Data dissemination in vehicular networks

Gianluca Grilli
Department of Computer Science, Systems and Production
University of Rome "Tor Vergata"

Philosophia Doctor (PhD) dissertation in Computer Science and Automation Engineering (cycle XXI)
Advisor and Coordinator: Prof. Daniel P. Bovet

16 June, 2010
PhD Board of Examiners (in alphabetical order):

Prof. Bruno Cicciani
Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”
via Ariosto 25, 00185 Roma

Prof. Vittorio Cortellessa
Dipartimento di Informatica, Università dell’Aquila
via Vettoio, Coppito 67100 L’Aquila

Prof. Paola Velardi
Dipartimento di Informatica, Università di Roma “La Sapienza”
via Salaria 113, 00198 Roma

Day of the defense: 16 June, 2010

Signature from head of PhD committee:
Abstract

Data dissemination consists on spreading a large amount of information to all nodes belonging to a network and its peculiar characteristics make this goal particularly interesting and challenging. However, developing efficient data dissemination schemes for vehicular ad-hoc networks (VANETs) is still an open issue due to the broadcast nature of the channel and to the need of managing all data transmissions in a distributed way. The former leads to a lot of problems related to the channel contention, collisions and interference. The latter requires to define algorithms which exploit only local information of the network and which are scalable and robust to the node mobility.

The focus of this thesis is to investigate the data dissemination process in VANETs by defining and developing a new communication protocol (CORP), efficient in terms of limited computational complexity, low latency, high speed of dissemination, high delivery ratio, better usage of the wireless channel and, consequently, better energy consumption. The basic idea relies on the application of the fountain codes theory to vehicular networks in order to implement a true I2V2V (infrastructure-to-vehicle-to-vehicle) communication paradigm.

Results gathered from extensive simulation show the feasibility of such a solution, which could be implemented in real on-board communication devices for Intelligent Transportation Systems (ITS).
“There are three kinds of death in this world. There’s heart death, there’s brain death, and there’s being off the network.”

- Guy Almes

To my loved grandparents,

your memories will always belong to my heart.
Acknowledgements

I would first and foremost like to thank my advisor, Prof. Daniel Bovet, without whom my PhD experience would not have been possible. His dedication and passion, together with his excellent analytical skills are great assets to those who are fortunate enough to work with him.

Many thanks to Prof. Mario Gerla, my advisor at the Network Research Lab (NRL) of the University of California Los Angeles (UCLA). I will never forget him as well as the pleasant (but fruitful) weekly meetings held at NRL.

I would also like to thank the whole PhD group at P1B-03 office for their inputs and cooperation during the last years and, above all, for their friendship. In this respect, a special thank goes to Fabio Dellutri, Emanuele Galli and Emiliano Betti. Andrea Bastoni also deserves a great deal of credit especially for his invaluable logistic support and assistance during my "last" operating system course.

I cannot omit my friends from the USA experience, namely, Ali Hamidian, Paolo Di Rico, Paolo Lutterotti, Eugenio Giordano, Ilias Leontiadis, Pasquale Cataldi, Alexandro Sentinelli, Andrea Tomatis, Alessandro Bissacco and Giovanni Mazzeo.

Finally, I wish to extend my deepest gratitude to my family and my sweet love, "Patata", who both have never wavered in their support of me in all of my ventures in life.

The last word of gratitude goes to Chopin, my lovely labrador, for its countless love.
Contents

