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DUALITY FEATURES OF LEFT HOPF ALGEBROIDS

SOPHIE CHEMLA, FABIO GAVARINI, AND NIELS KOWALZIG

ABSTRACT. We explore special features of the pair pU*, U*q formed by the right and
left dual over a (left) bialgebroid U in case the bialgebroid is, in particular, a left Hopf
algebroid. It turns out that there exists a bialgebroid morphism S* from one dual to another
that extends the construction of the antipode on the dual of a Hopf algebra, and which is
an isomorphism if U is both a left and right Hopf algebroid. This structure is derived from
Phùng’s categorical equivalence between left and right comodules over U without the need
of a (Hopf algebroid) antipode, a result which we review and extend. In the applications,
we illustrate the difference between this construction and those involving antipodes and
also deal with dualising modules and their quantisations.
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1. INTRODUCTION

A characteristic feature in standard Hopf algebra theory is its self-duality, that is, the
dual of a (finite-dimensional) Hopf algebra (over a field) is a Hopf algebra again. In par-
ticular, the antipode of this dual is nothing but the transpose of the original antipode; see,
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for example, [Sw]. In the broader setup of (left or full) Hopf algebroids over possibly non-
commutative rings, this peculiar property appears to be more intricate; see [B] or §2 for
the precise definitions of these objects, we only mention here that, in contrast to full Hopf
algebroids, there is no notion of antipode for left Hopf algebroids: one rather considers the
inverse of a certain Hopf-Galois map and its associated translation map. Nevertheless, left
Hopf algebroids appear as the correct generalisation of Hopf algebras over noncommuta-
tive rings, whereas full Hopf algebroids generalise Hopf algebras twisted by a character,
see, for example, [Ko, §4.1.2].

Recently (after the first posting of this article), Schauenburg [Sch2] showed that the
(skew) dual of a left Hopf algebroid (under a suitable finiteness assumption) carries some
Hopf structure as well without giving an explicit expression for the inverse of the respective
Hopf-Galois map or the associated translation map.

However, instead of one dual, a left bialgebroid U rather possesses two, the right dual
U* and the left dual U*, which, on top, live in a different category compared to U as they
are both (under certain finiteness assumptions) right bialgebroids [KadSz]. There is no
reason why one should prefer one of the duals to the other. Hence, any question concerning
“the dual of U” should be converted into a question about the pair pU*, U*q.

Dealing with full Hopf algebroids (see §5.2.1) does notably worsen the situation as
there are actually four duals to be taken into account, two of which are left and two of
which are right bialgebroids. In this case, an answer to the question of the nature of the
Hopf structure on the dual(s) has only been given in certain cases, more precisely, in the
presence of integrals [BSz, §5].

1.1. Aims and objectives. As mentioned a moment ago, the object one should investigate
to discover the limits of self-duality in (left) Hopf algebroid theory is a pair of duals. In
short, our question reads as follows: if a left bialgebroid U is, in particular, a left (or right)
Hopf algebroid, what extra structure can be found on the pair pU*, U*q of duals?

1.2. Main results. After highlighting in §3 a multitude of module structures that exist on
Hom-spaces and tensor products in presence of a left or right Hopf algebroid structure
and that will be used in the sequel, in §4 we review (and extend) Phùng’s equivalence (cf.
[Phù]) of comodule categories (see the main text for all definitions and conventions used
hereafter):

Theorem A. Let pU,Aq be a left bialgebroid.

(i ) Let pU,Aq be additionally a left Hopf algebroid such that UŽ is projective. Then
there exists a (strict) monoidal functor Comod-U Ñ U -Comod: if M is a right
U -comodule with coaction m ÞÑ mp0q bA mp1q, then

M Ñ UŽ bA M, m ÞÑ mp1q´ bA mp0qεpmp1q`q,

defines a left comodule structure on M over U .
(ii ) Let pU,Aq be a right Hopf algebroid such that ŻU is projective. Then there exists

a (strict) monoidal functor U -Comod Ñ Comod-U : if N is a left U -comodule
with coaction n ÞÑ np´1q bA np0q, then

N Ñ N bA ŻU , n ÞÑ εpnp´1qr`sqnp0q bA np´1qr´s,

defines a right comodule structure on N over U .
(iii ) If U is both a left and right Hopf algebroid and if both UŽ and ŻU are A-projective,

then the functors mentioned in (i) and (ii) are quasi-inverse to each other and we
have an equivalence

U -Comod » Comod-U

of monoidal categories.
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Note that this equivalence works without the help of an antipode as there are objects
that are both left and right Hopf algebroids but not full Hopf algebroids (cocommutative
left Hopf algebroids, for example).

Starting from this result, under suitable finiteness hypotheses on U , one can construct
functors Mod-U* Ñ Mod-U* resp. Mod-U* Ñ Mod-U*, and from this we isolate
maps U* Ñ U* resp. U* Ñ U*, which even make sense without any finiteness assump-
tions as proven in §5, and which are our main object of interest.

In §5.1 we can then give the following answer to the problem mentioned in §1.1, that is,
elucidate the relation between the left and the right dual:

Theorem B. Let pU,Aq be a left bialgebroid.

(i ) If pU,Aq is moreover a left Hopf algebroid, there is a morphism S* : U* Ñ U* of
Ae-rings with augmentation; if, in addition, both ŻU and UŽ are finitely generated
A-projective, then pS*, idAq is a morphism of right bialgebroids.

(ii ) If pU,Aq is a right Hopf algebroid instead, there is a morphism S* : U* Ñ U* of
Ae-rings with augmentation; if, in addition, both ŻU and UŽ are finitely generated
A-projective, then pS*, idAq is a morphism of right bialgebroids.

(iii ) If pU,Aq is simultaneously both a left and a right Hopf algebroid, then the two mor-
phisms are inverse to each other; hence, if both ŻU and UŽ are finitely generated
A-projective, then U* » U* as right bialgebroids.

Now, as said before, for a left Hopf algebroid (which is finitely generated projective
with respect to both source and target map) there is no canonical choice for which dual
to consider but in view of Theorem B, in case the left Hopf algebroid is simultaneously a
right Hopf algebroid, both duals are isomorphic and hence can be seen as its dual, which
carries a Hopf structure by Schauenburg’s recent result [Sch2]. This seems to be as close
as one can get to self-duality.

Theorem B is a straight analogue of the construction on the dual for a (finite-
dimensional) Hopf algebra H (over a field) with antipode S in the following sense: here,
one has H* “ pH*q

op
coop and S* is exactly the transpose of S and therefore the antipode

for the dual Hopf algebra.
Observe that this last case in Theorem B, i.e., the presence of both a left and right Hopf

structure is given, for example, when U is a full Hopf algebroid with bijective antipode
but also in weaker cases such as for the universal enveloping algebra of a Lie-Rinehart
algebra. In the situation of a full Hopf algebroid, U* and U* are additionally linked (in
both directions) by the transposition tS of the antipode S : U Ñ Uop

coop. However, in
Theorem 5.2.4 we show that the map tS in general does not coincide with S* or S*, in
contrast to the Hopf algebra case mentioned above. Moreover, if a left Hopf algebroid U is
cocommutative with both ŻU and UŽ finitely generated A-projective, then U* “ pU*qcoop

is a full Hopf algebroid (with antipode precisely given by S*), though U might be not.
We shall also see in §6 that Theorem B actually extends to a larger setup, in particular,

it applies to some interesting cases (coming from geometry), where neither ŻU nor UŽ

are finitely generated projective but U* and U* are still right bialgebroids in a suitable
(topological) sense, such as when U is the universal enveloping of a Lie-Rinehart algebra,
or a quantisation of it.

In §6, we illustrate these results by considering some examples related to Lie-Rinehart
algebras (or Lie algebroids) and their jet spaces, as well as their quantised versions. More-
over, in §6.4 we consider further duality phenomena related to dualising modules, which
appear in Poincaré duality, along with their quantisations.
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2. PRELIMINARIES

We list here those preliminaries with respect to bialgebroids and their duals that are
needed in this article; see, e.g., [B] and references therein for an overview on this subject.

Fix an (associative, unital, commutative) ground ring k. Unadorned tensor products
will always be meant over k. All other algebras, modules etc. will have an underlying
structure of a k-module. Secondly, fix an associative and unital k-algebra A, i.e., a ring
with a ring homomorphism ηA : k Ñ ZpAq to its centre. Denote by Aop the opposite and
by Ae :“ A b Aop the enveloping algebra of A, and by A-Mod the category of left A-
modules. Recall that an A-ring is a monoid in the monoidal category pAe-Mod,bA, Aq
of pA,Aq-bimodules fulfilling the usual associativity and unitality axioms, whereas dually
an A-coring is a comonoid in this category that is coassociative and counital.

2.1. Bialgebroids. For an Ae-ring U given by the k-algebra map η : Ae Ñ U , consider
the restrictions s :“ ηp´ b 1Uq and t :“ ηp1U b ´q, called source and target map,
respectively. Thus an Ae-ring U carries two A-module structures from the left and two
from the right, namely

a Ż u Ž b :“ spaqtpbqu, a § u đ b :“ utpaqspbq, @ a, b P A, u P U.

If we let UŽbAŻU be the corresponding tensor product of U (as an Ae-module) with itself,
we define the (left) Takeuchi-Sweedler product as

UŽˆAŻU :“
 
ř

iui b u
1
i P UŽbAŻU |

ř

ipa § uiq b u
1
i “

ř

iui b pu
1
i đ aq, @a P A

(

.

By construction, UŽˆA ŻU is an Ae-submodule of UŽbA ŻU ; it is also an Ae-ring via
factorwise multiplication, with unit 1U b 1U and η

UŽˆAŻU
pab ãq :“ spaq b tpãq.

Symmetrically, one can consider the tensor product Uđ bA §U and define the (right)
Takeuchi-Sweedler product as Uđ ˆA §U , which is an Ae-ring inside Uđ bA §U .

Definition 2.1.1. A left bialgebroid pU,Aq is a k-module U with the structure of an Ae-
ring pU, s`, t`q and an A-coring pU,∆`, εq subject to the following compatibility relations:

(i ) the Ae-module structure on the A-coring U is that of ŻUŽ ;
(ii ) the coproduct ∆` is a unital k-algebra morphism taking values in UŽˆAŻU ;

(iii ) for all a, b P A, u, u1 P U , one has:

εpa Ż u Ž bq “ aεpuqb, εpuu1q “ ε
`

u đ εpu1q
˘

“ ε
`

εpu1q § u
˘

. (2.1)

A morphism between left bialgebroids pU,Aq and pU 1, A1q is a pair pF, fq of maps F :
U Ñ U 1, f : AÑ A1 that commute with all structure maps in an obvious way.

