UNIVERSITA’ DEGLI STUDI ROMA TOR VERGATA
FACOLTA’ DI ECONOMIA

PhD in Econometrics and Empirical Economics

Topics in Unobserved Components Models

Stefano Grassi

Supervisor: Coordinator :

prof. prof.

Tommaso Proietti Franco Peracchi
XXII Cycle

Academic Year 2009 - 2010



Acknowledgments

This is the best opportunity I have to express formally my deep gratitude to Tommaso Proietti,
my supervisor, for his constant guidance, suggestions, patience and more important to me our
friendship. I really enjoyed our time series conversations and our non time series conversations.
Without his help this work would have never been possible.

Then I would like to thank all the people in my department for their support and their friendship
which made my studying in Rome the best period of my life. In particular I wish to thank Franco
Peracchi for coordinating the Phd program.

I am thankful to several people for reading and commenting early drafts of these chapters. This
group includes Alessandra Luati, Giuseppe Garofalo and my dear friend Raffaele Ciula.

Very special thanks to the VU University of Amsterdam for the warm hospitality during the
period February - June 2009 and February 2010. Special thanks to Siem Jan Koopman for giving me
the possibility to work with him and his group. I would like to thank Charles Bos, Michael Massman,
Marius Ooms, Guilherme Moura, Drew Creal for the fruitful discussions about econometrics during
lunch times and coffee breaks.

Finally I would like to thank my family an my girlfriend Lucia for the understanding during all
these years and for silently accepting all my decisions.



Contents

1 Introduction 4
1.1 The Linear State Space Form in Econometrics . . . . .. ... ... .. .. ..... 4
1.2 The Kalman filter . . . . . . . . . . . . e 5
1.3 Linear state space methods . . . . . . . . .. .. L 6
1.4 Nonlinear and Non-Gaussian State Space Form in Econometrics . . . ... ... .. 7
1.5 Filtering Nonlinear and Non-Gaussian State Space Models: Sequential Importance

Sampling . . . . . . L e 8
1.6 Estimation strategies for State Space models . . . . . . . .. .. ..o 13
1.6.1 Maximum Likelihood Estimation . . . . .. ... ... ... ... ...... 13
1.6.2 Bayesian Estimation . . . . .. .. ... L 15
1.7 Model Selection . . . . . . . .. e e 19
1.8 Thesis Outline . . . . . . . . . e 22

2 Stochastic Volatility Models in US Inflation 23
2.1 Imtroduction . . . . . . . .. e 24
2.2 The UC-SVmodel . . ... .. . . . . . e 25
2.3 Bayesian Estimation . . . . . . . .. oL 27
2.4 Estimation Results . . . . . . . . . 27
2.5 Chib and Jeliazkov Method . . . . . . . . . . .. oL 30
2.6 Auxiliary Particle Filter . . . . . . . . .. 31
2.7 Model Selection . . . . . ... 32
2.8 Conclusion . . . . . . . . e e 36
2.9 APPENDIX A: Metropolis - within - Gibbs sampling scheme . . . .. ... ... .. 38
2.10 APPENDIX B: Auxiliary Particle Filter . . . . . . . . . .. ... ... ... ..... 40
2.11 APPENDIX C: Chib and Jeliazkov algorithm . . . . . .. ... ... ... ... ... 41

3 Missing values in dynamic factor models 43
3.1 Introduction . . . . . . . . .. L 43
3.2 A world economy: empirical questions and dataset . . ... .. .. ... ... ... 45

3.2.1  Openquestions . . . . . . . . . 45
3.2.2 Datadescription . . . . . . .. L 46
3.3 Dynamic Factor Model: specification and estimation . . . . .. ... ... ... ... 46
3.3.1 Dynamic Factor Model and Block Structure in the Loading Matrix . . . . . . 46
3.3.2 Maximum Likelihood for Unbalanced Panel . . . . . ... ... ... ... .. 48



3.3.3 Numerical performance . . . . . .. . ... ... .. .. ... ...

3.4 Empirical application

3.4.1 Global and Regional factors using reduced dataset . . . . . . ... ... ...
3.4.2 Global and Regional factors using complete data set and all the time span . .
3.4.3 Sensitivity experiment: G7 countries . . . . . . ... ...
3.4.4 Diagnostic checking and model fit . . . . .. ... ... 000
3.4.5 Variance Decomposition . . . . . . . . ... L Lo Lo o
3.4.6 Global Convergence or Decoupling? . . . . . .. .. .. ... .. ... ...,
3.5 Conclusions . . . . . . . . . . . e e e
3.6 Appendix A: Dataset . . . . . . . . ..
3.7 Appendix B: Analytical Score . . . . .. ...
4 Bayesian model selection
4.1 Introduction . . . . . . . . . . . . e e e e e
4.2 Methodology . . . . . . . . . . e e
4.2.1 General model . . . . . ...
4.3 Prior and Bayesian estimation . . . .. .. .. 0 Lo L L Lo
4.4 Empirical Results . . . . . . . . .
441 Fullmodels . . . . . . . .
4.4.2 Restricted models . . . . . ...
4.5 Robustness analysis . . . . . .. .. Lo
4.6 Monte Carlo Experiment . . . . . . . . .. L
4.6.1 Experiment Design . . . . . . .. .. Lo oo
4.6.2 Monte Carlo Results . . . . . . . . . .. .. . .. .
4.7 Conclusions . . . . . . . . . . e e

4.8 Appendix A: Dataset
5 General Conclusions

References

77
[
78
79
82
84
84
85
88
88
88
89
93
94

95

96



Chapter 1

Introduction

This dissertation deals with structural time series models. Structural time series models refer to
a class of parametric models that are specified directly in terms of unobserved components which
capture essential features of the series, such as trend, cycle and seasonality. This dissertation is
divided into three main parts: the first (chapter 2) deals with stochastic volatility models, the
second (chapter 3) deals with dynamic factor models and the third (chapter 4) deals with Bayesian
model selection. A general introduction to the state space methodology is provided in chapter 1.

1.1 The Linear State Space Form in Econometrics

The state space representation is the statistical framework for unobserved components models,
which is made up of a measurement equation

yi = Zyay + e, e~ N(0,02), t=1,2,...,T, (1.1)

and a transition equation
a1 = Troy + Rymg, 1~ N(0, Q). (1.2)

The first relates the time series y; to a ¢ X 1 vector of unobserved components or state vector, oy,
through Z; that is an 1 x ¢ vector. The second is a dynamic linear model for the state a;, taking
the form of a first order vector autoregression. In this case oy is a ¢ x 1 vector of unobserved states,
T; is a ¢ X ¢ matrix, R; is a ¢ X r matrix and 7; is a r x 1 vector of random disturbances. The
state space form of equation (1.1) and (1.2) can be easily extended to a multivariate setting, in
which case y; is a N x 1 vector of time series, Z; is a N X ¢ matrix and ¢; is a N x 1 vector of
random disturbances, with H; = Var(e;). Those matrices are related to a set of parameters, 6,
which usually will have to be estimated, see section 1.6. We say that a state space model is time
invariant if the system matrices are constant, that is Z; = Z, H = H, T; = T, and R; = R,
otherwise we call it time varying state space model.

