h-adic topology, then so is the
left Up-module Hom yor (Pp,, Np).

Proof. If Ny, is a right Up-module endowed with the h-adic topology, then the h-adic
topology on (V)P coincides with the product topology. Thus, if N}, is complete for the
h-adic topology, then so is (N, )P.

(i) As Py, is a finitely generated projective A},"-module, it is a summand of a finite
free module, which is complete for the h-adic topology as A, is so. Hence Py, is
complete for the h-adic topology.

(ii) This is obvious as such a morphism is k[[h]]-linear.

(iii) Py, is a direct summand of a rank r free Azp-module F},. Thus , Py, ®acp N,isa
summand of (N},)", which is complete, hence it is itself complete. /
(iv) The proof of this part is analogous to the proof of (iii).

d

In the following, denote by cMod-Uj, resp. Uy-cMod the category of right resp. left
Up-modules which are complete for the h-adic topology. We then have the following result,

analogous to Proposition

Proposition 6.4.3. Let (U, Ay,) be simultaneously a quantum left and right Hopf alge-
broid. Assume that there exists a right Up-module Py, where Py (resp. .'Py) is finitely
generated projective over Ay (resp. Ay), such that

(i) the left U -module morphism
Ap — Hom o (Ph, Pr),  a— {p— a»p}

is an isomorphism of k[[h]]-modules;
(ii) the evaluation map

>Ph ®A;’Lp HOHlA(;lD (Pha Nh)<1 s Nh7 p ®A;’LP QS g ¢(p)
is an isomorphism for any Ny € cMod-Uy,.

Then
Up-cMod — cMod-U,, My — Py @sor My,

is an equivalence of categories with quasi inverse given by N;, +— Hom o0 (Pp, N,).
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We will now give an example of such a situation. Consider a left bialgebroid (U, A)
and a quantisation (Up,, Ay) of it. Observe that the natural left Uj,-module structure on Ay
quantises that of U on A.

Theorem 6.4.4. Let (U, A) be a left bialgebroid, where U is assumed to be a k-Noetherian
algebra. Assume that there exists an integer d satisfying

; [0 ifizd,
Then there exists an Ap-module A}, that is a quantisation of A such that

; 0 ifi#d
K3 — )
EXtUh (Ah, Uh) { A ifi = d,
where the right action of U}, on Exthh (An, Uy) is a quantisation of the right action of U
on Exth (A, U) given by right multiplication.

We remind the reader here that Ay, is A[[h]] as a k[[h]]-module. This theorem is proven
in [[Ch2] in the case where A, = k[[h]]. For the proof of the general case, we will need
the following auxiliary statement:

Lemma 6.4.5. There exists a resolution of the Uy -module Ay, by finite rank free (filtered)
FUp-modules

B A . e (UF

where FL' is (U,)% endowed with the h-adic filtration such that the associated graded
complex
LG ES S GL EB QLY — A[h] — {0}

is a resolution of the U[h]-module A[h)].

Proof. We will construct the p-th module F'LP by induction on p: for p = 0, one may
take FL? := U, and 0y := ¢, endowed with the h-adic topology. Assume then that
FL,FL', ... FLP are already constructed along with 0p, 01, ...,0,. As FLP is topo-
logically free, the induced filtration and the h-adic filtration coincide on Kerd,. As
Ker d,, is closed in F'LP, it is also complete. This k[[h]]-module is topologically free
as it is complete for the h-adic topology and also torsion free; set Kerd, := V,[[Rh]].
Since GU}, = U[h] is Noetherian, the (filtered) algebra Uy, is (filtered) Noetherian [Ch2]
Prop. 3.0.7] and the Uj,-module Ker 0, is finitely generated so that the U-module V), is
finitely generated as well. Let (71, ...,7g,,,) be a generating system of the U-module V,,

and let (vy,...,vq,,,) € (Kerd,)%+! be a lift of (77,...,74,,,). Moreover, introduce
the Uj-module morphism