As for any ring, we can define the categories U -Mod and Mod-U of left and right
modules over U . Note that U -Mod forms a monoidal category but Mod-U usually does
not. However, in both cases there is a forgetful functor U -Mod Ñ Ae-Mod, resp.
Mod-U Ñ Ae-Mod: whereas we denote left and right action of a bialgebroid U on
M P U -Mod or N P Mod-U usually by juxtaposition, for the resulting Ae-module
structures the notation

a Żm Ž b :“ s`paqt`pbqm, a §m đ b :“ ns`pbqt`paq

for m P M, n P N, a, b P A is used instead. For example, the base algebra A itself is a
left U -module via the left action upaq :“ εpu đ aq “ εpa § uq for u P U and a P A, but in
most cases there is no right U -action on A.
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Dually, one can introduce the categories U -Comod and Comod-U of left resp.
right U -comodules, both of which are monoidal; here again, one has forgetful functors
U -Comod Ñ Ae-Mod and Comod-U Ñ Ae-Mod. More precisely (see, e.g., [B]), a
(say) right comodule is a right comodule of the coring underlying U , i.e., a rightA-module
M and a right A-module map M∆ : M ÑM bA ŻU, m ÞÑ mp0q bA mp1q, satisfying the
usual coassociativity and counitality axioms. On any M P Comod-U there is an induced
left A-action given by

am :“ mp0qεpa §mp1qq, (2.2)
and M∆ is then an Ae-module morphism M Ñ M ˆA ŻU, where M ˆA ŻU is the Ae-
submodule of M bA ŻU whose elements

ř

imi bA ui fulfil
ř

i ami bA ui “
ř

imi bA ui đ a, @a P A. (2.3)

The notion of a right bialgebroid is obtained if one starts with the Ae-module structure
given by § and đ instead of Ż and Ž. We will refrain from giving the details here and refer
to [KadSz] instead.

Remark 2.1.2. The opposite of a left bialgebroid pU,A, s`, t`,∆`, εq yields a right bial-
gebroid pUop, A, t`, s`,∆`, εq. The coopposite of a left bialgebroid is the left bialgebroid
given by pU,Aop, t`, s`,∆coop

` , εq.

2.2. Pairings of U -modules and dual bialgebroids. Let pU,Aq be a left bialgebroid,
M,M 1 P U -Mod be left U -modules, and N,N 1 PMod-U be right U -modules. Define

HomAoppM,M 1q :“ HomAoppMŽ,M
1
Žq, HomApM,M 1q :“ HomApŻM , ŻM

1 q,
HomAoppN,N 1q :“ HomAoppNđ, N

1
đq, HomApN,N

1q :“ HomAp§N , §N
1 q.

In particular, for M 1 :“ A we set M* :“ HomApM,Aq and M* :“ HomAoppM,Aq,
called, respectively, the left and right dual of M .

The notion of pairing between Ae-bimodules is also useful (see, for instance, [ChGa]):

Definition 2.2.1. Let U and W be two Ae-bimodules.
(i ) A left Ae-pairing is a k-bilinear map x , y : U ˆW Ñ A such that for any u P U ,

w PW , and a P A, one has

xu, a Ż wy “ xu Ž a,wy, xu,w Ž ay “ xa § u,wy, xu, a § wy “ xu đ a,wy,
xu,w đ ay “ xu,wya, xa Ż u,wy “ axu,wy.

(ii ) A right Ae-pairing is a k-bilinear map x , y : U ˆW Ñ A such that for any u P U ,
w PW , and a P A, one has

xu,w Ž ay “ xa Ż u,wy, xu, a Ż wy “ xu đ a,wy, xu,w đ ay “ xa § u,wy,
xu, a § wy “ axu,wy, xu Ž a,wy “ xu,wya.

2.2.2. Duals of bialgebroids. Let U* resp. U* be the left resp. right dual of a left bial-
gebroid. If ŻU is finitely generated projective, then U* is canonically endowed with a
right bialgebroid structure [KadSz] such that the evaluation pairing between U and U* is
a (nondegenerate) left pairing; similarly, if UŽ is finitely generated projective, then U* has
a canonical right bialgebroid structure for which the natural pairing between U and U* is
a right pairing. If instead in either case the above finitely generated projective assumption
is not satisfied, then both U* and U* are nevertheless Ae-rings endowed with a “counit”
map, or augmentation.

2.3. Left and right Hopf algebroids. For any left bialgebroid U , define the Hopf-Galois
maps

α` : §U bAop UŽ Ñ UŽ bA ŻU, ubAop v ÞÑ up1q bA up2qv,
αr : Uđ b

A
ŻU Ñ UŽ bA ŻU, ubA v ÞÑ up1qv bA up2q.

With the help of these maps, we make the following definition due to Schauenburg [Sch1]:
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Definition 2.3.1. A left bialgebroid U is called a left Hopf algebroid if α` is a bijection.
Likewise, it is called a right Hopf algebroid if αr is so. In either case, we adopt for all
u P U the following (Sweedler-like) notation

u` bAop u´ :“ α´1
` pubA 1q, ur`s b

A ur´s :“ α´1
r p1bA uq, (2.4)

and call both maps u ÞÑ u` bAop u´ and u ÞÑ ur`s b
A ur´s translation maps.

Analogous notions exist with respect to an underlying right bialgebroid structure, but
we will not give the details here.

Remark 2.3.2.
(i ) In case A “ k is central in U , one can show that α` is invertible if and only if U is a

Hopf algebra, and the translation map reads u`bu´ :“ up1qbSpup2qq, where S is
the antipode of U . On the other hand, U is a Hopf algebra with invertible antipode if
and only if both α` and αr are invertible, and then ur`sbur´s :“ up2qbS

´1pup1qq.
(ii ) The underlying left bialgebroid in a full Hopf algebroid with bijective antipode is

both a left and right Hopf algebroid (but not necessarily vice versa); see [BSz, Prop.
4.2] for the details of this construction.

The following proposition collects some properties of the translation maps [Sch1]:

Proposition 2.3.3. Let U be a left bialgebroid.
(i ) If U is a left Hopf algebroid, the following relations hold:

u` bAop u´ P U ˆAop U, (2.5)
u`p1q bA u`p2qu´ “ ubA 1 P UŽbAŻU, (2.6)

up1q` bAop up1q´up2q “ ubAop 1 P §UbAopUŽ, (2.7)
u`p1q bA u`p2q bAop u´ “ up1q bA up2q` bAop up2q´, (2.8)
u` bAop u´p1q bA u´p2q “ u`` bAop u´ bA u`´, (2.9)

puvq` bAop puvq´ “ u`v` bAop v´u´, (2.10)

u`u´ “ s`pεpuqq, (2.11)
εpu´q § u` “ u, (2.12)

ps`paqt`pbqq` bAop ps`paqt`pbqq´ “ s`paq bAop s`pbq, (2.13)

where in (2.5) we mean the Takeuchi-Sweedler product

UˆAopU :“
 
ř

iui b vi P §U bAop UŽ |
ř

iui Ž ab vi “
ř

iui b a § vi, @a P A
(

.

(ii ) Analogously, if U is a right Hopf algebroid, one has:

ur`s b
A ur´s P U ˆA U, (2.14)

ur`sp1qur´s bA ur`sp2q “ 1bA u P UŽbAŻU, (2.15)

up2qr´sup1q b
A up2qr`s “ 1bA u P Uđb

A
ŻU , (2.16)

ur`sp1q b
A ur´s bA ur`sp2q “ up1qr`s b

A up1qr´s bA up2q, (2.17)

ur`sr`s b
A ur`sr´s bA ur´s “ ur`s b

A ur´sp1q bA ur´sp2q, (2.18)

puvqr`s b
A puvqr´s “ ur`svr`s b

A vr´sur´s, (2.19)

ur`sur´s “ t`pεpuqq, (2.20)

ur`s đ εpur´sq “ u, (2.21)

ps`paqt`pbqqr`s b
A ps`paqt`pbqqr´s “ t`pbq bA t`paq, (2.22)

where in (2.14) we mean the Sweedler-Takeuchi product

U ˆA U :“
 
ř

iui b vi P Uđ b
A

ŻU |
ř

ia Ż ui b vi “
ř

iui b vi đ a, @a P A
(

.

These two structures are not entirely independent:
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Lemma 2.3.4. The following mixed relations hold among left and right translation maps:

u`r`s bAop u´ b
A u`r´s “ ur`s` bAop ur`s´ b

A ur´s, (2.23)

u` bAop u´r`s b
A u´r´s “ up1q` bAop up1q´ b

A up2q, (2.24)

ur`s b
A ur´s` bAop ur´s´ “ up2qr`s b

A up2qr´s bAop up1q, (2.25)

where, for example, in the first equation (2.23) the second tensor product relates the first
component with the third, and mutatis mutandis for the other identities.

Proof. In order to prove (2.23), we apply α` b id to both sides (note that this operation
is well-defined on the considered tensor products); for the right hand side we obtain, by
definition,

pα` b idqpur`s` bAop ur`s´ b
A ur´sq “ pur`s bA 1q bA ur´s,

and for the left hand side we have
pα` b idqpu`r`s bAop u´ b

A u`r´sq “ pu`r`sp1q bA u`r`sp2qu´q b
A u`r´s

“ pu`p1qr`s bA u`p2qu´q b
A u`p1qr´s “ pur`s bA 1q bA ur´s,

using (2.17) and (2.6). Since α` is assumed to be an isomorphism, this proves (2.23).
Let us also prove (2.24); the remaining identity will be left to the reader. To this end,

apply idb αr to both sides in (2.24): for the left hand side, we obtain

pidb αrqpu` bAop u´r`s b
A u´r´sq “ u` bAop pu´r`sp1qu´r´s bA u´r`sp2qq

“ u` bAop p1bA u´q

by (2.15), and where in the second equation the first tensor product relates the first compo-
nent with the third. As for the right hand side, we compute:

pidb αrqpup1q` bAop up1q´ b
A up2qq “ up1q` bAop pup1q´p1qup2q bA up1q´p2qq

“ up1q`` bAop pup1q´up2q bA up1q`´q “ u` bAop p1bA u´q,

using (2.9) and (2.7) in the last step as follows: Eq. (2.7) yields up1q`bAopup1q´up2qbA1 “

u bAop 1 bA 1 and applying α´1
` to the first and the third component gives the required

equality. �

3. MODULES OVER LEFT OR RIGHT HOPF ALGEBROIDS

In this section we collect some general results about modules over left and right Hopf
algebroids. Some of them are known, while others seem to have passed unnoticed so far
(see Note 3.1.2 below).