In the analysis of economic time series a; represents unobservable dynamic processes, such as
seasonality or stochastic trends or core inflation and the NAIRU. In an aerospace mission, like
the Apollo, the observation equation (1.1) describes radar observations ¥, disturbed by noise, on
the state vector ay (position, velocity, ...) of a spacecraft and the transition equation (1.2) is a
linearized and discretized version of motion in space. In both cases given the observations y; on-line
estimation or filtering of oy for t = 1,2, ..., and prediction of o, s > t, are of primary interest.

4



Introduction 5

Similar problems arose in on-line monitoring of patients (Smith and West, 1983) or in ecological
processes (Frithwirth-Schnatter, 1994a).

The state space methodology offers many advantages with respect to autoregressive integrated
moving average (ARIMA) models. They are very flexible and can easily deal with missing values
and regression effects. In ARIMA framework the stochastic trends are removed in order to get a
stationarity model, those trends have an economic meaning and they can be efficiently estimated
using the Kalman filter. Finally they have an ARIMA representation, see Harvey (1989). The
flexibility of this formulation created an active field of research that brought this methodology to
the econometrics and economic literature. During the 70’s and 80’ the approach to the analysis
of time series data has been dominated by the Box-Jenkins (1970) methodology. In time series
analysis, the Box-Jenkins methodology, named after the statisticians George Box and Gwilym
Jenkins, applies autoregressive moving average (ARMA) or ARIMA models to find the best fit to
a given time series, in order to make, for example, forecasts. The original model uses an iterative
three-stage modeling approach:

o Model identification: making sure that the variables are stationary using, for example, log
first difference of the time series. Identifying seasonality in the dependent series (if any)
and using a plot of the autocorrelation and partial autocorrelation functions to decide which
autoregressive or moving average component should be used in the model.

e Parameter estimation: the most common methods use maximum likelihood estimation or
nonlinear least-squares estimation.

e Model checking: testing if the estimated model conforms to the specifications of a stationary
univariate process. In particular, the residuals should be independent with constant mean
and variance.

One of the first contribution that showed the potentiality of state space models and the Kalman
filter in this field was the paper of Harvey and Phillips (1979), where they use this formulation
to calculate the likelihood of ARMA models. Engle and Watson (1981) showed how to use the
Kalman filter to estimate the unobserved metropolitan wage rate for Los Angeles.

1.2 The Kalman filter

Theoretically the Kalman Filter, Kalman (1960) and Kalman and Bucy (1961), is a fundamental
algorithm for the statistical treatment of state space models. Under the Gaussian assumption the
Kalman filter delivers the minimum mean square estimator (MMSE) of the state vector conditional
on past information a; = E(ay|Y;—1) jointly with the mean square error matrix (MSE) give by
P, = Var(ay|Y;—1), where Vi1 ={y1,...,yt—1}-

Practically, it is certainly one of the greater discoveries in the history of statistical estima-
tion theory and possibly the greatest discovery in the twentieth century. Stanley F. Schmidt is
generally credited with developing the first implementation of the Kalman filter. It was during a
visit of Kalman to the NASA Ames Research Center that he saw the applicability of his ideas to
the problem of trajectory estimation for the Apollo program, leading to its incorporation in the
Apollo navigation computer. Its most immediate applications have been for the control of complex
dynamic systems such as continuous manufacturing processes, aircraft, ships, or spacecraft. For
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these applications, it is not always possible or desirable to measure every variable that you want
to control, and the Kalman filter provides a means for inferring the missing information from in-
direct (and noisy) measurements. The Kalman Filter is also used for predicting the likely future
courses of dynamic systems that people are not likely to control, such as the flow of rivers during
flood, the trajectories of celestial bodies, or the prices of traded commodities. The applications of
Kalman filter encompasses many fields, but its use as a tool is almost exclusively for two purposes:
estimation and signal extraction.

Starting from the state space formulation (1.1) and (1.2), the Kalman recursions can be written
in the following form:

v =y — Ziay, Fy = ZiP,Z, + o2,

Ki=T,PZ,F | L3
ayy = Tray + Koy, Py = P — KiFi Ky,

at+1 = Trayy, Py = TPy, T, + RiQiRy.

The state space model and the Kalman filter recursion are completed by the specification of initial
mean aj and variance P concerning the distribution of a;. This is an important issue when non-
stationary components are present, see de Jong (1991). If the system is time invariant and oy is
stationary, the initial conditions are given by the unconditional mean and covariance matrix of the
state vector, E(a1) = 0 and Var(a) = P, satisfying the matrix equation P = TPT' + RQ:R;.

The Kalman filter can easily handle missing values, in such case the vectors v; and a;; and
the matrices K; and F; of equation (1.3) are set to missing for these values. Thus when the set of
observations ¢, for t = v,...,v" — 1, are missing the Kalman updates become:

ai4+1 = Ttat, Pt+1 = TtPtTt/ + RtQtR;, t= Vy... ,U* — 1. (1.4)

1.3 Linear state space methods

Smoothing refers to the optimal estimation of unobserved components based on future observations.
Define p(a¢]Y;) as the marginal posterior distribution of the states at time ¢ conditional on a
sequence of data available until [. If [ < ¢ then this process is known as prediction, and the Kalman
filter can easily treat the difference [ —t as missing observations; if [ = ¢ then it is commonly referred
to as filtering; and if [ > ¢ then one is conducting the process of smoothing. The smoothing problem
is commonly segmented into three problems:

e fized interval smoothing, where one is interested in calculating p(oy|Yr) for all time indices
t=1,...,T;

o fized lag smoothing, where one calculates p(ay|Y;4r) where L > 0 is some fixed value and ¢
varies;

e fized point smoothing, where p(ay|Yr) is calculated for a fixed value ¢ with L > ¢ increasing.

In contrast to filtering and prediction, different algorithms are available for smoothing. All of them
involve at least an additional backward recursive pass through the data, after the forward pass of
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the Kalman filter, required to store the quantities v;, I}, a; and P, for t = 1,...,T. We report the
state smoothing recursion that are carried out after the Kalman filter for t =1T,...,1:

re1 = ZyF Yo+ Lyry,  Nyoy = ZyF7 2y + LyN, Ly,

A (1.5)
o = a; + Pyry—q, Vi= P, — PN 1 P,

where Ly =T, — K Z;, r7 = 0 and Np = 0. The quantity & represents the smoothed estimate and
the matrix V; is the associated mean square error matrix (MSE). It follows that the MSE matrix of
the filtered estimator exceeds the MSE matrix of the smoothed estimator by a positive semidefinite
matrix, see Harvey (1989).

For certain applications such as Bayesian analysis, we may require samples generated by a
given state space model, a local level model for example, conditional on the observed time series
Yl,-- ., Y. Simulation smoothing is a technique that provide this sample drawing the state vari-
ables (or innovations) in discrete time state space models from their conditional distribution given
parameters and observations. Several methods for Gaussian simulation smoothing exist, most of
which are based on the Kalman filter. Frithwirth-Schnatter (1994b) and Carter and Kohn (1994)
independently developed methods for simulation smoothing based on the following decomposition:

plaa, ..., Y7) = plag|Yr)p(aw—1|Yr, a) ... p(er |[Yr, ao, . .. o). (1.6)

Other simulation smoothers have been proposed, for example de Jong and Shepard (1995) focus
on sampling the disturbances and then the states. Durbin and Koopman (2002) proposed a new
simulation smoother that is simpler then the other present in the literature.