Op+1 (Uh)df**1 — Kerdp, (u1,...,upp1) — Zuivi,
which is a strict morphism of filtered modules. The filtered exact sequence
(U 25 ) 2 (U
is strict exact so that the sequence
(GULP T (GU P “B (GUP
is exact (cf. [Ch2l Prop. 3.0.2]). U

Proof of Theorem[6.4.4) The Exty;, (Ap, Uy)-groups can be computed via the complex
M?* := (Homy, (L*,Uy), ). Its components are endowed with the natural filtration

F,Homy, (L', Uy) := {\ € Homy;, (L*,Uy) | M(F,L") © Fey,Un},
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and the right F' A-modules F' Homy;, (L?, Uy,) are isomorphic to (Uj, )% endowed with the
h-adic filtration. 4On the other hand, the filtration of the M*® := Homy, (Li, Uy,) induces a
filtration on Exty;, (Ap, Up) as follows:

Ker o, n F;M? + Im'o,_, Ker o, n F,M*
Imio,_, - Im'_, n F, M1

FExty; (Ap,Up) =

The filtration on the ExtiUh (Ap, Up,)-groups is nothing but the h-adic filtration. Reproduc-
ing the proof of [Ch2], one can see that:
— if i # d, then Exty;, (Ap, Up) = {0};
— the maps 0, are strict filtered morphisms;
- Exthh (Ap,Up,) is complete for the h-adic filtration (as it is a finitely gener-
ated U,”-module, see [Ch2]]). Moreover, Exthh (Ap, Uh)/hExthh (AR, Up) ~
Ext?; (A, U) as U°P-modules.

Let us show that Ext‘,ijh (Ap,Up,) is h-torsion free. Let [o4] € Ext}ijh (Ap, Upr), where
oq € Ker tﬁd, be an h-torsion element in Ext?]h (Ap,Uy). There exists a minimal n € N*
such that h"[o4] = 0. Let 04_1 € Homy;, (L4~1, U},) be such that h"oy = 10, 1(04-1).
Then, by reduction modulo A, one obtains tadfl (6a=1) = 0 and there exists G4_3 such that

Ga—1 = O4—2 (Gg—32). Let 04_2 be a lift of 55_3. Then there exists 74_; such that
Oq—1 = t9d72(0d,2) + h71g_q.

Hence h™oq = h'Q;, (74—1), which gives (using the fact that Homy, (L4, Up) is topo-
logically free) h" ‘o4 = ‘9, ,(74—1). This contradicts the minimality of n so that

Ext[d]h (Ap,Uy) is h-torsion free. As Ext?]h (A, Uy) is complete for the h-adic topology
and h-torsion free, it is topologically free. O

Combining this result with the more general structure theory as in Proposition [3.2.1]
resp. Proposition[6.4.3] one obtains:

Proposition 6.4.6. Ler U satisfy the conditions of Theorem Assume moreover that

(i) A is noetherian;
(i) Exty(A,U) is a dualising module for (U, A), i.e., satisfies the hypothesis of

Proposition[3.2.1}

(iii) JExty (A, U) is a finitely generated projective A-module.

Then Py, = Ext‘,ijh (Ap, Up) is a dualising module for (U, Ap) and produces an equiva-
lence between the categories of left resp. right complete Uy-modules.

Remark 6.4.7. Let M;, := M][[h]] and N, := NJ[[h]] be two A;"-modules which
are topologically free with respect to the h-adic topology. Assume moreover that M,
is finitely generated projective over A;"; then Hom AcP (Mp, Np,) is topologically free
and, as said before, is isomorphic to Hom 4op (M, N)[[R]] as a k[[h]]-module: observe
that Hom A;p(M;“Nh) is complete for the induced topology as it is a closed subset
of the topologically free k[[A]]-module Homypn)j(Mpn, Ni). On the other hand, on
Hom Azp(Mh,Nh), the induced topology coincides with the h-adic topology. Hence
Hom AgP(Mm Np,) is complete for the h-adic topology and since it is also torsion free,
it is topologically free. Let us now show that Hom ,o» (Mp, Np)/h HomAzp(Mh, Np) is
isomorphic to Hom 4o» (M, N): in fact, there exists an A}”-module M, and a finitely gen-
erated free A;"-module F}, such that M), @ M, = F},. Any element ¢ of Hom 4o» (M, N)
can be extended to an element of Hom 4ep (F},/hE},, N'), which, in turn, can be lifted to an
element of Hom acP (F}, Ny,) and produces (by restriction) a lift of ¢.
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Proof of Proposition[6.4.6] The module P}, is a finitely generated A;"-module as P, :=
Exty(A,U). is a finitely generated A°P-module (see Proposition 3.0.5 of the preprint
version of [Ch2]).