List of Figures vii

List of Tables xv

1 Introduction 1

1.1 Layout of the Thesis . 3

2 Preliminary concepts 5

2.1 Mobile Ad-hoc NETwork (MANET) . 5

2.2 Vehicular Ad-hoc NETwork (VANET) 7

2.3 Network requirements in VANETs applications 10

2.3.1 Mobility . 10

2.3.2 Permanent access . 11

2.3.3 Location Awareness . 12

2.3.4 Time Awareness . 12

2.3.5 Penetration rate dependency . 13

2.3.6 Geocast capability . 13

2.4 VANETs’ common communication schemes 14

2.5 Communication technology in VANETs 16

2.5.1 WLAN - IEEE 802.11 . 17

2.5.2 WiMAX . 21

2.5.3 Bluetooth . 25

2.5.3.1 Bluetooth Architecture 26

2.5.4 ZigBee . 27

2.5.5 DSRC and 802.11p (or ”WAVE”) 28

2.5.6 Frequency and channel allocation 32
CONTENTS

4.3.2.1 Discrete event simulation ... 86
4.3.2.2 Qualnet protocol stack ... 86
4.3.3 NS-2 ... 90
4.3.4 J-Sim ... 91
4.3.5 OMNeT++ .. 91
4.3.6 SWANS .. 91
4.4 Tightly Integrated Simulators .. 92
4.4.1 SWANS++ .. 94
4.4.2 GrooveNeT .. 95
4.4.3 TraNS ... 96
4.4.4 Veins ... 98
4.4.5 NCTUns ... 98
4.4.6 ASH ... 99
4.5 Scalability of VANET simulators 102

5 Data dissemination survey ... 107
5.1 Types of information involved in the dissemination process 107
5.2 Data dissemination techniques ... 114
5.3 Information sharing via Network Coding technique 115
 5.3.1 Introduction to Network Coding 115
 5.3.2 What is Network Coding .. 117
 5.3.3 Linear Network Coding ... 120
 5.3.4 The coding and decoding process 122
 5.3.5 Benefits of Network Coding 124
5.4 Example of Content distribution applications for VANETs 127
 5.4.1 SPAWN (CarTorrent) ... 127
 5.4.2 CodeTorrent .. 130

6 Data dissemination with rateless codes 135
6.1 Before you start: digital fountain codes 135
 6.1.1 LT codes ... 136
 6.1.2 Tornado codes .. 140
 6.1.3 Raptor codes .. 141
6.2 An application of fountain codes: CORP 144
List of Figures