1.4 Nonlinear and Non-Gaussian State Space Form in Economet-
rics

The Kalman filter is optimal in the important case when the equations are linear and the noises are
independent, additive, and Gaussian as the model presented in (1.1) and (1.2). In this situation, the
distributions of interest (filtering, predictive, or smoothing) are also Gaussian and the Kalman filter
and smoother, as described in sections 1.2 and 1.3, can compute the conditional first and second
moments exactly. Although it was originally derived for a linear problem, the Kalman filter is a
basic algorithm for nonlinear problems. The linearity assumption is an important limitation in some
contexts; a more general formulation is the nonlinear state space with non-additive disturbances,
given by:

Yt = Gt(anfit),

1.7
o = Ft((lt—b??t), ( )

where v, is a vector of observations, «; is the state vector, Gy(-) is a measurement function, Fy(-) is a
system transition function, €; and 7; are noise vectors, and the subscript ¢ denotes time index. The
functions G(-) and Fi(-) can be nonlinear and the errors ¢; and 7, can be non-normally distributed.
This formulation can be written in additive form by placing the non-additive disturbances in the
state vector. In this framework the linear state space model is nothing more than a particular case.
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The nonlinear state space models can be specified in the form of conditional distributions with
the following transition and observation densities:

p(at+1\041:t, yl:t) = p(Oét+1|Oét, y1:t) = p(at+1|04t)a

(1.8)
p(yt\OéLt, yl:tfl) = p(yt|at7 yl:tfl) = p(yt\at)-

The notation «q.¢ is used to denote a set of variables or observations between 1 and ¢, that is
a1y = {a1,...,a¢}. We use p(-) to represent a probability density of its arguments, thus p(-)
can represent densities from different distributions in the same context. Finally y;., denotes the
information set up to time ¢, i.e. y1.4 = {y1,..., Yt}

The oldest approach to handling nonlinear models is to use linearization and approximate
Gaussianity. Schmidt (1966) introduced the idea of evaluating the partial derivatives at the filtered
values of the state variables, this approach is generally called the extended Kalman filter. Unlike
its linear counterpart, the extended Kalman filter in general is not an optimal estimator unless the
measurement and the state equation are both linear, in this case is identical to the Kalman filter.
Moreover in the extended Kalman filter the estimated covariance matrix tends to underestimate the
true covariance matrix and therefore can become inconsistent without the addition of “stabilising
noise”. Finally when the transition and observation equation are highly nonlinear, the extended
Kalman filter gives particularly poor performance because the mean and covariance are propagated
through linearization of the underlying nonlinear model, see for a detailed discussion Orderud
(2005).

The necessity to improve to the extended Kalman filter led to the development by Julier and
Uhlmann (1997) of the unscented Kalman filter (UKF), also a nonlinear filter. The unscented
Kalman filter uses a deterministic sampling technique known as the unscented transformation to
pick a minimal set of sample points (called sigma points) around the mean. These sigma points
are then propagated through the nonlinear function, from which the mean and covariance of the
probability distributions are then recovered. The result is a filter which is more accurate than a
first-order Taylor expansion of a nonlinear function as in the EKF.

Grewal ad Andrews (2001) underline that these approzimations are still not adequate for all
nonlinear problems. Thanks to the rapid development of computational power and Monte Carlo
techniques, new computation-based methods such as particle filter have been developed for nonlin-
ear and non-Gaussian state space models in the past decade. They are the sequential implementa-
tion of importance sampling and are often an alternative to the extended Kalman filter (EKF) or
unscented Kalman filter (UKF) with the advantage that they can be made much more accurate.

1.5 Filtering Nonlinear and Non-Gaussian State Space Models:
Sequential Importance Sampling

The basic idea of the Sequential Monte Carlo (SMC) methodology is the sequential sample of
relevant probability distributions using the concept of importance sampling. In comparison with
standard approximation methods, such as the popular extended Kalman Filter, they do not rely
on any local linearization technique or any functional approximation, giving more precise results.
The price to pay is that these methods are computationally very expensive.

The earliest applications of sequential Monte Carlo methods were in the area of growing poly-
mers, see Hammersley and Morton (1954) and Rosenbluth and Rosenbluth (1956), and later they
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expanded to other fields including physics and engineering. Sequential Monte Carlo methods found
limited use in the past due to the very high computational complexity and the lack of adequate
computing resources of that time. The fast advances of computer science during the 80’s and the
great potential of particle filters have made them recently a very active area of research. These
methods are already used in real-time applications appearing in fields as diverse as chemical en-
gineering, computer vision, financial econometrics, target tracking and robotics. Moreover these
methods can be a powerful alternative to Markov chain Monte Carlo (MCMC) algorithms or they
can be used to design very efficient MCMC schemes. Recent reviews and accounts of new develop-
ments on the subject can be found in, Doucet and Johansen (2008), Arulampalam et al. (2002),
Doucet et al. (2001) and Doucet et al. (2000). The current interest in particle filtering for signal
processing applications was brought on by Gordon et al. (1993) where they introduce the concept
of resampling. A large portion of the theory on sequential signal processing is about the state and
observation equations given in (1.7) that we report also here:

Yt = Gt(at7€t),

(1.9)
oy = Ft(at—h??t),

where y; is a vector of observations, oy is a state vector, Gy(+) is a measurement function, Fy(-) is
a system transition function, €; and 7; are noise vectors, and the subscript ¢ denotes time index.
The transition and the observation densities are given by

P(Oét+1\041:t, yl:t) = p(at+1!at; yl:t) = p(Oét+1|Oét)7

(1.10)
P(yt\alzt, Yli—1) = p(yt\at, yl:t—l) = P(yt\at)-

Equation (1.10) define a Bayesian model where p(as41|a¢) can be seen as the prior and p(y:|ay) as
the likelihood, that is:

T
p(a1.7) H (ag|lag—1)  Prior,
k=2
T (1.11)
p(y1.7|a1T) H (yx|ok) Likelihood.
In this context we can infer about «y.; given a realization of the observations ..
p(al-t’yl-t) = pi(m:t’yl:t) (1'12)
. ' p(yl:t)
where
plart, Y1) = plas)p(yi] o),
(1.13)

p(yl:t) = /p(alztyylst)dalzta

in general these distributions have no closed-form and numerical or simulation methods are neces-
sary to evaluate them.
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Given a sample a = {1, ..., an} generated from a density 7(-), a generic problem of evaluating
an integral

E:[h(a)] = /ﬂ'(a)h(a)da, (1.14)

this is called Monte Carlo integration. The integral evaluation based on simulations from 7(-) is
not necessary optimal, see Theorem 3.12 in Robert and Casella (2004). The principal alternative,
in order to evaluate (1.14), is not to direct sampling from 7(-) but using importance sampling.