3.1. Module structures on Hom-spaces and tensor products. Similarly as for bialge-
bras, the tensor product MŽ bA ŻM

1 of two left U -modules with left U -module structure
given by

upmbA m
1q :“ up1qmbA up2qm

1 (3.1)

equips the category U -Mod for a left bialgebroid U with a monoidal structure. On the
other hand, for M P U -Mod and N P Mod-U , the Ae-module HomAoppMŽ, Nđq is a
right U -module via

pfuqpmq :“ fpup1qmqup2q.

The existence of a translation map if U is, on top, a left or right Hopf algebroid makes
it possible to endow Hom-spaces and tensor products of U -modules with further natural
U -module structures. The proof of the following proposition is straightforward.

Proposition 3.1.1. Let pU,Aq be a left bialgebroid, M,M 1 P U -Mod and N,N 1 P
Mod-U be left resp. right U -modules, denoting the respective actions by juxtaposition.

(i ) Let pU,Aq be additionally a left Hopf algebroid.
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(a) The Ae-module HomAoppM,M 1q carries a left U -module structure given by

pufqpmq :“ u`
`

fpu´mq
˘

. (3.2)

In particular, M* is endowed with a left U -module structure.
(b) The Ae-module HomApN,N

1q carries a left U -module structure via

pu3 fqpnq :“
`

fpnu`q
˘

u´. (3.3)

(c) The Ae-module §N bAop MŽ carries a right U -module structure via

pnbAop mq2 u :“ nu` bAop u´m. (3.4)

(ii ) Let pU,Aq be a right Hopf algebroid instead.
(a) The Ae-module HomApM,M 1q carries a left U -module structure given by

pufqpmq :“ ur`s
`

fpur´smq
˘

. (3.5)

In particular, M* is naturally endowed with a left U -module structure.
(b) The Ae-module HomAoppN,N 1q carries a left U -module structure given by

pu3 fqpnq :“
`

fpnur`sq
˘

ur´s. (3.6)

(c) The Ae-module Nđ b
A

ŻM carries a right U -module structure given by

pnbA mq2 u :“ nur`s b
A ur´sm. (3.7)

Note 3.1.2. These structures are well-known for D-modules (that is, when U “ DX ,
see [Bo, Ka]) and were later extended to V `pLq-modules in [Ch1], [Ch3]. The results
about tensor products can be found in [KoKr], whereas (3.2) serves in [Sch1, Thm. 3.5] to
characterise a possible (left) Hopf structure on a bialgebroid.

3.2. Switching left and right modules: dualising modules. We investigate now condi-
tions which imply an equivalence between the categories of left and of right U -modules for
a left bialgebroid U which is simultaneously a left and right Hopf algebroid. As in other
frameworks, this is guaranteed by the existence of a suitable dualising module. This is the
content of the next result, which generalises the well-known equivalence of categories be-
tween left and right D-modules (due to Borel [Bo] and Kashiwara [Ka]). It also generalises
the equivalence between left and right modules over a Lie-Rinehart algebra, cf. [Ch1].

Proposition 3.2.1. Let pU,Aq be simultaneously a left and right Hopf algebroid. Assume
that there exists a right U -module P , where Pđ is finitely generated projective over Aop,
such that

(i ) the left U -module morphism

AÑ HomAoppP, P q, a ÞÑ tp ÞÑ a § pu

is an isomorphism of k-modules;
(ii ) the evaluation map

§P bAop HomAoppP,NqŽ Ñ N, pbAop φ ÞÑ φppq (3.8)

is an isomorphism for any N PMod-U .
Then

U -ModÑMod-U, M ÞÑ §P bAop MŽ

is an equivalence of categories with quasi inverse given by N 1 ÞÑ HomAoppP,N 1q.

Proof. For M P U -Mod and N,N 1 PMod-U , one checks with (2.25) that the map

MŽbAŻ HomAoppN,N 1q Ñ HomAoppN, §N
1 bAopMŽq, mbAχ ÞÑ tn ÞÑ χpnqbAopmu

is a morphism of left U -modules, where the left U -module structure on the left hand side
is given by (3.1) combined with (3.6), and on the right hand side by (3.6) combined with
(3.4). It is even an isomorphism if Nđ is finitely generated projective over A. On the other
hand, using (2.24) and (2.11), one easily sees that the evaluation (3.8) is a morphism of
right U -modules; it is then an isomorphism by hypothesis, which finishes the proof. �
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Remark 3.2.2. A right U -module P with the properties as in the above proposition ap-
peared in various contexts in the literature: we shall call it a dualising module. We refer to
[Ch1, KoKr, Hue] for applications and details, and in particular to the situation in §6.4.

4. COMODULE EQUIVALENCES AND INDUCED MAPS BETWEEN DUALS

The aim of this section is to construct a map between the left and right dual of a left Hopf
algebroid, which in some sense replaces the missing antipode on either of the duals. This
can be essentially done in two ways, either by a quite straightforward generalisation of the
antipode construction on the dual of a cocommutative left Hopf algebroid as in [KoP], or
by considering Phùng’s comodule equivalence in [Phù] as a starting point, as suggested by
the referee of the present paper. To pursue the latter approach, we will review and slightly
extend the results in op. cit.

4.1. A categorical equivalence for comodules. The following theorem, originally due to
[Phù], shows that under the given conditions every right U -comodule can be transformed
into a left one (resp. vice versa in the second case). We repeat it here for future use and
also slightly extend it by saying that the two given functors are quasi-inverse to each other
and that they are (strict) monoidal:

Theorem 4.1.1. Let pU,Aq be a left bialgebroid.
(i ) Let pU,Aq be additionally a left Hopf algebroid such that UŽ is projective. Then

there exists a (strict) monoidal functor F : Comod-U Ñ U -Comod; namely, if
M is a right U -comodule with coaction m ÞÑ mp0q bA mp1q, then

λM : M Ñ UŽ bA M, m ÞÑ mp1q´ bA mp0qεpmp1q`q, (4.1)

defines a left comodule structure on M over U .
(ii ) Let pU,Aq be a right Hopf algebroid such that ŻU is projective. Then there exists

a (strict) monoidal functor G : U -Comod Ñ Comod-U ; namely, if N is a left
U -comodule with coaction n ÞÑ np´1q bA np0q, then

ρN : N Ñ N bA ŻU , n ÞÑ εpnp´1qr`sqnp0q bA np´1qr´s, (4.2)

defines a right comodule structure on N over U .
(iii ) If U is both a left and right Hopf algebroid and if both UŽ and ŻU are A-projective,

then the functors mentioned in (i) and (ii) are quasi-inverse to each other and we
have an equivalence

U -Comod » Comod-U

of monoidal categories.

Proof. Let us first prove that (4.1) is well defined. For any right U -comodule M with
coaction ρ : M Ñ M bA U , there is a well-defined map idM bA ε : M bA U Ñ M . Its
restriction to the Takeuchi productM ˆAU is a leftA-module map as shows the following
equation: for any

ř

imi b ui PM ˆA U and any a P A, one has
ÿ

i

miεpa § uiq “
ÿ

i

miεpui đ aq “
ÿ

i

amiεpuiq.

Thus, there is a well-defined map

idM ˆA ε : M ˆA U ÑM,
ÿ

i

mi b ui ÞÑ
ÿ

i

miεpuiq,

and hence, in particular, the map

φ :“ pidM ˆA εq bAop idU : pM ˆA Uq ˆAop U ÑM ˆAop U (4.3)

is well-defined, too.
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On the other hand, any right coaction corestricts to a map M ÑM ˆAU ; similarly, the
translation map β´1pu bA 1q “ u` bAop u´ of U corestricts to a map U Ñ U ˆAop U .
Combining these two maps gives a map

ψ : M ÑM ˆA pU ˆAop Uq, (4.4)

and it is clear that if we could combine φ in (4.3) with ψ in (4.4) followed by a tensor flip,
this would yield the map (4.1).

Now the problem is that usually pMˆAUqˆAop U andMˆA pUˆAop Uq are different,
hence the two maps might not be composable. Let us introduce as in [T, Def. 1.4] the triple
Takeuchi product

M ˆA U ˆAop U :“ t
ř

imi b ui b vi PM bA U bAop U |
ř

i ami b ui Ž bb vi “
ř

imi b ui đ ab b § vi, @ a, b P Au.

It can be seen that ψ actually maps to M ˆA U ˆAop U but it is a priori not clear whether
φ can be directly defined on M ˆA U ˆAop U so as to make the two maps composable.

However, in any case there are always maps

γ : M ˆA pU ˆAop Uq ÑM ˆA U ˆAop U, mbA ubAop v ÞÑ mbA ubAop v

and

α : pM ˆA Uq ˆAop U ÑM ˆA U ˆAop U, mbA ubAop v ÞÑ mbA ubAop v.

If now UŽ is projective, α is an isomorphism [T, Prop. 1.7]; then the composition τ ˝
φ ˝α´1 ˝ γ ˝ψ of well-defined maps (where τ is the tensor flip) yields a well-defined map
again, and on an element m PM it is an easy check that this gives the map λM in (4.1).

That the so-defined map λM is Ae-linear follows from the Ae-linearity of the right
coaction along with (2.13). That λM indeed defines a left U -coaction is an easy check
using (2.9) and (2.8), the counitality of the bialgebroid U , and the coassociativity with the
Ae-linearity of the right U -coaction on M again: we have for m PM

p∆` b idqλMpmq “ mp1q´p1q bA mp1q´p2q bA mp0qεpmp1q`q

“ mp1q´ bA mp1q`´ bA mp0qεpmp1q``q

“ mp1q´ bA

`

t`εpmp1q`p2qqmp1q`p1q
˘

´
bA mp0qε

``

t`εpmp1q`p2qqmp1q`p1q
˘

`

˘

“ mp2q´ bA

`

t`εpmp2q`qmp1q
˘

´
bA mp0qε

``

t`εpmp2q`qmp1q
˘

`

˘

“ pidb λMqλMpmq.

