Badiale, Marino (I-TRIN); D’Aprile, Teresa (I-SNS)

Concentration around a sphere for a singularly perturbed Schrödinger equation.

The behaviour as \(h \to 0 \) of positive radially symmetric solutions \(u = u_h \) to
\[
-h^2 \Delta u + V(x)u = |u|^{p-2}u
\]
is studied. Here \(x \in \mathbb{R}^n \) with \(n \geq 3 \), \(2 < p < 2n/(n-2) \), and the potential \(V(x) = V(|x|) \in C^1(\mathbb{R}^n, \mathbb{R}) \) is radially symmetric and such that \(\inf_{x \in \mathbb{R}} V(x) > 0 \). Under additional assumptions on \(V \), which basically require that \(V = V(r) \) is sufficiently large in some interval \(r \in [r_1, r_2] \), it is shown that in the semiclassical limit \(h \to 0 \) (along a subsequence) the functions \(u_h \) will concentrate on a sphere of positive radius. Thus the potential barrier prevents concentration at the origin, as is normally found in these kinds of problems.

Reviewed by *Markus Kunze*

References

11. V. Benci, D. Fortunato, L. Pisani, Soliton-like solutions of a Lorentz invariant equation in

30. J. Wei, On the construction of single-peaked solutions to a singularly perturbed elliptic Dirichlet