Importance sampling is a technique for approximating integrals of one probability distribution
7(-) (target distribution) using a collection of samples from another distribution easy to simu-
late, u(-) (instrumental distribution). This method is based on the so called importance sampling
fundamental identity:

E; [h(a)] :/ Tr(a)h(a)da:/u(a)zggh(a)da (1.15)
()
@)
)

the integral can be evaluated as follows:

where w(a) = are the importance weights. As before using a sample from a given importance

distribution g (

. 1 X A A
hie) = & > w(e)n(a). (1.16)
=1

To obtain a weighted sample that resembles the target distribution () it is essential to use a good
importance distribution, pu(-).

The sequential importance sampling (SIS) techniques, allows importance samples to be com-
puted from a sequence of distributions defined on increasing spaces, this involves selecting an
importance distribution which has the following structure:

,U(Oélzt) = Mt—l(alzt—l)ﬂt(at‘alzt—l)

T
(1.17)
= p (o) H fok (g lek—1),
k=2
this means that to obtain at time ¢ a collection of particles agi) ~ pe(ary), where i =1,..., N, we
sample agl) ~ p1(c) and then recursively agl) ~ ,ut(ozt|a§271) at time t = 2,...,T. The associated
unnormalized weights are computed recursively using the following relation:
(.
wi(ons) = m(at)
()
(1.18)
_ m—1(01:¢-1) mi(a:)

B Hi—1 (al:t—l) 7Tt—1(alzt—l)ﬂt(at’al:t—l) ’
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that can be rewritten more compactly:

wt(Oélzt) = wtfl(alztfl)’)/t(alzt)

T
(1.19)
= wi (1) [ (o),
k=2
where 7;(aq.¢) are the incremental importance weights give by the following relation:
mi(Q:)
a1.4) = . 1.20
V(o) me—1(ong—1) pe (| an:e—1) ( )
The SIS algorithm can be sketched as follows:
o At time t = 1:
— Sample N particles from agi) ~ pi(ar);
) . (4)
— Compute the weights wl(agz)) and normalize them Wl(z) = %1)”’
Zj:l wi(ay”)
— The filtering distribution at time 1 may be approximated by:
- (i)
har) =Y WiY6 . 1.21
plan) ; NO (1.21)

e At time t > 2 until t =T
— Sample N particles from agl) ~ ,ut(at|a§271);

— Compute the incremental importance weights and normalize them:

(2)

wt(alzt) = wt—l(al:

(i) 1.22
_ wt(# Normalized Weights; (1.22)

_1)'Yt(a§2) Incremental Weights,

— The filtering distribution at time ¢ may be approximated by:
N "
) =Y W76 . 1.23
plaw) ;_1 t O (1.23)

The 4, is the Dirac delta mass located at .

The main problem of SIS algorithm is the phenomenon know as weights degeneracy, which
brings to an increasing variance of the importance weights at every iteration. Consequently, the
quality of the estimators will decrease as time progresses, see for example Kong et al. (1994). In
other words the particles no longer provide an adequate description of the distributions of interest.
This problem requires a mechanism for resetting the importance weights regularly to prevent this
variance accumulation, concerning the filtering distribution, Gordon et al. (1993) developed the
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resampling approach. The resampling step eliminates the particles with very low weights and
replicates those with large weights, allowing just the important particles to contribute significantly
to the approximation of the distributions of interest. A full account of resampling algorithms can

be found in Liu (2001).
1 .
Denoting with {N,agz)} the collection of equally weighted resampled particles at time ¢,

where the first element in parenthesis denotes the weight assigned to each particles and with
aiﬁl ~ Mtﬂ(atﬂjd@) the sampled particle at time ¢ + 1. Then (dﬂ,ag ) is approximately

distributed according to p(ai.¢) 41 (ae+1|ar) where p(+) is the filtered distribution. A generic SIS
algorithm can be sketched as follows:
e At time t = 1:
— Sample N particles from agi) ~ p1(aq);
wi(af”)
S wi(ad”)

D) (@ . . . 1
— Resample {W, ), ag )} to obtain N equally-weighted particles {N’ ag)}'

— Compute the weights wl(agi)) and normalize them Wl(i) =

)

— The filtering distribution at time 1 may be approximated by:

N

. 1

plon) = N Z 5@9' (1.24)
i=1

o At time ¢t > 2 until t =T

— Sample N particles from agi) ~ ,ut(at|c_x§271) and set agli — <d§271, agi))-

)

— Compute the weights and normalize them:
wt(agzi) = wt,l(a%fl)%(agg) Incremental Weights,

. (4) 1.25
Wt(z) — M Normalized Weights; ( )

SV wi(ad)

)

D (@ . . . I
Resample {W} ), ag )} to obtain N equally-weighted particles {N’ ag )}'

The filtering distribution at time ¢ may be approximated by:

N

. 1

play) = N E 66\4@' (1.26)
=1

Resampling the particles is not a problem provided that the most reasonable number of distinct
particles are retained and that they lead to a good degree of sample diversity. The resampling
procedure has negative effects on the Monte Carlo estimator because it increases its variance, to
avoid this problem it is more sensible to resample only if strictly necessary. For this reason in
the literature, it has been proposed to resample when the variance of the unnormalized weights is
superior to a pre-specified threshold, this is assessed by looking to the Effective Sample Size (ESS),
see Liu (2001) or Doucet and Johansen (2008) for a full account.
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1.6 Estimation strategies for State Space models

All the system matrices, Z;, Hy, T; and R; of a linear state space form, see equations (1.1) and
(1.2) are related to a set of parameters 6. If these parameters are known then the application of
the Kalman filter to the state space form (1.1) and (1.2) will deliver the optimal estimation of the
unknown states. Unfortunately, in almost all real situations the parameters are unknown and have
to be estimated. To estimate these parameters two main approaches are available, the Maximum
likelihood estimation and the Bayesian approach. Section 1.6.1 introduce the maximum likelihood
and provides an example of this estimation strategy for a linear state space model. Section 1.6.2
introduce the Markov Chain Monte Carlo and provides an example of this estimation strategy for
a nonlinear state space model.

1.6.1 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a popular statistical method used for fitting a statistical
model to data, providing estimates for the model parameters. It searches the parameters values that
make the data “more likely” than any other parameters values. The likelihood can be calculated
by a routine application of the Kalman filter, even if the state vector is fully or partially diffuse.
More precisely the likelihood function can be written in prediction error decomposition form, see
Schweppe (1965), and apart from a constant term the log-likelihood is:

T

T T
1 e
Uy, yr;0) = Zl(ytlthl;H) =3 <Z log | Fy| + thFt 1Ut> ; (1.27)
=1 =1

t=1

where all the quantities are given in output by the Kalman filter. This log-likelihood can be
maximized by means of iterative numerical procedures based on Newton’s method, see Nocedal and
Wright (1999) for an extensive treatment. Those numerical procedures require the evaluation of the
first-order and the second-order partial derivatives called, respectively, score vector and the Hessian
matrix. It turns out that the score vector is a fundamental quantity in the maximization steps. In
case of small parameter dimension it is efficiently computed using numerical approximations. The
latter are not feasible in the case of a large dimensional parameter vector, in these situations the
derivation of the analytical score is compulsory, see Chapter 3.