The counitality of λM follows from (2.3) along with the second equation in (2.1).
As for the claim that the so-given functor F : Comod-U Ñ U -Comod is (strict)

monoidal, observe first that for any twoM,M 1 in the monoidal category Comod-U , their
tensor product M bA M 1 is a right U -comodule by means of the codiagonal coaction
mbA m

1 ÞÑ pmp0q bA m
1
p0qq bA m

1
p1qmp1q, that is, with a flip in the factors in U . On the

other hand, the tensor product of twoN,N 1 in the monoidal category U -Comod becomes
a left U -comodule again via nbA n

1 ÞÑ np´1qn
1
p´1qbA pnp0qbA n

1
p0qq. By the bialgebroid

properties, (2.10), and (2.3) it is then simple to see that

pm1p1qmp1qq´ bA pmp0q bA m
1
p0qqε

`

pm1p1qmp1qq`
˘

“ mp1q´m
1
p1q´ bA

`

mp0q bA m
1
p0qε

`

m1p1q`s
`pεpmp1q`qq

˘˘

“ mp1q´m
1
p1q´ bA

`

mp0qεpmp1q`q bA m
1
p0qεpm

1
p1q`q

˘

,

that is, F pM bA M
1q “ F pMq bA F pM

1q. Also, the unit object in both Comod-U and
U -Comod is given by A with coaction a ÞÑ t`paq resp. a ÞÑ s`paq, and F pAq “ A
now follows from (2.13). Moreover, note that F does not affect the underlying Ae-module
structures of the comodules in question, and hence its (strict) monoidality follows.
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The proof of (ii) is similar, and the last claim follows by the preceding two combined
with a direct computation: applying GF to a right comodule M P Comod-U , the result-
ing right coaction on M reads

M ÑM bA ŻU , m ÞÑ εpmp1q´r`sqmp0qεpmp1q`q bA mp1q´r´s.

By using (2.24), the coassociativity and counitality of the original right coaction on M ,
(2.3), (2.1), and (2.12) one obtains
εpmp1q´r`sqmp0qεpmp1q`q bA mp1q´r´s “ εpmp1q´qmp0qεpmp1q`q bA mp2q

“ mp0qεpεpmp1q´q §mp1q`q bA mp2q

“ mp0qεpmp1qq bA mp2q “ mp0q bA mp1q,

that is, the right coaction on M we started with. An analogous consideration holds for FG
using (2.25), (2.21), and the Takeuchi property that holds for left U -comodules analogous
to (2.3). �

Remark 4.1.2. Note that the equivalence in Theorem 4.1.1 does not boil down to the usual
equivalence of left and right comodules via the antipode (as there is no antipode for left
or right Hopf algebroids, not even if the bialgebroid is simultaneously both). Even if we
dealt with a full Hopf algebroid, this is still a different kind of equivalence (compared to
the construction in [B, Remark 4.6]), as follows from the considerations in §5.2 and §6.2
below. For example, if the left Hopf algebroid U is considered a right comodule over itself
via the coproduct, the left U -coaction on U from (4.1) is given by

U Ñ UŽ bA §U , u ÞÑ u´ bA u`,

that is, the “flipped” translation map. On the other hand, for Hopf algebras the construction
in Theorem 4.1.1 is exactly the equivalence induced by the antipode.

4.2. Constructing maps between the duals. We now want to construct a map between
the right and the left dual of a left Hopf algebroid. To this end, we first need to recall
from [Ko, Theorem 3.1.11] the following bialgebroid generalisation of the classical bial-
gebra module-comodule correspondence, which, however, in its first part comes somewhat
unexpected at first sight:

Proposition 4.2.1. Let pU,Aq be a left bialgebroid.
(i ) There exists a functor Comod-U Ñ Mod-U*; namely, if M is a right U -

comodule with coaction m ÞÑ mp0q bA mp1q, then

M bk U* ÑM, mbk ψ ÞÑ mp0qψpmp1qq, (4.5)

defines a right module structure over the Ae-ring U*. If ŻU is finitely gener-
ated A-projective (so that U* is a right bialgebroid), this functor is monoidal and
has a quasi-inverse Mod-U* Ñ Comod-U such that there is an equivalence
Comod-U »Mod-U* of categories.

(ii ) Likewise, there exists a functor U -Comod Ñ Mod-U*; namely, if N is a left
U -comodule with coaction n ÞÑ np´1q bA np0q, then

N bk U* Ñ N, nbk φ ÞÑ φpnp´1qqnp0q, (4.6)

defines a right module structure over the Ae-ring U*. If UŽ is finitely gener-
ated A-projective (so that U* is a right bialgebroid), this functor is monoidal and
has a quasi-inverse Mod-U* Ñ U -Comod such that there is an equivalence
U -Comod »Mod-U* of categories.

The case piiq of the above Proposition 4.2.1 can also be found in [Sch1, §5]. An
explicit proof and a description of all involved functors is given in [Ko, §3.1], along
with the respective structure maps of the right bialgebroids pU*, A, s

r
*, t

r
*,∆

r
*, B*q and

pU*, A, s*
r, t*r,∆*

r, B*q, in case the respective mentioned finiteness assumptions are met.
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Observe that when pU,Aq is both a left and a right Hopf algebroid and both UŽ as well
as ŻU are finitely generated projective over A, then (4.8) here below is a commutative
diagram of monoidal equivalences.

We shall also need an explicit expression of the induced coaction on M PMod-U* in
case ŻU is finitely generated projective as in (i): let m bk ψ ÞÑ mψ denote the right U*-
action on M and teiu1ďiďn P U, te

iu1ďiďn P U* a dual basis (see, for example, [AnFu,
p. 202] for the notion of dual basis of a finitely generated projective module). Then the
resulting right U -coaction on M can be expressed as

m ÞÑ
ÿ

i

mei bA ei, (4.7)

see [Ko, Eq. (3.1.23)]. Consider now the diagram

Comod-U //

��

Mod-U*

��
U -Comod //Mod-U*

(4.8)

of categories, where the left vertical arrow is that from Theorem 4.1.1 (i). Under the finite-
ness assumption for ŻU , the upper horizontal arrow is invertible. One therefore obtains
a functor that corresponds to the dotted arrow if UŽ is A-projective and ŻU is finitely
generated A-projective. Explicitly, by using (4.7), (4.1), and (4.6) one obtains on a right
U*-module M with U*-action mbk ψ ÞÑ mψ the following right U*-action:

M bk U* ÑM, m ÞÑ m � φ :“ φpei´qme
iεpei`q “ meiε

`

ei`s
`pφpei´qq

˘

, (4.9)

where the second expression follows by taking the Takeuchi property (2.3) of the right
coaction (4.7) into account, along with (2.13).

Consider now the case M “ U* as right module over itself by right multiplication; then
as in (4.9) it also carries a right U*-action, which is equivariant with respect to the regular
left U*-action, that is

pψ1ψ2q � φ “ ψ1pψ2 � φq. (4.10)

In particular, this implies ψ � φ “ ψp1U* � φq, which leads us to consider

S*φ :“ 1U* � φ “ ε � φ. (4.11)

With (4.9), we see that S*φ “ ε � φ “ eisr*

`

ε
`

ei`s
`pφpei´qq

˘˘

. Hence, for any u P U ,

S*φpuq “ xε � φ, uy “
@

eisr*

`

ε
`

ei`s
`pxφ, ei´yq

˘˘

, u
D

“ xei, uyxε, ei`s
`pxφ, ei´yqy “ xε, s

`pxei, uyqei`t
`pxφ, ei´yqy,

(4.12)

where we used [Ko, Eq. (3.1.3)] in the third step and (2.1) in the fourth. Inserting now into
(4.12) the identity

u` bAop u´ “ s`pxei, uyqei` bAop ei´,

which is seen by applying the bijective Hopf-Galois map α` from (2.4) to both sides (as
we assumed U to be a left Hopf algebroid), one further obtains

S*φpuq “ xε, s`pxei, uyqei`t
`pxφ, ei´yq “ ε

`

u`t
`pφpu´qq

˘

. (4.13)

As will be discussed at length in the next section, this yields a map S* : U* Ñ U* (as is
seen using (2.13) and (2.1)) of Ae-rings that even makes sense without any projectiveness
or finiteness assumptions.

By means of (4.5) and (4.13), the action (4.9) can then be written as

m � φ :“ mS*pφq, (4.14)

which, without assuming any finiteness conditions on U , still leads to a functor
Mod-U* ÑMod-U* between the categories of modules over Ae-rings.
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If instead U is a right Hopf algebroid, where UŽ is finitely generated A-projective and
ŻU is A-projective, one obtains by analogous steps a map S* : U* Ñ U* given by

S*ψpuq “ ε
`

ur`ss
`pψpur´sqq

˘

for any u P U , to which analogous comments apply as above.
We will discuss the properties of these maps in detail in the subsequent §5

5. LINKING STRUCTURE FOR THE DUALS OF LEFT HOPF ALGEBROIDS

In this section — the core of the present work —, we find that the map S* constructed in
the previous section is linking the right dual to the left dual of a left Hopf algebroid, which
is apparently as close as one can get to an explicit formula of an antipode kind-of structure
on the dual. Note, however, that even in the case of a full Hopf algebroid this map is not
simply the transpose of the antipode, as discussed in §5.2. In some sense, this special map
amounts to sort of a generalisation of (the antipode in) a full Hopf algebroid as explained
in Remark 5.2.5.

As mentioned before, the definition of the map S* (and S*) actually makes sense even
without any finiteness or projectiveness assumptions. Indeed, one can trace their first ap-
pearance already in [KoP] in the rôle of the antipode in the example of the bialgebroid of
jet spaces.

In what follows, we will prove the fact that S* and S* are morphisms of Ae-rings in a
direct way, whereas the fact that under suitable finiteness assumptions they are bialgebroid
morphisms is shown by using the comodule equivalence discussed in the previous section
(note, however, that even the latter can be achieved by direct computation).

In particular, since the finiteness assumptions are not needed for all properties stated
below, we will be able to apply S* and S* in greater generality to the examples in §6.

5.1. Morphisms between left and right duals. Let pU,Aq be a left bialgebroid. If it
is additionally a left Hopf algebroid, its right dual U* (see §2.2) carries a left U -module
structure as in (3.2); (re-)define

S*pφqpuq :“ puφqp1Uq “ εU
`

u`t
`pφpu´qq

˘

, @φ P U*, u P U. (5.1)

Likewise, if the left bialgebroid pU,Aq is a right Hopf algebroid instead, its left dual U*
(see §2.2 again) carries a left U -module structure as in (3.5), with the help of which one
(re-)defines

S*pψqpuq :“ puψqp1Uq “ εU
`

ur`ss
`pψpur´sqq

˘

, @ψ P U*, u P U. (5.2)

The following result presents the key properties of the maps S* and S*:

Theorem 5.1.1. Let pU,Aq be a left bialgebroid.
(i ) If pU,Aq is moreover a left Hopf algebroid, (5.1) defines a morphism S* : U* Ñ U*

of Ae-rings with augmentation (the “counit”); if in addition both ŻU and UŽ are
finitely generated projective as A-modules, then pS*, idAq is a morphism of right
bialgebroids. In any case, S* is also a morphism of left U -modules for the action
(3.3) on U* and the left action on U* given by right multiplication in U .