2.1 Application requirements in VANETs. Please, note that no asterisk means "none or not needed" requirement, "*" means "needed", "**" stands for "suited" requirement. ... 11
2.2 Geocasting forwarding schemes. Typical geocasting forwarding schemes: unicast (A), broadcast (B) and topologically scoped broadcast (C). 14
2.3 InV communications. The InV communication scheme is mainly used to create a specialized sensor networks within the vehicle. It is very useful when you want to control vehicle’s on board devices and, at the same time, act on the motion behaviour in response to a received emergency message. (Mercedes Benz, SL 500 - source: Daimler Benz) 15
2.4 Communication schemes in VANETs. The figure shows the communication schemes typically used in a VANET: (a) Vehicle-to-Vehicle (V2V), (b) Vehicle-to-Infrastructure (V2I) and Infrastructure-to-Vehicle (I2V). ... 16
2.5 Overview of the application of network technologies used in vehicle ad-hoc networks. The figure shows a vehicular networking scheme where the most important technologies at level-three are included in an integral communication solution. Finally, an overlay architecture using cellular networks shows the feasibility of this technology to enable vehicular communications. ... 17
2.6 Wireless technologies for InV communications. 18
2.7 802.11a channels. ... 20
2.8 802.11b/g channels. ... 21
2.9 Example of a bluetooth scatternet. ... 27
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
<td>DSRC Standards DSRC standards and communication stack.</td>
</tr>
<tr>
<td>2.11</td>
<td>Wireless Technologies for V2V and V2I communications. With the rapid development of information technologies, there are a number of wireless technologies which are potential for wireless InV, V2V and V2I communications.</td>
</tr>
<tr>
<td>2.12</td>
<td>Frequency and channel allocation. 30 MHz frequency band dedicated for safety-related car-to-car and car-to-infrastructure communication where SCH1 is the first service channel, SCH2 is the secondary service channel, and CCH is the control channel.</td>
</tr>
<tr>
<td>2.13</td>
<td>CAR-2-X communication scheme. Typical VANET scenario showing a CAR-2-X communication system and involved protocols of the IEEE 802 family. As shown in the figure, the CAR-2-X communication system consists of three domains: the in-vehicle domain, the ad hoc domain, and the infrastructure domain.</td>
</tr>
<tr>
<td>2.14</td>
<td>Geocasting forwarding schemes. Typical geocasting forwarding schemes: unicast (A), broadcast (B) and topologically scoped broadcast (C).</td>
</tr>
<tr>
<td>3.1</td>
<td>Random Walk Mobility model. Traveling pattern of a MN using a probabilistic version of RWM.</td>
</tr>
<tr>
<td>3.2</td>
<td>Random-Wapoint model In RWP, mobile nodes choose randomly a destination and move towards it with a constant velocity.</td>
</tr>
<tr>
<td>3.3</td>
<td>Random-Wapoint trace. Typical RWP’s motion trace in a 500x500 area.</td>
</tr>
<tr>
<td>3.4</td>
<td>Random-Waypoint neighbors percentage. Average neighbors percentage vs. time.</td>
</tr>
<tr>
<td>3.5</td>
<td>RPGM model Movements of three nodes according to the RPGM mobility model.</td>
</tr>
<tr>
<td>3.6</td>
<td>RPGM group pattern. Traveling group pattern of three nodes using the RPGM mobility model.</td>
</tr>
<tr>
<td>3.7</td>
<td>RPGM group pattern (5 mobile nodes). Traveling group pattern of five nodes using the RPGM mobility model.</td>
</tr>
<tr>
<td>3.8</td>
<td>City Section Mobility Model. Traveling pattern of a MN using the CSMM.</td>
</tr>
</tbody>
</table>
3.9 **Psycho-physical vehicular interaction.** The Δx axis divides positive (vehicle approaching front car) and negative (front vehicle increasing its distance) speed difference Δv. A possible trajectory is shown by the narrow: a vehicle, initially in free flow condition (i.e. in the no reaction zone), starts approaching a vehicle in front. As long as the distance is high enough, the driver ignores the obstacles ahead, keeping his/her pace. However, when the distance becomes too small with respect to the current speed (i.e. the reaction zone is entered) the driver starts slowing down. The braking process brings the driver to match the front car speed ($\Delta v = 0$). Any increase in the speed if the ahead vehicle is then matched by the back vehicle with some delay, due to the finite reaction time of drivers ($\Delta v < 0$). For the same reason, any reduction in front car’s speed is matched by the back vehicle with delay as well (the last segment of the movement curve, in the $\Delta v > 0$, unconscious area).

4.1 **CORSIM.** A screenshot of CORSIM simulator.

4.2 **VisSim example (A).** Simulation of intersections with regard to design alternatives (roundabouts, unsignalized and signal-controlled, grade separated interchanges) and design, test and analysis of vehicle-actuated signal controls.

4.3 **VisSim example (B).** The same intersection under another perspective.

4.4 **Paramics example (A).**

4.5 **Paramics example (B).**

4.6 **Vanetmobisim road topology example.**

4.7 **Vanetmobisim road topology example imported from OpenStreetMap database.** The map showed in this picture (“Quarto Miglio” district in Rome) was exported in xml-format from OpenStreetMap and then imported into Vanetmobisim simulator. The red dots represent the constrained vehicles moving to across roadmap during the simulation.

4.8 **SUMO simulated network example.** Two example networks as simulated by SUMO; left: the city of Magdeburg from the INVENT-project; right: the area around the city of Cologne.