A useful algorithm for Maximum Likelihood estimation, particularly in the early stages of
the maximization procedure, is Expectation Maximization (EM) algorithm, introduced for general
latent variable models in the seminal paper by Dempster and Laird (1977). The earlier EM methods
for the state space mode were developed by Shumway and Stoffer (1982) and Watson and Engle
(1983). The EM is an iterative method which alternates between performing an expectation (E)
step by means of the Kalman filter and smoother, which computes the conditional expectation of
the complete log-likelihood with respect to the posterior of the states ay, and a maximization (M)
step, which computes the parameters which maximize the complete log-likelihood computed by the
E step. These parameters are then passed to the next E step. This procedures continues until
the difference between the log-likelihood at step ¢ — 1 and ¢ is less then a fixed tolerance value.
Under fairly mild regularity conditions the EM algorithm converges to a local maximum of the
log-likelihood function. Despite a fast convergence in the early stage of the maximization process,
the EM algorithm then becomes much slower in convergence compared to direct maximization of
the log-likelihood function.
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Illustrative example: Dynamic Factor Models

We provide here a simple example that shows the usefulness of the Kalman filter and the state
space methodology to represent and estimate dynamic factor models, that will be deeply discussed
in Chapter 3.

A widely used method to analyze large quantities of data in the social sciences is factor analysis
developed by psychologists for measurement of intelligence in the beginning of the twentieth century,
see Burt (1909). In dynamic factor analysis large number of observed variables are described by
few unobserved processes, called common factors. In recent years large dimensional factor models
have become more and more popular in econometric and economic research too, for an extensive
overview see Bai and Ng (2008).

The dynamic factor model can be cast in state space form and apply the Kalman filter for
estimation and prediction and the smoother for extracting the latent factors. This approach has
been around for some time (see Molenaar, 1985), but has been reintroduced by Kapetanios and
Marcellino (2006), Doz et al. (2007) and Jungbacker and Koopman (2008). To convert the dynamic
factor model into state space form one needs to know the number of factors, ¢ and the lag order.
It is assumed through that they are known a priory.

Consider a panel of IV time series where we denote y;; as the observation at time ¢ in the ¢
series, then the dynamic factor model is given by:

yi,t:A;ft+5i,t) tzlv"')Ta izlv"'7N7 (128)

where A; is a ¢ x 1 vector of factor loadings, f; is a ¢ X 1 vector of unobserved common factors, €; ¢
is the individual-specific noise, T is the number of observations and N is the number of series.
The dynamic factor model given in (1.28) can be represented in matrix form as follow:

yt:Aft+5ta tzl,...,T, (129)

where A = (A1,..., A N)/ is a matrix of factor loadings, f; is a ¢ X 1 vector of unknown factors. The
common factors f; are modelled as a stationary first order vector autoregressive (VAR(1)) process,
and the error components ¢; are assumed to be multivariate Normal with NV x N diagonal variance
covariance matrix .. A more general version of the factor model, that allows for some dynamics
in the individual-specific noise, or some exogenous variables can be considered. The model (1.29)
can be represented in linear state space form:

yt:ZOét—i-Et EtNN(O,Z€)7

(1.30)
1 = Toy + Mt ne ~ N(O, 277)

To get the representation (1.30) consider that f; can be rewritten as a linear combination of the
unobserved states «; using a suitable full rank selection matrix G, in particular:
ft = Gay, (1.31)
where oy has the following representation:
apy1 = Toay + e, e ~ N(0,%y), (1.32)

and X, is the variance covariance matrix of the states. In the case where the factors and the
latent states follow a VAR(1) process, the selection matrix G is just a unitary matrix. Finally
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the Z matrix is given by the combination of the A and G, indeed Z = AG. The log-likelihood
function, I(y1,...,y:;6), of model (1.30) can be evaluated via prediction error decomposition as in
formula (1.27). The prediction error vector v; and its variance matrix F; are obtained from the
Kalman filter (1.3) applied to the linear state space model (1.30). Then a Quasi-Newton BFGS
algorithm can be adopted to maximize the log-likelihood function with respect to the parameter
vector 6. Usually in dynamic factor analysis the dimension of 6 is very high and computing the
score vector numerically is not feasible. Fortunately the exact score vector for this class of model
has been provided by Jungbacker and Koopman (2008). In the presence of a large amount of data
and factors, the Kalman filter and smoother slow down enormously and are prone to numerical
inaccuracy. Jungbacker and Koopman (2008) presented a new result that lead to a computationally
efficient procedure for the estimation of the factors and the parameters by maximum likelihood.

1.6.2 Bayesian Estimation

This section provides a description of the main estimation strategies for the nonlinear and non-
Gaussian models introduced in section 1.4. For this class of models purely analytical maximization
technique is not available and the estimation is based on simulations. We have seen in section
1.6.1 that the Kalman filter is fundamental for maximum likelihood estimation, in the case of
nonlinear and non-Gaussian state space models it would be natural to consider the filtering tech-
nique presented in section 1.5 for evaluating the likelihood. Unfortunately this approach is not
feasible because the sequential importance sampling technique approximate, using a discrete set
of points, the filtering distribution, bringing to an unsmooth likelihood that cannot be maximized
using Newton’s methods. To overcome this problem a lot of different solutions have been proposed
in the literature: Andrieu et al. (2005) focused to an on-line EM algorithm, Chen and Liu (2000)
proposed a mixture Kalman filter, Johansen et al. (2006) used sequential Monte Carlo methods,
Doucet and Tadic (2003) proposed to approximate the numerical derivative with a suitable set of
recursions. Despite those and many other contributions, we still do not have general and stable
procedure to maximize the likelihood for these models. The Markov Chain Monte Carlo methods
(MCMC) are a valuable alternative to estimate these models.

In Bayesian analysis we are interested in the joint posterior of the parameters and latent pro-
cesses:

p(a, 0]Yr) o< p(a)p(0) f (Yr|ev, 0)

where « are the unknown states, 6 is a set of parameters, p(«) and p(6) are the corresponding priors
and f(Y7|a,#) is the likelihood. In this case there is no conjugacy and no closed-form expression,
therefore this distribution cannot be simulated. The essence of MCMC methods is to simulate from
an ergodic Markov Chain that has the target distribution as the limiting distribution. In a complex
case like the one presented before it is useful to split it into a set of easier problems where we can
use the conjugacy. Proceeding in this way we can estimate for example sequentially the following
quantities:

p(alf,Yr)
p(fla, Yr)

where it is possible to have closed-form solutions. This way to proceed is very similar to the Gibbs
Sampler, more on this in the following. The MCMC methods have almost unlimited applicability,
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even though their performances varies widely, depending on the complexity of the problem. They
are mainly used to estimate nonlinear and non-Gaussian state space models like the stochastic
volatility models, see Chapter 2.

MCMC methods, are algorithms that starting from a probability distribution (instrumental dis-
tribution) and using a Markov chain gives the desired distribution (target distribution) in output.
The state of the chain after a large number of steps converges to the so called equilibrium distribu-
tions that represent the target distributions. The quality of the chain improves as a function of the
number of steps, see Robert and Casella (2004). The original Metropolis algorithm was introduced
by Metropolis et al. (1953) in a set up of optimization on a discrete state space, in connection with
particle physics: the paper was published in the Journal of Chemical Physics. All the authors of
this seminal paper were involved in the Los Alamos research laboratory during and after the second
World War, the main research in that period was to evaluate the behavior of nuclear explosives.
After the second World War new computational capabilities become available thanks to the work
of von Neumann. Metropolis and Stanislaw Ulam can be considered the fathers of Monte Carlo
methods, they ran the first Monte Carlo experiment on the MANIAC (Mathematical Analyzer,
Numerical Integration and Computer) in 1948.