(ii ) If pU,Aq is a right Hopf algebroid instead, (5.2) defines a morphism S* : U* Ñ U*

of Ae-rings with augmentation (the “counit”); if in addition both ŻU and UŽ are
finitely generated projective as A-modules, then pS*, idAq is a morphism of right
bialgebroids. In any case, S* is also a morphism of left U -modules for the action
(3.6) on U* and the left action on U* given by right multiplication in U .

Proof. We only prove part (i) as (ii) follows mutatis mutandis. For the explicit computa-
tions, we will again use the notation and description of the structure maps of the two right
bialgebroids pU*, A, s

r
*, t

r
*,∆

r
*, B*q and pU*, A, s*

r, t*r,∆*
r, B*q— where the coproduct ∆r

*
or ∆*

r only make sense if UŽ resp. ŻU is finitely generated A-projective — as given in
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detail in [Ko, §3.1], together with the respective properties of left and right pairings x., .y
as in Definition 2.2.1. Direct verification shows that S* takes values in U*. Besides, for S*

to be a bialgebroid morphism, we need to show the following properties:

(a) S*s*
r “ sr*, S*t*r “ tr*, B*S* “ B*,

(b) S*
`

φφ1
˘

“ S*pφqS*pφ1q

(c) ∆r
*S

* “ pS* b S*q∆*
r,

(where, as said before, (c) only makes sense if UŽ and ŻU are finitely generated A-
projective).

As for (a), we find for u P U , a P A by direct computation using (2.12) and (2.13):

S*
`

s*
rpaq

˘

puq “ ε
`

u`t
`
`

s*
rpaqpu´q

˘˘

“ ε
`

u`t
`
`

εpu´s
`paqq

˘˘

“ εpuqa “ sr*paqpuq.

Likewise, the second identity follows from

S*
`

t*rpaq
˘

puq “ ε
`

u`t
`
`

t*rpaqpu´q
˘˘

“ ε
`

u`t
`paεpu´qq

˘

“ εput`paqq “ tr*paqpuq.

The last identity in (a) regarding the respective counits is for φ P U* proven by the line

B*S*pφq “ S*pφqp1Uq “ φp1Uq “ B*φ.

As for (b), let us first more generally compute an element S*pφqψ for φ P U* and ψ P U*:
by [Ko, Eq. (3.1.1)], Eq. (2.8), and the properties of a bialgebroid counit, we have

xS*pφqψ, uy “ xψ, t`pxup2q, S*pφqyqup1qy “ xψ, t
`pxε, up2q`t

`pxφ, up2q´yqyqup1qy

“ xψ, t`pxε, u`p2qt
`pxφ, u´yqyqu`p1qy

“ xψ, t`pxε, u`p2qs
`pxφ, u´yqyqu`p1qy

“ xψ, t`pxε, u`p2qyqu`p1qt
`pxφ, u´yqy “ xψ, u`t

`pxφ, u´yqy.

With the help of this property, by [Ko, Eq. (3.1.2)] along with (2.9), (2.13), and the fact
that the counit in U gives the unit in U*, one sees that for all φ, φ1 P U*

xS*pφφ1q, uy “ xε, u`t
`pxφφ1, u´yqy “ xε, u`t

`pxφ1, s`φpu´p1qqu´p2qyqy

“ xε, u``t
`pxφ1, s`φpu´qu`´yqy

“ xε, pu`t
`φpu´qq`t

`pxφ1, pu`t
`φpu´qq´yqy

“ xS*pφ1qε, u`t
`φpu´qy “ xS*pφqS*pφ1q, uy.

Observe that if ŻU is finitely generatedA-projective, then (b) follows by the fact that (4.14)
defines an action, but in general we do not want to assume this at this point.

For proving (c) — when UŽ and ŻU are finitely generated A-projective —, one could
equally do this by a straightforward somewhat technical computation. A quicker way is to
use the results in §4: denoting the right coproduct on U* resp. U* by Sweedler superscripts,
one has

S*pφqp1q bA S*pφqp2q “ pεbA εqS*pφq “ pεbA εq � φ

“ pε � φp1qq bA pε � φp2qq “ S*pφp1qq bA S*pφp2qq,

where in the first equation we used the monoidal structure on Mod-U*, and in the third
the fact that all functors in (4.8) are strict monoidal.

The second part in (i) — about the U -linearity of S* —, which is straightforward, is left
to the reader. �

Remark 5.1.2. When U is just a Hopf algebra overA “ k with antipode S, we have U* “
pU*q

op
coop, and S* is nothing but the transpose of S. If U* itself is in turn a Hopf algebra —

namely, if the transpose of the multiplication mU in U takes values in the tensor square of
U* —, then S* is just the antipode of this dual Hopf algebra U*. In this context, Theorem
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5.1.1 simply expresses the fact that the antipode in a Hopf algebra is an antimorphism of
algebras and of coalgebras.

In particular, in case U is both a left and right Hopf algebroid we have:

Theorem 5.1.3. Let pU,Aq be simultaneously a left and a right Hopf algebroid. Then the
maps S* and S* are inverse to each other. Hence, if both A-modules ŻU and UŽ are, in
addition, finitely generated projective, pS*, idAq and pS*, idAq are isomorphisms of right
bialgebroids which are inverse to each other.

Proof. As for the first statement, we directly compute by means of the bialgebroid axioms
along with (2.25) and (2.20), for any φ P U*:

pS*S*φqpuq “ ε
`

ur`ss
`pS*φpur´sqq

˘

“ ε
`

ur`ss
`
`

εU pur´s`t
`φpur´s´qq

˘˘

“ ε
`

ur`sur´s`t
`φpur´s´q

˘

“ ε
`

up2qr`sup2qr´st
`φpup1qq

˘

“ φpup1qqεpup2qq “ φpuq,

which proves that S* ˝ S* “ id
U* . Likewise, one shows that S* ˝ S* “ idU* . �

5.2. The case of a full Hopf algebroid. If H is a full Hopf algebroid with bijective an-
tipode S in the sense of [BSz], then it is, in particular, both a left and right bialgebroid (see
the short summary below): therefore — still assuming that ŻH and HŽ are both finitely
generated projective as A-modules —, there is a right bialgebroid analogue to the previous
constructions concerning the maps S* and S*. On the other hand, the antipode S induces
by transposition new maps St, tS, etc., for the dual spaces. Hereafter we discuss links
between these various maps, in particular showing that, while for the Hopf algebra case
one has identities like S* “ tS (cf. Remark 5.1.2), this is no longer the case for the general
setup of full Hopf algebroids as illustrated in §6.2 below.

5.2.1. Reminder on full Hopf algebroids. Recall that a full Hopf algebroid structure (see,
for example, [B]) on a k-module H consists of the following data:

(i ) a left bialgebroid structure H` :“ pH,A, s`, t`,∆`, εq over a k-algebra A;
(ii ) a right bialgebroid structure Hr :“ pH,B, sr, tr,∆r, Bq over a k-algebra B;

(iii ) the assumption that the k-algebra structures for H in (i) and in (ii) be the same;
(iv ) a k-module map S : H Ñ H;
(v ) some compatibility relations between the previously listed data for which we refer

to op. cit.
We shall denote by lower Sweedler indices the left coproduct ∆` and by upper indices the
right coproduct ∆r, that is, ∆`phq “: hp1q bA hp2q and ∆rphq “: hp1q bB h

p2q for any
h P H . As said before, a full Hopf algebroid (with bijective antipode) is both a left and
right Hopf algebroid but not necessarily vice versa (as illustrated in §6.2). In this case, the
translation maps in (2.4) are given by

h` bAop h´ “ hp1q bAop Sphp2qq and hr`s bBop hr´s “ hp2q bBop S´1php1qq, (5.3)

formally similar as for Hopf algebras.

The following lemma [B, BSz] will be needed to prove the main result in this subsection.

Lemma 5.2.2. Let H be any Hopf algebroid. Then
(i ) the maps ν :“ Bs` : A Ñ Bop and µ :“ εsr : B Ñ Aop are isomorphisms of

k-algebras;
(ii ) the pair of maps pS, νq : H` Ñ pHrq

op
coop gives an isomorphism of left bialgebroids;

(iii ) the pair of maps pS, µq : Hr Ñ pH`q
op

coop gives an isomorphism of right bialge-
broids.

The next observation might let us consider S* and S* as sort of an analogue of the
antipode on the dual:
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Proposition 5.2.3. Let pU,Aq be a cocommutative left bialgebroid (in particular, A is
commutative and s` “ t`). Then pU,Aq is a left Hopf algebroid if and only if it is a right
Hopf algebroid; in this case, assuming in addition that ŻU and UŽ are finitely generated
A-projective, pU*, Aq “ ppU*qcoop, Aq is a full Hopf algebroid with involutive antipode
S :“ S* “ S*.

Proof. The first claim directly holds true by the very definitions. The rest of the proof
follows verbatim in the footsteps of the one of Theorem 3.17 in [KoP], which considers
the special case for U “ V `pLq. �

As mentioned before, one can also link the duals of a Hopf algebroid pH,Sq by trans-
posed maps tS, which usually do not coincide with S* or S* (see also §6.2). The next
result explains a relation between them.

Theorem 5.2.4. Let H be a Hopf algebroid such that ŻH and HŽ are finitely generated
A-projective. Then the diagram

`

pHrq
op
coop

˘* tS //

S*
r

��

pH`q*

S*
`

��
`

pHrq
op
coop

˘

* tS

// pH`q*

of right bialgebroid morphisms is commutative.

Proof. Let us identify Bop and A by means of the k-algebra isomorphism ν : A Ñ Bop

mentioned above; then the left algebroid pHrq
op
coop is described by the sextuple

`

pHrq
op
, ps` :“ srν, pt` :“ trν,∆coop

r ,pε :“ ν´1B
˘

.