4.9 **Qualnet simulator.** Qualnet in visual mode.
LIST OF FIGURES

4.10 Qualnet simulator. Qualnet in visual mode, additional example. 84
4.11 Qulanet protocol stack. This picture shows the simulator protocol stack and the general functionality of each layer. 87
4.12 Qualnet protocol model. The picture shows the finite state machine representation of a protocol in QualNet. At the heart of a protocol model is an Event Dispatcher, which consists of a Wait For Event state and one or more Event Handler states. In the Wait For Event state, the protocol waits for an event to occur. When an event for the protocol occurs, the protocol transitions to the Event Handler state corresponding to that event (e.g., when Event 1 occurs, the protocol transitions to the Event 1 Handler state). In this Event Handler state, the protocol performs the actions corresponding to the event, and then returns to the Wait For Event state. Actions performed in the Event Handler state may include updating the protocol state, or scheduling other events, or both. 88
4.13 Groovenet. An example of GrooveNet simulation, where vehicles are moving in a real map with their coordinates being updated almost in realtime. .. 95
4.14 Groovenet. The GrooveNet simulator allows to broadcast emergency alerts or road warnings, thus analyzing the effect on the vehicles in realtime. This unique characteristic makes GrooveNet suitable both for simulations and real research testbeds. 96
4.15 TraNS simulator. Screenshot of a light version of TraNS, called TraNS Lite. ... 97
4.16 NCTUns simulator. The architecture of NCTUns 6.0 network simulator. 99
4.17 NCTUns simulator. The architecture of NCTUns 6.0 network protocol simulation. .. 100
4.18 Benefits and drawbacks. Benefits and drawbacks of several VANETs simulator. .. 102
4.19 Simulation time in Ns2. Simulation time in Ns2 (version 2.34) with mobile nodes ranging from 50 up to 1000 in a 2000x2000 sqm area. . . . 104
4.20 Memory memory consumption in Ns2. Memory consumption in Ns2 (version 2.34) with mobile nodes ranging from 50 up to 1000 in a 2000x2000 sqm area. .. 104
LIST OF FIGURES

4.21 Simulation time in Qualnet. Simulation time in Qualnet (version 4.5) with mobile nodes ranging from 50 up to 4000 in a 2000x2000 sqm area. .. 105

4.22 Memory consumption in Qualnet. Memory consumption in Qualnet (version 4.5) with mobile nodes ranging from 50 up to 4000 in a 2000x2000 sqm area. .. 105

5.1 EBW - Emergency Brake Warning. The EBW alerts the driver behind by augmenting the brake-lights notification system when a preceding vehicle performs a severe braking maneuver. 111

5.2 IVW - Intersection Violation Warning. The IVW warns the driver if violating a red light seems imminent. Other vehicles approaching the traffic lights are also warned that a close vehicle issued a warning message. 112

5.3 Network Coding. Simple example of Network Coding mechanism. 119

5.4 Network Coding. The figure shows the transmission of two data packets with the classical communication paradigm compared to the network coding technique. If two nodes are communicating with an intermediary node, they can benefit of this coding technique, thus optimizing the use of the channel and gaining higher throughput (in the example, nodes A and B want to communicate using node C as relay agent; while with the classical paradigm node C has to use the channel twice in order to send the flows \(b_1 \) to \(B \) and \(b_2 \) to \(A \), with the network coding technique only transmission of flow \(b_1 + b_2 \). ... 121

5.5 Network Coding benefits in data dissemination. The figure shows the number of nodes that have to be polled by the data collector to obtain all packets. ... 126

5.6 Network Coding benefits in data dissemination. Comparison between flooding and network coding: number of polled nodes for different numbers of transmission per node. 127
5.7 Evolution of a file in a node using SPAWN protocol. (1) A car arrives in the range of a gateway, (2) starts a download, (3) download a piece of a file, (4) after getting out of range, (5) stars to gossip with its neighbors about content availability and (6) exchanges pieces of the file, thereby getting a larger portion of the file as opposed to waiting for the next gateway to resume the download. .. 128

5.8 CodeTorrent vs. CarTorrent. The figure shows the aggregated downloading progress (200 nodes moving with the maximum speed of 20 m/s). The number of interested nodes is 80 (which means that the popularity index is 40%). ... 131