The Metropolis algorithm was later generalized by Hasting (1970) to statistical simulation.
Although there are a large amount of papers that highlighted the usefulness of this algorithm
before 1990, the starting point of an intensive use of Markov Chain Monte Carlo methods; by
statistical community can be traced to the presentation of the Gibbs Sampler by Gelman and
Smith (1990).

The Gibbs sampling or Gibbs sampler is an algorithm to generate a sequence of samples from
the joint probability distribution of two or more random variables. Gibbs sampling is an example
of a Markov chain Monte Carlo algorithm and is useful when the joint distribution is not known
explicitly, but the conditional distribution of each variable is known. In this case a computationally
difficult problem can be splitted in more parts that are easier to treat. Suppose that the parameters
of interest are § = (01,...,6,), the joint posterior distribution of 6 is denoted by (6|Yr), where
Yr are our observations. The joint posterior (#|Yr) may be of high dimension and difficult to
summarize. Suppose that is possible to define a set of conditional distributions given by:

(01102, ...,6p,Yr),

0ol61,....0,, V),
(6216 p: Y1) (1.33)

(Opl6h, ..., 0p—1,YT),
where (01|62, ...,60p, Yr) defines the conditional distribution of 6; given (2, ...,6,).
Formula (1.33) shows how the Gibbs sampler works. The Gibbs sampling algorithm generates an
instance from the distribution of each variable in turn, conditional on the current values of the other
variables, this is called one cycle of Gibbs sampling. The general algorithm with two variables can
be sketched as follows:
(1) At iteration 0 choose a starting value the variables 950) and Héo);
(2) At iteration j sample from the conditional distributions:
N (i1
(671657, z),

N (1.34)
09169, vr);
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O®1

Figure 1.1: The Gibbs sampling iterations for the parameters 01 and 02

(3) Go to step 2 for M times, where M is a large number.

(4) After discarding the first K iterations as burn in period to eliminate the effect of the initial
conditions, take the last N — K iterations and infer about the moment of the true parameters.

The retained draws can be averaged to create estimates of posterior features of interest. Similar
to Monte Carlo integration a weak law of large numbers can be invoked to say that, if f(-) is a
function of interest and: N
A 1
Jov—r) = N 9(6;), (1.35)
s=K+1

then f(N_K) converges to E[f(0|Yr)] as N — K goes to infinity, see Cappé et al. (2007).

Figure 1.1 reports a graphical representation of the Gibbs sampling. It can be shown more
rigorously that the sequence of samples constitutes a Markov chain, and under general conditions
they converge to the target distribution called the stationary distribution of that Markov chain,
that is nothing more than the joint posterior of (#|Yr). In situations where it is not convenient
or possible to sample directly from the conditional distributions, one can use a Metropolis-Hasting
algorithm inside the Gibbs bringing to the well known Metropolis within Gibbs algorithm.

The Metropolis-Hasting algorithm can draw samples from any probability distribution f(-)
requiring a proposal density Q(-) easy to simulate and explicitly available. In Bayesian applications
the constant of proportionality is often extremely difficult to compute, so the ability to generate a
sample without knowing it is a major virtue of the algorithm. The algorithm associated with the
target density f(-) and the proposal density Q(:) produces a Markov chain in which each state,
2!t depends only on the previous, x#!. The algorithm uses the proposal density Q(xl; at), which
depends on the current state zf, to generate a new proposed value z', if the proposed value is
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accepted with acceptance probability

a < A(z';zt) = min {p(:l:/)Qm 1} a~Uuo,1), (1.36)

1 1 t

then the chain moves towards z!*! = 2’ otherwise the current value of z; is retained, ztt! = 2.
The Metropolis-Hasting algorithm is very simple, but it requires careful design of the proposal
distribution Q(x%; xl) that brings to different algorithms with different convergence properties, see
Robert and Casella (2004) for a detailed discussions.

Illustrative example: Stochastic Volatility Models

Markov Chain Monte Carlo are widely used in econometrics and in particular in financial economet-
rics, where they are useful for the estimation of the stochastic volatility (SV) models, introduced
by Taylor (1986). Since then the SV models have been extensively studied, see Shepard (2006) for
a review. The second chapter of this dissertation deals with estimation, filtering and testing for
this class of models and it seems useful to introduce the general idea of the estimation strategy.

The SV models assume that the underlying volatility is not constant but is time varying and
in the general formulation the logarithm of the volatility is modelled as an AR(1) process. The
corresponding model, known as ARSV (1), is given by:

ye = Bere/?, e~ N(0,1),

ht—l—l - ¢ht + Tlts T ~ N(070%)7 (137)
0.2

thN<0, 1_¢2>, COV(Et,nt):O, tzl,...,T,

where y; is the observed series at time ¢ and f3 is a scalar parameter. The properties of the ARSV (1)
models have been provided by Taylor (1994) and Shepard (1996) among other, see Broto and Ruiz
(2004) for a review. The estimation of model (1.37) is difficult because the likelihood function
is hard to evaluate. One of the main approach to the estimation of these models is the Quasi-
Maximum Likelihood (QML) approach developed by Nelson (1988) and Harvey et al. (1994) based
on linearizing the equation of formula (1.37):

log(y;) = ht + &,

, (1.38)
htv1 = ¢hs + 11, ne ~ N(0,07),

where & = log(€?) — E[log(¢?)]. The model (1.38) is a non-Gaussian linear state space model.
Harvey et al. (1994) use the Kalman filter to estimate the model parameters 6 = (¢, a%) by
maximizing the quasi log-likelihood:

1 v2
log L(yy,...yn.0) = =5 ) logFy— 5> o= (1.39)

where v; is the one-step-ahead prediction error for the best linear estimator of log(y?) and F; is
the associated mean square error. Although consistent and asymptotically normally distributed
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as showed in Ruiz (1994), the QML procedure is inefficient and has poor small sample properties
because does not rely on the exact likelihood of log(y?).

The exact approach to inference of such model is based on MCMC and in particular on a
Metropolis within Gibbs algorithm, see Chapter 2. This approach has been proposed by Jacquier
et al. (1994) and Kim et al. (1998), later Bos and Shepard (2006) extended this methodology to
more general settings.

For the model presented in (1.37) a generic MCMC algorithm can be sketched as follows:

(1) Initialize the volatility process h and the unknown parameters 6;
(2) Sample the latent stochastic volatility h, see Jacquier et al. (1994) and Kim et al. (1998);

(3) Sample every parameter from each corresponding posterior, if no closed-form solution is
available use a Metropolis-Hasting;

(4) Go to 2 for many times.

The MCMC algorithm is not based on crude approximations of the model and provide a better
inference even in small samples, the main problem is the computational burdensome of this method.

