The semiclassical limit of the nonlinear Schrödinger equation in a radial potential. (English summary)

In this paper, the authors are concerned with the nonlinear Schrödinger equation

\[i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \Delta \psi + V(x)\psi - \gamma_h |\psi|^{p-2} \psi, \quad \gamma_h > 0, \quad x \in \mathbb{R}^2, \]

where \(\hbar > 0, \ 2 < p < 6, \psi : \mathbb{R}^2 \to \mathbb{C}, \) and the potential \(V \) is radially symmetric. Upon denoting by \((r, \theta)\) the polar coordinates in the plane, the authors’ purpose is to obtain positive solutions of the form \(\psi(r, \theta, t) = e^{i\frac{\hbar}{\theta}(iM_h\theta + iEt)}v(r) \). They assume \(M_h > 0 \), which implies that all such functions have nontrivial angular momentum. This kind of solution exhibits a “spike-layer” pattern as \(\hbar \to 0^+ \); that is, as \(\hbar \to 0^+ \) the solutions concentrate on a circle centered at the origin while approximating uniformly zero away from it. In order to locate the asymptotic peaks, the authors analyze the appearance of such a concentration’s asymptotic behavior by means of a suitable auxiliary functional.

Reviewed by _Alberto Parmeggiani_

References

11. V. Benci and N. Visciglia, Solitary Waves with non Vanishing Angular Momentum, in preparation.

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2003, 2011