5.9 CodeTorrent vs. CarTorrent. Impact of mobility on average download delay. ... 131

6.1 LT code. Functioning scheme of LT codes. 137
6.2 LT example. Decoding of a simple LT code on an erasure channel. .. 139
6.3 RAPTOR coding. Functioning scheme of RAPTOR codes. 141
6.4 RS-SD comparison. Comparison between Robust Soliton and Shokrollahi Distributions. 142
6.5 I2V vs. I2V2V The figure shows the benefit of an I2V2V approach (like in CORP) over the classical I2V, where data are disseminated only by APs. .. 149
6.6 CORP Algorithm. The diagram shows the receiving phase of the CORP algorithm. .. 150
6.7 Coding in CORP. The figure shows the encoding symbols generation process in CORP protocol. 151
6.8 AP to MN communication. The figure shows the sequence diagram of the Access Point to Mobile Node communication. 155
6.9 MN to MN communication. The figure shows the sequence diagram of the communication among mobile nodes in CORP. 156
6.10 CORP-TCP. In CORP-TCP every mobile node has to keep track of the downloaded fragments. Each mobile node saves the first and the last fragment missing (that is the missing interval). The figure shows an example of a 10 fragments resource. 157
6.11 CORP. Cumulative success decoding probability distribution as a function of the excess received packets ratio with 8000 source packets of 64 Bytes. ... 160

6.12 CORP delivery ratio. The figure shows the delivery ratio as a function of the number of cooperative MNs in the simulated area after 15 minutes. 160

6.13 CORP delivery ratio. The figure shows the delivery ratio as a function of the time for different numbers of collaborating nodes. Three density scenarios are considered with respect to the number of mobile nodes: $MN_s = 4$ (dotted lines), $MN_s = 20$ (dashed lines) or $MN_s = 80$ (continuous lines). ... 161

6.14 Number of Received Sets of ESs. The figure shows the total sets’ number owned by each mobile node). ... 163

6.15 Average Set size in CORP. The figure shows the average set size over the number of mobile nodes. The set size decreases as the number of nodes increases, which improves the overall dissemination speed. . . . 164

6.16 CORP vs. CORP-TCP delivery ratio. The figure shows the delivery ratio trend for CORP and CORP-TCP. ... 164

6.17 Aerial view of the simulation area. The figure shows the Google Earth aerial view of the simulation area. The related map in (Open Street Map) has been subsequently cropped and imported in Vanetmobilisim in order to generate realistic mobility traces. 165

6.18 Imported map for mobility trace. The figure shows the map of the simulation area (it is a real map which includes two districts, "Statuario” and ”Quarto Miglio”). ... 167

6.19 Realistic mobility pattern. The figure shows the mobility pattern generated on a real map, according to the IDM$_{LC}$ mobility model (The red dots represent the constrained vehicles moving across roadmap during the simulation.). This trace has been used to compare CORP and CORP-TCP performances. ... 168

6.20 Realistic mobility pattern - Detailed view. The figure shows the situation of the mobility pattern generated on a real map, according to the IDM$_{LC}$ mobility model (The red dots represent the constrained vehicles moving across roadmap during the simulation.). 168
6.21 CORP vs. CORP-TCP delivery ratio with a realistic mobility model (IDM_LC). The figure shows the delivery ratio trend for CORP and CORP-TCP; simulations have been performed under a realistic mobility model such as the IDM_LC.
List of Tables

4.1 Traffic level features in SUMO/Move/TraNS, VanetMobiSim and NC-Tuns mobility simulators. .. 101
4.2 Motion level features in SUMO/Move/TraNS, VanetMobiSim and NC-Tuns mobility simulators. ... 101
4.3 Other features in SUMO/Move/TraNS, VanetMobiSim and NC-Tuns mobility simulators. .. 102

5.1 Eight high priority vehicular safety applications as chosen by NHTSA and VSCC (*Vehicle Safety Communications Consortium*), which is a consortium born in May, 2002 with the mission to facilitate the advancement of vehicle safety through communication technologies (the members are: BMW, DaimlerChrysler, Ford, GM, Nissan, Toyota, and VWGM, VW). Communication frequencies ranges from 1-50 Hz and the maximum range span from 50-300 meters. Note that P2M represents "point-to-multipoint", I2V "infrastructure-to-vehicle" and V2I "vehicle-to-infrastructure". ... 113