1.7 Model Selection

Starting with the seminal paper of Akaike (1974), which defined one of the first model selection
criterion (the Akaike Information Criterion, AIC) there has been an enormous and growing, liter-
ature on the topic of model selection, from both a frequentist and Bayesian point of view. Model
uncertainty and model selection deal with statistical models that are not defined precisely. The
major focus of model selection methodologies is to examine the properties of each possible model
and to insure that the “more” correct model is selected based on the available information set. The
are many reasons for carry out a selection procedure and they can be summarized as follows:

e Model construction: when K different models are available the researcher wants to decide
which one fits better the data at hand. It is not guaranteed that one of those K models is
correct.

e Model checking: after a model or a family of models has been selected for various theoretical
and practical reasons, one wants to know whether the data agrees with this type of models.

e Model comparison: when a few models are proposed because they fitted correctly other
samples and one wonders which of these models best fits the current sample.

In the ARIM A(p,d, q) framework, model choice involves the selection of the optimal order of the
p, d, and q. Usually the selection procedure is carried out sequentially, starting from the biggest
model the researcher impose restrictions on p, d and g, till the model with the lower AIC is reached.

Testing the state space models raises a number of issues, primarily because of the breakdown
of standard regularity conditions, in this case the AIC criterion cannot be applied. This leads to
a test that is more complicated, see Harvey (1989) and Harvey and Proietti (2005) for a review.
In this dissertation we are interested in Bayesian model selection for linear, nonlinear and Non-
Gaussian state space models and it turns out that it is more flexible than the classical approach.
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The advantages of the Bayesian model selection respect to the classical tests are summarized among
other in Koop (1992, 1994), Sims (1998), Sims and Uhlig (1991).

There are mainly two Bayesian approaches to deal with model selection. The first is the trans-
dimensional Markov Chain Monte Carlo useful to obtain draws from the joint posterior density
p(My, 61, ...,0;|YT). The second relies to the marginal likelihood evaluation for each model at hand,
p(Yr|My) = [ p(Yr| My, 0%)p(0k|My)dby, for k =1,..., K. The marginal likelihood calculation is a
challenging task and it can be evaluated (up to some numerical and approximation errors) using a
simulation-based approach (e.g. Importance sampling and Bridge sampling) and the density ratios
(e.g. Chib’s estimators and Laplace approximation).

Suppose that we have a collection of k models for k = 1,..., K, and each model has parameters
0i € Oy, in formula:

My = {f(-10k); Ok € O},

where f(-|0;) denotes the likelihood and Oy denotes the parameter space. For k£ models the whole
parameter space is denoted by (M, 61,04, ..., 0;) where M represents all the possible models. Each
model is associated with a collection of priors on the parameters ().

Reversible jumps algorithms introduced by Green (1995) are a class of algorithms that sample
form the posterior distribution p(M, 6y, ..., 60|Yr) given by the following relation:

p(Mlela s 79k7YT) X p(YT|915 s aek)p(ela s aekv M)?

where p(01,...,0k, M) = p(61,...,0;M)p(M) is the prior distribution of the parameters and the
indices of these models.
Reversible jumps MCMC are based on a Markov Chain that lives on the state space

K
© = | J (M x 6y), (1.40)
k=1

and samples between different models, by making moves from the selected model (Mk,Hk)(i) at
iteration 7, to a new model (Mj,Hj)(iH) at iteration ¢ + 1, these moves are called jumps. The
Green (1995) algorithm is based on a transition kernel satisfying the following relation:

ALK@@M@M:LAKWMM@W (1.41)

for all A, B C © and for some invariant density 7 (-). In Robert and Casella (2004) it is shown how
to construct a proper reversible kernel for this problem. Typically the jumps are limited to moves
from a model M}, to another one M, that is close to the dimension of M} using a sensible proposal
qm()

The reversible jump algorithm allows the movement to an enlarged parameter space ©y1 or
to a reduced space Op. It turns out that the movement from the model with & components to a
model with k + 1 although conceptually simple creates problems in the reverse move, indeed from
a model with £+ 1 to a model with k& components. The solution proposed by Green (1995) is to
supplement each parameter space Oy and O with an artificial space in order to create a bijection
between them, in this case the reverse move turns out to be natural.
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Importance sampling is a simulation-based method useful to approximate the marginal likeli-
hood given by:

p(V2l20) = [ p(¥r16)p(60)d0
The marginal likelihood approximation, using the importance sampling, is obtained by the following

relation:
p(YT|0%)p(O)
q(0k)

where the ¢(6) is the importance density. Given a sample q(Gl(j)) ~ q(0) fori =1,..., N, from
the importance density the marginal likelihood can be estimated using

p(¥r|M;) = / 1(61)d6), (1.42)

N (@) (2)
N 1 p(Y7|0; )p(60;")
p(Yr| M) = — E : .
N i=1 Q(GIE;))

(1.43)

The tail of the importance density has to be fat respect to the posterior density p(0x|Yr), this
requirement is not sufficient in some circumstances to guarantee a good approximation of the
marginal likelihood.

The bridge sampling has been proposed by Meng and Wong (1996) for evaluating the ratios of
normalizing constant and has been later extended to the evaluation of the marginal likelihood in
a model selection framework by DiCiccio et al. (1997). The main problem with the importance
sampling is the unstable behaviour in the case of unbounded ratio of the nonnormalized posterior
density over the importance density. The bridge sampling generalizes the importance sampling
combining 4.i.d. samples from an importance density with the MCMC draws from the posterior
density and it turns out to be much more stable.

Define the ¢(6) as the importance density and «(fy) a function satisfying:

Co = / (00)p (04 Ve, M) q(0)d0x > . (1.44)
The bridge sampling is based on the following equation:

J a(0r)p(0r YT, My )q(0r)dOy,

J a(0r)q(0k)p(Ok YT, My,)dby,

Eq[a(0r)p(0k|YT, My)]
Epla(0k)q(0r)]

where Ej[a(6k)q(0)] is the expectation with respect to p(0y|Yr, My). Substituting the relation

p(0|YT, My) = p(0k|Yr, Mi)/p(Yr|M}) in equation (1.45) we get the main bridge sampling identity:

Eq[a(0r)p(Ok|y, Mr)]
Epla(0k)q(0r)]

To estimate the equation (1.46) the expectations on the right-hand side are substituted by sample
averages:

1=
(1.45)

p(Yr|My) = (1.46)

NN a(@)p(60 vy, My)
M1 (™) g6

p(Yr|My) = : (1.47)
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where the numerator is approximated using Markov Chain Monte Carlo draws, {G(i),i =1,...,N}

from p(0x|Yr, My) and the denominator is the approximated using the i.i.d. draws, {Ql(cm),m =
1,..., M} from the importance density q(y). The bridge sampling encompasses different simulation-
based methods depending by the function «(6y), see Frihwirth-Schnatter (2006) and the reference
therein. Finally the optimal choice of «(f)) that minimizes the expected relative error of the
estimator p(Yp|Mjy) is provided by Meng and Wong (1996).

The posterior density ratio provides a easy way to compute the marginal likelihoods of k different
models p(Yp|My). Tt uses a formal equivalence between the marginal likelihood and the normalizing
constant appearing in the definition of the posterior distribution p(0;|Yr, M). Chib (1995) and
Chib and Jeliazkov (2001) are examples of this technique, see Chapter 2.