Moreover, the Hopf algebroid
`

pHrq
op
coop, pH

`q
op

coop, pS, µq : pHrq
op
coop Ñ H`

˘

is the one
we have to consider to compute S*

r . For φ P
`

pHrq
op
coop

˘

*
and h P H we have

xptS ˝ S*
r qpφq, hy “ pε

`

Sphqp2q
pt`
`

xφ, SpSphqp1qqy
˘

“
`

ν´1BS
˘`

hp1qt`
`

xφ, S2php2qqy
˘

“ ε
`

hp1qt`
`

xφ, S2php2qqy
˘˘

“ ε
`

hp1qt`
`

xtSpφq, Sphp2qqy
˘˘

“ xpS*
` ˝

tSqpφq, hy,

where we used the explicit form (5.3) of the translation map and the fact that S is an anti-
coring morphism between left and right coproduct, which proves tS ˝ S*

r “ S*
` ˝

tS as
claimed. �

Remark 5.2.5. In general, both maps S* or S* can be thought of as an extension of the
notion of antipode for a full Hopf algebroid, in the following sense. As mentioned in
Lemma 5.2.2, the antipode in a full Hopf algebroid H yields a bialgebroid morphism
S : H` Ñ pHrq

op
coop. On the other hand, if U is a left Hopf algebroid, for which ŻU

and UŽ are finitely generated projective as A-modules, then we have a similar situation
replacing pH`, Hr, Sq with the triple ppU*qop, pU*qcoop, S*q, and one might be tempted
to define a Hopf algebroid as a triple pU, V, Sq of a left resp. right bialgebroid U resp. V ,
where the underlying ring structure is not the same: this way, the apparent asymmetry of a
Hopf algebroid consisting of two coring structures but only one ring structure (that makes
it difficult to obtain self-duality) would be somewhat attenuated. On the other hand, in
case a left Hopf algebroid is simultaneously a right Hopf algebroid, by Theorem 5.1.3 both
duals are isomorphic and hence can be seen (under the stated finiteness conditions) as its
dual (right) bialgebroid, which carries a Hopf structure by the results in [Sch2].
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6. EXAMPLES AND APPLICATIONS

In this section we present some further developments and some applications to specific
examples.

6.1. Mixed distributive law between duals. A direct application of the existence of the
bialgebroid morphism S* (or S*) is to the setup of distributive laws. Indeed, a particular
kind of mixed distributive law (or entwining) in the sense of Beck [Be] can be constructed
via the following recipe. Combining a morphism pφ1, φ0q : pV,Bq Ñ pV 1, B1q of right
(say) bialgebroids with a Hopf-Galois map yields

χ : V 1đ b
B

ŻV Ñ Vđ bB §V
1 , v1 bB v ÞÑ vp1q bB v

1φpvp2qq,

which can be easily seen to define a mixed distributive law between V 1 (thought of as a
coalgebra) and V (thought of as an algebra, although its coproduct appears in χ). Applying
this to the two duals of a left bialgebroid U along with S*, one obtains

χ : U*đ b
A

ŻU* Ñ U*
đ bA §U* , ψ bA φ ÞÑ φp1q bA ψS*pφp2qq

as a mixed distributive law between U* and U*, to which any standard construction based
on mixed distributive laws can be applied.

6.2. Lie-Rinehart algebras and their jet spaces. Let pA,Lq be a Lie-Rinehart algebra
(cf. [Ri], geometrically a Lie algebroid). Then its (left) universal enveloping algebra V `pLq
carries not only the structure of a left bialgebroid over the commutative algebra A (see
[Xu]) but also of a left Hopf algebroid [KoKr]: on generators a P A and X P L, its
translation map is given by

a` bAop a´ “ abAop 1, X` bAop X´ “ X bAop 1´ 1bAop X. (6.1)

Moreover, as V `pLq is cocommutative, it is also a right Hopf algebroid.
Full Hopf algebroid structures on V `pLq are in bijection with right V `pLq-module

structures on A which play the rôle of possible right counits, expressed by suitable maps
B : V `pLq Ñ A (cf. [Ko, §4.2] or [KoP] for more information). The corresponding an-
tipode S : V `pLq Ñ V `pLqop

coop is then uniquely determined by the prescriptions

Spaq “ a, SpXq “ ´X ` BpXq, @a P A, @X P L, (6.2)

on generators. For a general Lie-Rinehart algebra (which does not arise from a Lie alge-
broid), such a map B and hence the antipode might or might not exist.

Let us consider the (right) jet spaces JrpLq :“ V `pLq* and rJpLq :“ V `pLq*. If L is
finitely generated projective as an A-module, then JrpLq and rJpLq are right bialgebroids
in a suitable topological sense, as their coproduct takes values in a topological tensor
product; concerning this, we quickly recall some non-trivial key facts, referring to [KoP,
CaVdB] for further details.

First, V `pLq is the direct limit of an increasing bialgebroid filtration (i.e., the strict ana-
logue of a bialgebra filtration) of finitely generated projective modules V `pLqn; it follows
that JrpLq in turn is the inverse limit of all the JrpLqn :“ pV `pLqnq*, which are finitely
generated projective as well. Similar remarks apply to rJpLq. As V `pLqp ¨ V

`pLqq Ď
V `pLqp`q (for all p, q P N), the recipe used to define the coproduct in U* when U is a
left bialgebroid such that UŽ is finitely generated A-projective (see §2.2.2) can be applied
again and yields maps

JrpLqn “ pV
`pLqnq*

∆Jr

n
ÝÝÑ

ř

p`q“n
pV `pLqpq*đ bA §pV

`pLqqq*“
ř

p`q“n
JrpLqpđ bA §J

rpLqq

whose inverse limit ∆Jr

:“ lim
ÐÝ

∆Jr

n is the coproduct of JrpLq. Similarly, one constructs

“coproduct-like maps” ∆
rJ
n for the rJpLqn :“ pV `pLqnq* and then takes their inverse limit

∆
rJ :“ lim

ÐÝ
∆

rJ
n as a coproduct for rJpLq.
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Now, because of the very definition of the V `pLqn and of the explicit form (6.1) of the
translation map of V `pLq, one easily finds that the translation map itself (much like the
coproduct) maps every V `pLqn into

ř

p`q“n V
`pLqp bAop V `pLqq . Then formula (5.1)

makes sense again, and thus can be used to produce a well-defined map

S*
n : JrpLqn “ pV

`pLqnq* ÝÝÝÑ
`

V `pLqn
˘

*
“ rJpLqn.

Moreover, the arguments used in the proof of Theorem 5.1.1 to show that S* preserves the
coproduct apply again in the present situation, and yield a commutative diagram

JrpLqn

S*
n

��

∆Jr

n // ř

p`q“n
JrpLqp đ bA §J

rpLqq

ř

p`q“n

S*
pbS*

q

��
rJpLqn

∆
rJ
n

// ř

p`q“n

rJpLqp đ bA §
rJpLqq

(6.3)

Taking the inverse limit of all these S*
n we get a well-defined (continuous) map

S* : JrpLq “ V `pLq* ÝÝÝÑ V `pLq* “
rJpLq.

It follows by construction that this map necessarily coincides with the same name map
in §5.1, hence it respects all Ae-ring structure maps of JrpLq and rJpLq as well as their
counits; from (6.3) follows that this map also respects the coproduct on both sides. All
in all, this means that S* is a morphism of (topological) bialgebroids. As V `pLq is also a
right Hopf algebroid, §5.1 also provides a map S* : rJpLq Ñ JrpLq, which again turns
out to be a morphism of (topological) bialgebroids, inverse to S*. The outcome is that

Theorem 5.1.1 holds true (in full strength) for U “ V `pLq

(replacing the formulation “morphism of right bialgebroids” by “morphism of topological
right bialgebroids”), although the left bialgebroid V `pLq does not comply with the finite-
ness assumptions required (in general) for that result.

Finally, note that both JrpLq and rJpLq are commutative (because V `pLq is cocommu-
tative), so they are also left bialgebroids. Identifying JrpLq as the coopposite of rJpLq
and with the cocommutativity of V `pLq, one finds that S* and S* are equal and yield an
antipode for JrpLq, which in this way becomes a full Hopf algebroid. In other words,
Proposition 5.2.3 holds true for U “ V `pLq and U* “ JrpLq “ rJpLqcoop “ pU*qcoop,
although V `pLq is not finitely generated projective.

6.2.1. Difference between S˚ and tS. In this specific example, one can explicitly observe
the difference between S* and the transpose of the antipode S on V `pLq in (6.2). Apart
from the fact mentioned above that S* always exists while tS does not, this is already clear
on an abstract level since these are maps of different nature as pointed out in Theorem
5.2.4. Nevertheless, one directly sees here that with respect to the A-module structures
coming from left and right multiplication in V `pLq, the map S*pφq is leftA-linear whereas
tSpφq is A-linear from the right, for φ P V `pLq*. Evaluating both maps on an element in
L Ă V `pLq, one obtains

tSpφqpXq “ ´φpXq ` BpXqφp1q @φ P V `pLq*, X P L,

on one hand, and on the other hand

S*pφqpXq “ ´φpXq `Xpφp1qq @φ P V `pLq*, X P L,

where L Ñ DerpA,Aq, X ÞÑ ta ÞÑ Xpaqu denotes the anchor of the Lie-Rinehart
algebra pA,Lq. Using the property Xa ´ aX “ Xpaq with respect to the product in
V `pLq as well as the right A-linearity of B, one obtains BpaXq “ BpXqa ´ Xpaq and
therefore tSpφqpXq ´ S*pφqpXq “ Bpφp1qXq, which in general does not vanish.
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6.3. Examples from quantisation. In this section, we adapt our main constructions and
results to a different setup, that of quantisations of universal enveloping algebras (of Lie-
Rinehart algebras) and other associated objects. In particular, this means that we deal with
yet another kind of topological bialgebroids, so that we have to clarify the nature of these
objects and how the analysis and results of the preceding sections fits into this modified
context. Hereafter, k is assumed to be a field.

Definition 6.3.1. Let
`

U,A, s`, t`,m,∆, ε
˘

be a left (resp. right) bialgebroid. A quan-
tisation of U (or quantum bialgebroid) is a topological left (resp. right) bialgebroid
`

Uh, Ah, s
`
h, t

`
h,mh,∆h, εh

˘

over a topological krrhss-algebra Ah such that:
(i ) Ah is isomorphic to Arrhss as a topological krrhss-module, and this isomorphism

induces an algebra isomorphism Ah

L

hAh – Arrhss
L

hArrhss – A;
(ii ) Uh is isomorphic to U rrhss as a topological krrhss-module;

(iii ) Uh

L

hUh – U rrhss
L

hU rrhss is isomorphic to U as a left A-bialgebroid via the
isomorphism Ah

L

hAh – Arrhss
L

hArrhss – A mentioned in (i);
(iv ) the coproduct ∆h of Uh takes values in UhpˆAh

Uh, where

UhpˆAh
Uh :“

 
ř

iui b u
1
i P UhŽ

pbAhŻUh |
ř

ipa § uiq b u
1
i “

ř

iui b pu
1
i đ aq

(

is the Takeuchi-Sweedler product, and where UhŽ
pbAhŻUh denotes the completion

of UhŽbAhŻUh with respect to the h-adic topology.
In this setting, we shall say that Uh is a quantisation, or quantum deformation, of U .