5.2 A subset of the SAE common message set (more than 70 data elements) and their usage in vanet safety applications. 138

6.1 Main characteristics of an LT code. .. 138
6.2 Comparison of different coding schemes used to approximate a digital fountain code. ... 143
6.3 Example of a Connection table used in CORP-TCP. 158
6.4 Example of a Service table used in CORP-TCP. 158
6.5 CORP simulation parameters used in Qualnet. 162
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>CORP and CORP-TCP simulation parameters used in Qualnet with the IDM_LC mobility pattern.</td>
<td>166</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

In this thesis we cope with the problem of data dissemination in vehicular ad-hoc networks (VANETs), trying to give an overview of the main techniques used in this field and presenting also a novel protocol for data dissemination called "CORP", Cooperative Rateless Protocol. CORP (19) is a very innovative protocol as fully implements the theory Fountain Codes technique to quickly and effectively disseminate contents across vehicles in a wide area. Furthermore, it represents the first successful application of the said coding theory to the vehicular field which totally complies with the infrastructure-to-vehicle-to-vehicle communication paradigm (I2V2V).

The concept of data dissemination is wide and meaningful, and within this work we generally refer to it as the process of spreading some amount of data over a distributed wireless network, which is a superset of a VANET. Data exchanging on the roads is becoming more and more interesting, as the number of vehicles equipped with computing technologies and wireless communication devices is poised to increase dramatically. Communications between vehicles and within the same vehicle (inter-vehicle, or InV) is becoming a promising field of research and we are moving closer to the vision of intelligent transportation systems (ITS), which can enable a wide range of applications, such as collision avoidance, emergency message dissemination, dynamic route scheduling, real-time traffic condition monitoring and any kind of "infotainment" information spreading (i.e. movies, gaming and advertisement). However, it is extremely important to consider several aspects when approaching to
1. INTRODUCTION

any kind of data transfer in a VANET, because nodes are not fixed but can move. Furthermore, in this scenario, other complications can easily arise because, unlike the well known mobile ad-hoc networks (MANETs), where nodes can freely move in a certain area, in VANETs, vehicles’ movements are constrained by streets, traffic and specific rules.

The following are only some of the several issues which VANETs are affected by:

- **High mobility:**
 the environment in which vehicular networks operate is extremely dynamic, and includes extreme configurations: in highways, relative speed of up to 300 km/h may occur, while density of nodes may be 1-2 vehicles per kilometer in low busy roads. Because of the relative movement of the vehicles, the connectivity among nodes could last only few seconds, and fail in unpredictable ways.

- **Partitioned networks:**
 vehicular ad hoc networks will be frequently partitioned. The dynamic nature of traffic may result in large inter-vehicle gaps in sparsely populated scenarios, and in several isolated clusters of nodes. The degree to which the network is connected is highly dependant on two factors, such as the range of wireless links and the fraction of participant vehicles, since only a fraction of vehicles on the road could be equipped with wireless interfaces. Maintaining end-to-end connectivity, packet routing, and reliable multi-hop information dissemination will become extremely challenging in such networks.

As it concerns specifically the data transmission, in VANETs there are several additional issues to be taken into account:

- the *fading effect of the signal*, which becomes more significant due to the surrounding buildings;

- the *strong interference and collisions* related to the high number of mobile transmitters (vehicles);

- the *flapping links*, caused by both fading effect and vehicles’ speed.

Furthermore, while traditional vehicular networks rely on specific infrastructures, such as roadside traffic sensors reporting data to a central database, or cellular wireless
communication between vehicles and a monitoring center, we want to focus our effort on completely decentralized data dissemination solutions, in order to avoid expensive infrastructures and increase the overall scalability of the system. In fact, how to exchange traffic information among vehicles in a scalable fashion is really an important problem to be solved in VANETs.