Let N, be a finitely generated A;”-module. It can be considered as a filtered F'A}"-
module as follows: one has an epimorphism (A';Lp)n 25N » — 0, and we endow NN},
with the filtration p(F (A;P)"). As P. is a projective A°"-module, P[h]. is a projec-
tive A[h]°P-module, and Proposition 3.0.11 of the preprint version of [Ch2|] shows that
Exct}yor (P, Njy) = {0} if i > 0.

Let now N}, be any A;”-module. We have N, = liin N}, where N; runs over all finitely
generated A;”-submodules of Nj,. Let F'* be a resolution of P by finitely generated free
AjP-modules. We have

Ext’

A(;Lp (Ph, Nh) = E)){t'7

AP
— HI (lim Hom 40 (F*, N})) = lim H7 (Hom qor (F*, N,))

(Pn,lim N}) = H? (Hom yor (F*, lim N}, ))

= llj)IlEXtQ;p (Pha NI/L) = {0}7

where we used the fact that the functor lim is exact because the set of finitely generated

submodules of M is a directed set, cf. [Rol Prop. 5.33]. Thus we have proven that if N}, is
any A;P-module, then

Extgzp (Pn,Ny) = {0} if j > 0.

Consequently, Py, is a projective A;"-module; similarly, , Ext, (Ar, Up) is a projective
A}P-module.

The assertion with respect to the evaluation map yet is true if N} is a topologically
free Uy -module as it is true modulo h, see Remark [6.4.7} Furthermore, the functor N, —
Pr ®., Hom 4or (P, Np) is exact as P resp. , Py, is a projective A}P-module resp. Ap-
module.

Let now N}, be a finitely generated Uy -module. Using a finite free resolution of Ny, one
can show (by a diagram chase argument) that the evaluation map is an isomorphism (as it
is an isomorphism for any component of the resolution). If Ny, is any Uj,-module instead,
one can write Nj, = lim IV, /. where N/ runs over all finitely generated submodules of N,.

Since Py, is a finitely generated A;"-module, any element ¢ € Hom acp (Pp, Np) can be
considered as an element of Hom ,er (Pp, N},) for a well-chosen finitely generated AP-
module NN;. Using the finitely generated case, one can see that the evaluation map is an
isomorphism for any Up-module Nj,.

As Py, is a finitely generated projective A;”-module, the natural left Uj,-module map

Ap — Hom yor (Ph, Pp), a— (p—a»rp)

of Proposition [6.4.3]is an isomorphism as it is an isomorphism modulo 4. This concludes
the proof. (]

Example 6.4.8. For example, if A is the algebra of regular functions on a smooth affine
variety X and L is the Lie-Rinehart algebra of vector fields over X, then U = V*(L)
satisfies the conditions of Theorem More generally, for any Lie-Rinehart algebra
(A, L), where L is finitely generated projective of constant rank d over a Noetherian al-
gebra A, the pair (A, vt (L)) fulfils the conditions of Theorem and one obtains

EXt“i/[(L)(A, V4L)) = /\i Hom 4 (L, A) for the dualising module (see [ChIl [Hue] for
more details in this direction). Then, for any quantisation V*(L);, of V*(L), Proposi-

tion leads to an equivalence of categories between left and right complete V*(L)j,-
modules. Examples of quantisations of V(L) are given in [ChGal.
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