Remark 6.3.2.
(a) The notions of quantum left or right Hopf algebroid are defined replacing the ordi-

nary tensor product by a suitable completion, just as for JrpLq above.
(b) When dealing with krrhss-modules, any morphism (i.e., krrhss-linear map) is auto-

matically continuous for the h-adic topology on the source and target krrhss-module; we
shall tacitly use this fact with no further mention. In particular, for a quantum bialgebroid
Uh both its (full linear) duals pUhq* and pUhq* are also topological duals.

(c) For a left bialgebroid U with a quantisation Uh, assume that U is also a left Hopf
algebroid. Then Uh is automatically a left Hopf algebroid (in a topological sense) as well
by a standard argument in deformation theory. By assumption, we have Uh – U rrhss as
modules over Ah – Arrhss; from this isomorphism one deduces similar isomorphisms
for modules of homomorphisms or tensor products of modules. Moreover — because
Uh

M

hUh – U as bialgebroids —, all bialgebroid structure maps of Uh taken modulo h
reduce to the same name structure maps of U . Now, for the (topological) left bialgebroid
Uh we have a well-defined Hopf-Galois map

pα`qh : §Uh pbA
op
h
UhŽ Ñ UhŽ

pbAh ŻUh , u pbAop
h
v ÞÑ up1q pbAh

up2qv,

which belongs to Homkrrhss

`

§Uh pbA
op
h
UhŽ, UhŽ

pbAhŻUh

˘

: as mentioned above, this
module is isomorphic to Homk

`

§U bAop UŽ, UŽ bA ŻU
˘

rrhss, so that pα`qh expands
as pα`qh “

ř

nPN anh
n for some an P Homk

`

§U bAop UŽ, UŽ bA ŻU
˘

. In addi-
tion, as all structure maps of Uh modulo h are just those of U , one has α` “ pα`qh

mod h “ a0. But U was a left Hopf algebroid, hence α` “ a0 is invertible, and therefore
pα`qh “

ř

nPN anh
n is invertible too, so that Uh is a left Hopf algebroid as well.

6.3.3. Universal enveloping algebras and deformations. As in [ChGa], one can con-
sider a quantum deformation V `pLqh of V `pLq: as the latter is both a left and right Hopf
algebroid, the same holds true for V `pLqh as well, by Remark 6.3.2 (c) above.

On the other hand, the dual (right) bialgebroids JrpLqh :“ pV `pLqhq* and rJpLqh “
pV `pLqhq* are deformations of JrpLq “ V `pLq* “ pV `pLq*qcoop. This common “limit”
is a full Hopf algebroid (with bijective antipode) by the above, hence in particular it is a
left and right Hopf algebroid with respect to the underlying right bialgebroid structure. It
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then follows that the same is true for the right bialgebroids JrpLqh and rJpLqh, but usually
they are not full Hopf algebroids. Nonetheless, we can apply our constructions of §5.1 to
Uh :“ V `pLqh and find the maps S* and S*, as we now shortly explain.

By construction, the maps S* and S* as in (5.1) and (5.2) are given in terms of structure
maps and translation maps of the (non-topological) bialgebroid U : when U is replaced
by Uh, all those maps are continuous, hence both definitions still make sense and provide
maps S* : pUhq* Ñ pUhq* and S* : pUhq* Ñ pUhq* as announced. Once these maps are
properly defined (for Uh “ V `pLqh), the proof of all their properties still works untouched
(all arguments and calculations make sense and go through in the proper setup of topo-
logical bialgebroids). In particular, Theorem 5.1.3 then assures that the two deformations
JrpLqh :“ pUhq* and rJpLqh :“ pUhq* of V `pLq* “ pV `pLq*qcoop are isomorphic (as
right bialgebroids) via S* and S*.

6.4. Cases where a dualising module exists. In this section, we will come back to the
situation of dualising modules as in §3.2 by investigating their (deformation) quantisation.
To this end, we first need to introduce some extra notation, terminology, and definitions
with respect to decreasing filtrations; see, for example, [Ch2, Schn] for further basic results
and details.

Let A be an algebra endowed with a decreasing filtration pFnAqnPN and consider a
filtered FA-module denoted by FM , whereas its underlying A-module will be denoted by
M . If FM and FN are two filtered FA-modules, then a filtered morphism Fu : FM Ñ

FN is a morphism u : M Ñ N of the underlying A-modules such that upFsMq Ă FsN .
A filtered morphism Fu : FM Ñ FN is strict if it satisfies upFsMq “ upMq X FsN .
An exact sequence of FA-modules is a sequence

FM
Fu
ÝÑ FN

Fv
ÝÑ FP (6.4)

such that Ker pFsvq “ Im pFsuq, where Fsv :“ v
ˇ

ˇ

FsN
and Fsu :“ u

ˇ

ˇ

FsM
; hence Fu is

strict. If moreover Fv is also strict, then (6.4) is a called a strict exact sequence.
The filtration of a filtered module gives rise to a topology and even a metric if the filtered

module is separated, that is, if
Ş

nPN FnM “ t0u. For any r P Z and for any FA-module
FM , we define the shifted module FMprq as the module M endowed with the filtration
pFs`rMqsPZ. An FA-module is called finite free if isomorphic to an FA-module of the
type

Àp
i“1 FAp´diq, where d1, . . . , dp P Z. An FA-module FM is called of finite type

if one can find m1 P Fd1
M, . . . ,mp P Fdp

M such that any m P FdM may be written as

m “

p
ÿ

i“1

ad´dimi,

where ad´di
P Fd´di

A. We will be dealing with the case where M is a krrhss-module and
FnM “ hnM , the so-called h-adic filtration.

Remark 6.4.1. The existence of a translation map if Uh is a left or right Hopf algebroid
makes it possible to endow

– Hom-spaces with values in a h-adic complete space, and
– complete tensor products of Uh-modules

with further natural Uh-module structures. Let us make this explicit for the cases we will
use, i.e., adapt Proposition 3.1.1.

If Ph is a right Uh-module and Nh is a left Uh-module, then §PhbA
op
h
NhŽ is endowed

with a right Uh-module structure as follows: if u P Uh, then u` bA
op
h
u´ P §Uh pbA

op
h
UhŽ

can be written as u` bA
op
h
u´ “ lim

nÑ8
u`,n bA

op
h
u´,n. For x bA

op
h
y P §Ph bA

op
h
NhŽ,

one defines

pxbkrrhss yqu :“ lim
nÑ8

xu`,n bA
op
h
u´,ny P §Ph bA

op
h
NhŽ.
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As lim
nÑ8

t`paqu`,n bA
op
h
u´,n “ lim

nÑ8
u`,n bA

op
h
u´,nt

`paq, we have thus defined a right
action of Uh on §Ph bA

op
h
NhŽ.

If Ph and Nh are right Uh-modules, then HomA
op
h
pPh, Nhq is endowed with a left Uh-

module structure as follows: if ur`s bAh ur´s “ lim
nÑ8

ur`s,n b
Ah ur´s,n P Uhđ

pb
Ah

ŻUh,

one sets for φ P HomAop
h
pPh, Nhq and u P Uh, p P Ph,

unφppq :“ φ
`

pur`s,n
˘

ur´s,n,

and argues similarly as above that this defines, indeed, a left Uh-action on
HomAop

h
pPh, Nhq.

Lemma 6.4.2. Let pUh, Ahq be a quantum left Hopf algebroid, and let Ph be a right
Uh-module such that Phđ (respectively §Ph) is a finitely generated projective Aop

h -module
(resp. Ah-module). Then

(i ) Ph is complete for the h-adic topology.
(ii ) For a right Uh-module Nh, any element of HomA

op
h
pPh, Nhq is continuous if we

endow both modules with the h-adic topology.
(iii ) IfNh is a left Uh-module that is complete in the h-adic topology, then so is the right

Uh-module §Ph bA
op
h
NhŽ.

(iv ) If Nh is a right Uh-module that is complete in the h-adic topology, then so is the
left Uh-module HomA

op
h
pPh, Nhq.

Proof. If Nh is a right Uh-module endowed with the h-adic topology, then the h-adic
topology on pNhq

p coincides with the product topology. Thus, if Nh is complete for the
h-adic topology, then so is pNhq

p.

(i ) As Ph is a finitely generated projective Aop
h -module, it is a summand of a finite

free module, which is complete for the h-adic topology as Ah is so. Hence Ph is
complete for the h-adic topology.

(ii ) This is obvious as such a morphism is krrhss-linear.
(iii ) Ph is a direct summand of a rank r free Aop

h -module Fh. Thus §Ph bA
op
h
NŽ is a

summand of pNhq
r, which is complete, hence it is itself complete.

(iv ) The proof of this part is analogous to the proof of (iii).

�

In the following, denote by cMod-Uh resp. Uh-cMod the category of right resp. left
Uh-modules which are complete for the h-adic topology. We then have the following result,
analogous to Proposition 3.2.1:

Proposition 6.4.3. Let pUh, Ahq be simultaneously a quantum left and right Hopf alge-
broid. Assume that there exists a right Uh-module Ph, where Phđ (resp. §Ph) is finitely
generated projective over Aop

h (resp. Ah), such that

(i ) the left Uh-module morphism

Ah Ñ HomA
op
h
pPh,Phq, a ÞÑ tp ÞÑ a § pu

is an isomorphism of krrhss-modules;
(ii ) the evaluation map

§Ph bA
op
h

HomA
op
h
pPh, NhqŽ Ñ Nh, pbA

op
h
φ ÞÑ φppq

is an isomorphism for any Nh P cMod-Uh.

Then
Uh-cModÑ cMod-Uh, Mh ÞÑ §Ph bAop MhŽ

is an equivalence of categories with quasi inverse given by N 1h ÞÑ HomA
op
h
pPh, N

1
hq.
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We will now give an example of such a situation. Consider a left bialgebroid pU,Aq
and a quantisation pUh, Ahq of it. Observe that the natural left Uh-module structure on Ah

quantises that of U on A.

Theorem 6.4.4. Let pU,Aq be a left bialgebroid, where U is assumed to be a k-Noetherian
algebra. Assume that there exists an integer d satisfying

ExtiU pA,Uq “

"

0 if i ‰ d,
Λ if i “ d.

Then there exists an Ah-module Λh that is a quantisation of Λ such that

ExtiUh
pAh, Uhq “

"

0 if i ‰ d,
Λh if i “ d,

where the right action of Uh on ExtdUh
pAh, Uhq is a quantisation of the right action of U

on ExtdU pA,Uq given by right multiplication.