The main goal of this dissertation was to assess the validity of the I2V2V communication scheme for data dissemination through CORP, a data dissemination protocol mainly based on Fountain Codes (FCs) and developed at application layer on the top of UDP transport protocol. By relying on UDP at lower layer, CORP showed great performances and high delivery ratio, as it was not affected by some peculiarities of TCP such as the slow start/restart mechanism, the three way handshake and the four way connection close, which both have been proved to perform poorly in vehicular networks.

Simulation results showed that CORP performs very well compared with other two simple data dissemination approach and with a similar protocol specifically built on the top of TCP (CORP-TCP).

1.1 Layout of the Thesis

In this section we give a brief insights on this research work by showing the organization of the other Chapters. In detail, we have:

- **Chapter 2: Preliminary concepts**
 This chapter is meant to introduce the basic concepts behind the emerging area of vehicular networks and data exchange, such as Ad-Hoc networks, Mobility issues, Mobile Ad-Hoc Networks (MANETs) and, at the same time, to provide an overview of the new technologies and standards for car communication systems.

- **Chapter 3: Mobility models in vehicular networks**
 This Chapter describes several mobility models used to simulate vehicular ad-hoc networks.

- **Chapter 4: Vehicular network simulators**
 In this chapter we presents an overview of the most popular vehicular network simulators and mobility simulators, according to their integration components.
1. INTRODUCTION

- **Chapter 5: Data dissemination survey**
 This chapter surveys the different types of information exchange adopted in vehicular networks with common practices and methodologies that have been considered in research literature (e.g.: opportunistic exchange of resources between vehicles, vehicle assisted data delivery, cooperating downloading of information, etc.) with a special emphasis to the network coding technique.

- **Chapter 6: Data dissemination with rateless codes**
 This is the main Chapter, where we briefly survey the fountain codes (FCs) and then introduce CORP, a novel protocol for data dissemination built on the top of UDP and FCs.
 The new approach is explained in detail and the main experimental results are presented (CORP is compared to V2V, I2V and I2V2V data dissemination paradigms). Simulations have been performed with *Random Waypoint* model (RWM) and the promising *Intelligent Driver Mobility model with Lane Changes* (IDM_LC), according to which mobile nodes’ movements are really close to the reality (in addition, intersections are also regulated by traffic lights).

- **Chapter 7: Conclusions and future work**
 This Chapter highlights the main benefits of such an approach presented in Chapter 6 and describes the future works.

Keywords: Data dissemination in vehicular networks, vehicular networks, VANETs, Fountain Codes, Data Coding in VANETs, VANET simulation.
Chapter 2

Preliminary concepts

In the recent decade, control systems for the automotive industry have moved from the analog to the digital domain. Networked Electronic Control Units (ECUs) are increasingly being deployed in automobiles to realize diverse functions such as engine management, air-bag deployment, and even in intelligent brake systems. At the same time, emerging vehicular networks in the forms of Intra-Vehicle (InV), Vehicle-to-Vehicle (V2V), and Vehicle-to-Infrastructure (V2I) communications are fast becoming a reality and will enable a variety of applications for safety, traffic efficiency, driver assistance, as well as infotainment to be incorporated into modern automobile designs. Thus, with vehicular networks fast becoming commonplace, critical data is being exchanged with-inside and with-outside vehicle via vehicular networks, and new technologies have been developed for vehicular networks. This chapter is meant to introduce the basic concepts behind the emerging area of vehicular networks and data exchange, such as Ad-Hoc networks, Mobility issues, Mobile Ad-Hoc Networks (MANETs) and, at the same time, to provide an overview of the new technologies and standards for car communication systems.

2.1 Mobile Ad-hoc NETwork (MANET)

In circumstances where mobile telephony as we know it is not possible or difficult, perhaps internet technology can be of help. The dependancy on a costly telecommunication infrastructure could thereby be decreased, which would be quite welcome considering the current situation in the telecom world. The technology that is to make this possible