We remind the reader here that Λh is Λrrhss as a krrhss-module. This theorem is proven
in [Ch2] in the case where Ah “ krrhss. For the proof of the general case, we will need
the following auxiliary statement:

Lemma 6.4.5. There exists a resolution of the Uh-module Ah by finite rank free (filtered)
FUh-modules

. . .
Bi`1
ÝÑ FLi Bi

ÝÑ . . .
B2
ÝÑ FL1 B1

ÝÑ FL0 ÝÑ Ah ÝÑ t0u,

where FLi is pUhq
di endowed with the h-adic filtration such that the associated graded

complex

. . . GLi GBi
ÝÑ . . .Ñ GL1 GB1

ÝÑ GL0 ÝÑ Arhs ÝÑ t0u

is a resolution of the U rhs-module Arhs.

Proof. We will construct the p-th module FLp by induction on p: for p “ 0, one may
take FL0 :“ Uh and B0 :“ ε, endowed with the h-adic topology. Assume then that
FL0, FL1, . . . , FLp are already constructed along with B0, B1, . . . , Bp. As FLp is topo-
logically free, the induced filtration and the h-adic filtration coincide on Ker Bp. As
Ker Bp is closed in FLp, it is also complete. This krrhss-module is topologically free
as it is complete for the h-adic topology and also torsion free; set Ker Bp :“ Vprrhss.
Since GUh “ U rhs is Noetherian, the (filtered) algebra Uh is (filtered) Noetherian [Ch2,
Prop. 3.0.7] and the Uh-module Ker Bp is finitely generated so that the U -module Vp is
finitely generated as well. Let pv1, . . . , vdp`1q be a generating system of the U -module Vp
and let pv1, . . . , vdp`1q P pKer Bpq

dp`1 be a lift of pv1, . . . , vdp`1q. Moreover, introduce
the Uh-module morphism

Bp`1 : pUhq
dp`1 Ñ Ker Bp, pu1, . . . , up`1q ÞÑ

ÿ

uivi,

which is a strict morphism of filtered modules. The filtered exact sequence

pUhq
p`1 Bp`1

ÝÑ pUhq
p Bp
ÝÑ pUhq

p´1

is strict exact so that the sequence

pGUhq
p`1 GBp`1

ÝÑ pGUhq
p GBp
ÝÑ pGUhq

p´1

is exact (cf. [Ch2, Prop. 3.0.2]). �

Proof of Theorem 6.4.4. The Ext‚

Uh
pAh, Uhq-groups can be computed via the complex

M ‚ :“
`

HomUh
pL‚, Uhq, B‚

˘

. Its components are endowed with the natural filtration

Fs HomUh
pLi, Uhq :“ tλ P HomUh

pLi, Uhq | λpFpL
iq Ă Fs`pUhu,
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and the right FA-modules F HomUh
pLi, Uhq are isomorphic to pUhq

di endowed with the
h-adic filtration. On the other hand, the filtration of the M i :“ HomUh

pLi, Uhq induces a
filtration on ExtiUh

pAh, Uhq as follows:

FsExtiUh
pAh, Uhq :“

Ker tBi X FsM
i ` ImtBi´1

ImtBi´1

»
Ker tBi X FsM

i

ImtBi´1 X FsM i´1
.

The filtration on the ExtiUh
pAh, Uhq-groups is nothing but the h-adic filtration. Reproduc-

ing the proof of [Ch2], one can see that:

– if i ‰ d, then ExtiUh
pAh, Uhq “ t0u;

– the maps tBi are strict filtered morphisms;
– ExtdUh

pAh, Uhq is complete for the h-adic filtration (as it is a finitely gener-
ated Uop

h -module, see [Ch2]). Moreover, ExtdUh
pAh, Uhq{hExtdUh

pAh, Uhq »

ExtdU pA,Uq as Uop-modules.

Let us show that ExtdUh
pAh, Uhq is h-torsion free. Let rσds P ExtdUh

pAh, Uhq, where
σd P Ker tBd, be an h-torsion element in ExtdUh

pAh, Uhq. There exists a minimal n P N*

such that hnrσds “ 0. Let σd´1 P HomUh
pLd´1, Uhq be such that hnσd “ tBd´1pσd´1q.

Then, by reduction modulo h, one obtains tBd´1pσd´1q “ 0 and there exists σd´2 such that
σd´1 “ Bd´2 pσd´2q. Let σd´2 be a lift of σd´2. Then there exists τd´1 such that

σd´1 “
tBd´2pσd´2q ` hτd´1.

Hence hnσd “ htBd´1pτd´1q, which gives (using the fact that HomUh
pLd, Uhq is topo-

logically free) hn´1σd “ tBd´1pτd´1q. This contradicts the minimality of n so that
ExtdUh

pAh, Uhq is h-torsion free. As ExtdUh
pAh, Uhq is complete for the h-adic topology

and h-torsion free, it is topologically free. �

Combining this result with the more general structure theory as in Proposition 3.2.1
resp. Proposition 6.4.3, one obtains:

Proposition 6.4.6. Let U satisfy the conditions of Theorem 6.4.4. Assume moreover that

(i ) A is noetherian;
(ii ) ExtU pA,Uq is a dualising module for pU,Aq, i.e., satisfies the hypothesis of

Proposition 3.2.1;
(iii ) §ExtU pA,Uq is a finitely generated projective A-module.

Then Ph “ ExtdUh
pAh, Uhq is a dualising module for pUh, Ahq and produces an equiva-

lence between the categories of left resp. right complete Uh-modules.

Remark 6.4.7. Let Mh :“ M rrhss and Nh :“ N rrhss be two Aop
h -modules which

are topologically free with respect to the h-adic topology. Assume moreover that Mh

is finitely generated projective over Aop
h ; then HomA

op
h
pMh, Nhq is topologically free

and, as said before, is isomorphic to HomAoppM,Nqrrhss as a krrhss-module: observe
that HomA

op
h
pMh, Nhq is complete for the induced topology as it is a closed subset

of the topologically free krrhss-module HomkrrhsspMh, Nhq. On the other hand, on
HomA

op
h
pMh, Nhq, the induced topology coincides with the h-adic topology. Hence

HomA
op
h
pMh, Nhq is complete for the h-adic topology and since it is also torsion free,

it is topologically free. Let us now show that HomA
op
h
pMh, Nhq{hHomA

op
h
pMh, Nhq is

isomorphic to HomAoppM,Nq: in fact, there exists an Aop
h -module M 1

h and a finitely gen-
erated free Aop

h -module Fh such that Mh ‘M
1
h “ Fh. Any element φ of HomAoppM,Nq

can be extended to an element of HomAoppFh{hFh, Nq, which, in turn, can be lifted to an
element of HomA

op
h
pFh, Nhq and produces (by restriction) a lift of φ.
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Proof of Proposition 6.4.6. The module Phđ is a finitely generated Aop
h -module as Pđ :“

ExtU pA,Uqđ is a finitely generated Aop-module (see Proposition 3.0.5 of the preprint
version of [Ch2]).

Let Nh be a finitely generated Aop
h -module. It can be considered as a filtered FAop

h -
module as follows: one has an epimorphism

`

Aop
h

˘n p
ÝÑNh ÝÑ 0, and we endow Nh

with the filtration p
`

F
`

Aop
h

˘n˘
. As Pđ is a projective Aop-module, Prhsđ is a projec-

tive Arhsop-module, and Proposition 3.0.11 of the preprint version of [Ch2] shows that
ExtiAop

h
pPh, Nhq “ t0u if i ą 0.

Let nowNh be anyAop
h -module. We haveNh “ lim

Ñ
N 1h, whereN 1h runs over all finitely

generated Aop
h -submodules of Nh. Let F ‚ be a resolution of P by finitely generated free

Aop
h -modules. We have

Extj
Aop

h
pPh, Nhq “ Extj

Aop
h
pPh, lim

Ñ
N 1hq “ Hj

`

HomAop
h
pF ‚, lim

Ñ
N 1hq

˘

“ Hj
`

lim
Ñ

HomAop
h
pF ‚, N 1hq

˘

“ lim
Ñ
Hj

`

HomAop
h
pF ‚, N 1hq

˘

“ lim
Ñ

Extj
Aop

h
pPh, N

1
hq “ t0u,

where we used the fact that the functor lim
Ñ

is exact because the set of finitely generated
submodules of M is a directed set, cf. [Ro, Prop. 5.33]. Thus we have proven that if Nh is
any Aop

h -module, then

Extj
Aop

h
pPh, Nhq “ t0u if j ą 0.

Consequently, Phđ is a projective Aop
h -module; similarly, §ExtUh

pAh, Uhq is a projective
Aop

h -module.
The assertion with respect to the evaluation map yet is true if Nh is a topologically

free Uh-module as it is true modulo h, see Remark 6.4.7. Furthermore, the functor Nh ÞÑ

Ph bAh
HomA

op
h
pPh, Nhq is exact as Phđ resp. §Ph is a projective Aop

h -module resp. Ah-
module.

Let nowNh be a finitely generated Uh-module. Using a finite free resolution ofNh, one
can show (by a diagram chase argument) that the evaluation map is an isomorphism (as it
is an isomorphism for any component of the resolution). If Nh is any Uh-module instead,
one can write Nh “ lim

Ñ
N 1h, where N 1h runs over all finitely generated submodules of Nh.

Since Ph is a finitely generated Aop
h -module, any element φ P HomA

op
h
pPh, Nhq can be

considered as an element of HomA
op
h
pPh, N

1
hq for a well-chosen finitely generated Aop

h -
module N 1h. Using the finitely generated case, one can see that the evaluation map is an
isomorphism for any Uh-module Nh.

As Ph is a finitely generated projective Aop
h -module, the natural left Uh-module map

Ah Ñ HomA
op
h
pPh,Phq, a ÞÑ pp ÞÑ a § pq

of Proposition 6.4.3 is an isomorphism as it is an isomorphism modulo h. This concludes
the proof. �

Example 6.4.8. For example, if A is the algebra of regular functions on a smooth affine
variety X and L is the Lie-Rinehart algebra of vector fields over X , then U “ V `pLq
satisfies the conditions of Theorem 6.4.4. More generally, for any Lie-Rinehart algebra
pA,Lq, where L is finitely generated projective of constant rank d over a Noetherian al-
gebra A, the pair

`

A, V `pLq
˘

fulfils the conditions of Theorem 6.4.4 and one obtains
ExtdV `pLqpA, V

`pLqq “
Źd

A
HomApL,Aq for the dualising module (see [Ch1, Hue] for

more details in this direction). Then, for any quantisation V `pLqh of V `pLq, Proposi-
tion 6.4.6 leads to an equivalence of categories between left and right complete V `pLqh-
modules. Examples of quantisations of V `pLq are given in [ChGa].
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