Laplace approximation is a widely used method of approximating the marginal likelihood. This
is accomplished by substituting the p(6y|Yz, My,) with a local normal density fy(Mj; 05, %) where
0}, is the posterior mode and £~1 is minus the Hessian matrix of the log posterior evaluated at the
point ék

The log of the marginal likelihood can therefore be calculated by:

X - ~ dim/(0
log H(Vr| M) ~ log p(¥r[fe) + log p(dy) + ZO%)

log(2m) + 0.51og |X|.

The accuracy of this method depends crucially on the local normal approximation that can be
poor in some circumstances, moreover Y"1 is often not available. Lewis and Raftery (1997) to
overcome those problems proposed a generalization of Laplace approximation based on the posterior
simulation output for the individual models, this is called Laplace-Metropolis estimator.

In the linear state space model we carry out a search strategy that given a limited number of
predictors, searches over all possible models. The estimation of the unknown parameters and the
model selection are carried out jointly, see Chapter 4. In case of nonlinear and Non-Gaussian state
space models we use the Chib and Jeliazkov (2001) technique based mainly on MCMC and Particle
Filter algorithms, see Chapter 2.

1.8 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 deals with stochastic volatility
models. The local level model with stochastic volatility, recently proposed for U.S. Inflation by
Stock and Watson (2007) provides a simple yet sufficiently rich framework for characterizing the
evolution of the main stylized facts concerning the U.S. inflation. The model decomposes infla-
tion into a permanent component, evolving as a random walk, and a transitory component. The
volatility of the disturbances driving both components is allowed to vary over time. The chapter
provides a full Bayesian analysis of this model and readdresses some of the main issues that were
raised by the literature concerning the evolution of persistence and predictability and the extent
and timing of the great moderation. The assessment of various nested models of inflation volatility
and systematic model selection provide strong evidence in favor of a model with heteroscedastic
disturbances in the permanent component, whereas the transitory component has time invariant
size. The main evidence is that the great moderation is over, and that volatility, persistence and
predictability of inflation, underwent a turning point around 1995. During the last decade volatility
and persistence have been increasing and predictability has been going down.
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Chapter 3 implements a new maximum likelihood estimation method for high-dimensional dy-
namic multi-factor models in presence of large amount of missingness. The exact treatment of
missing values with a reduction technique proposed by Jungbacker and Koopman (2008) enables
the estimation of the factors and a large number of parameters in very fast and efficient way. This
new methodology is used to analyze the evolution of the degree of global and regional interdepen-
dence over the period 1950-2007. The chapter also provides the decomposition of the aggregate
output for 150 countries into factors that are (i) common across all countries, (ii) common across
regional areas and (iii) specific to each countries. The chapter provides a systematic assessment of
the estimation strategy and discusses the empirical evidence in the light of the previous literature.
Finally it provides new results about global and regional convergence.

Chapter 4 provides a new Bayesian model selection technique (Frithwirth-Schnatter and Wagner,
2009) to characterising the nature of the trend in macroeconomic time series. It illustrates that the
methodology known as stochastic model specification search can be quite successfully applied to
discriminate between stochastic and deterministic trends, it then provides a more general version
of the test that allows for autoregressive parameters. The validity of this procedure is shown using
the same fourteen macroeconomic and financial series considered in the seminal paper by Nelson
and Plosser (1982) and to an updated data set that spans the period between 1947 and 2009. The
results show that the unit root hypothesis cannot be rejected in most of the series. Finally the
chapter provides a study about the robustness of this technique and a Monte Carlo experiment.

Chapter 5 contains the general conclusions.



Chapter 2

Stochastic Volatility Models in US
Inflation
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2.1 Introduction

Inflation’s volatility has attracted a great deal of attention recently; the interest has been sparked
by the debate on the Great Moderation, that has been documented for real economic aggregates.
Inflation stabilization is indeed a possible source of the reduction in the volatility of macroeconomic
aggregates. The issue is also closely bound up with inflation persistence and predictability. In an
influential paper Stock and Watson (2007), using a local level model with stochastic volatility,
document that inflation is less volatile now than it was in the 1970s and early 1980s; moreover,
persistence, which measure the long run effect of a shock, has declined, and predictability has
increased.

There is still an ongoing debate about the statistical significance of inflation persistence and its
stability over time, see Pivetta and Reis (2007), Cogley, Primicieri and Sargent (2008), Cecchetti et
al. (2007), among others. Recently Bos, Koopman and Ooms (2008) analyzed a U.S. core inflation
series (excluding food and energy) as a long memory process subject to heteroscedastic shocks, and
documented remarkable changes, taking place about at the time of the Great Moderation (1984),
in the volatility of the series and the fractional integration parameter (which is the measure of
persistence adopted in that paper).

In this paper we reconsider the unobserved components model of U.S. inflation estimated in
Stock and Watson (2007), referred to as the local level model with stochastic volatility (UC-SV).
The model provides a simple yet sufficiently rich framework for discussing the main stylized facts
concerning inflation, such as the changes in persistence and predictability. The model postulates the
decomposition of observed inflation into two components: the permanent component (or underlying
inflation) which captures the trend in inflation, and the transitory component, which captures the
deviations of inflation from its trend value. We will start from a specification such that both
components are driven by disturbances whose variance evolves over time according to a stationary
stochastic volatility process, and will attempt to assess the significance of the changing volatility
in each of the components.

The contributions of this paper are the following: we provide a full Bayesian analysis, so that,
unlike the current literature, we do not assume that some of the parameters, namely the variances of
the stochastic volatility components, are known. Secondly, we carry out systematic model selection
by comparing the marginal likelihood implied by the different models of inflation volatility. The
marginal likelihood is estimated according to the Chib and Jeliazkov (2001) algorithm.

The interesting final result is that we find strong support for the specification with stochastic
volatility in the permanent component, but not in both. We document that persistence is higher
than in previous studies and is subject to a significant increase starting from the second half of the
90’s, whereas predictability has decreased somewhat at about the same time.

This chapter is organized as follows. In Section 2.2 we present the local level model with
stochastic volatility. Section 2.3 illustrates the Monte Carlo Markov Chain (MCMC) sampling
scheme used to perform Bayesian inference for this model. In Section 2.4 we present and discuss
the estimation results. In Section 2.5 and in Section 2.6 we provide a detailed description of the
Chib and Jeliazkov (2001) technique an for the auxiliary particle filter that is needed to evaluate
the conditional likelihood. In Section 2.7 we apply the Chib and Jeliazkov (2001) approach to the
evaluation of the marginal likelihood. The results are used to select the final model among four
competitors. Section 2.8 concludes the chapter.
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Figure 2.1: Quarterly U.S. Inflation, y: = 400A In CPI,

2.2 The UC-SV model

The paper focuses on the quarterly inflation rate constructed from the Consumer Price Index (All
Urban Consumers, seasonally adjusted), made available by the U.S. Bureau of Labor Statistics. The
quarterly index is obtained from the monthly index by computing the average of the three months
that make up each quarter; if we denote the quarterly series by CPIl;, the annualized quarterly
inflation rate, denoted y;, t = 1, ..., T, is computed as 3 = 400A In CPI;. The series is plotted in
figure 2.1 and is available for the sample period 1960:q1 —2008:q3.
The most general specification of the UC-SV model with stochastic volatility represents inflation
as the sum of an underlying level, denoted here by oy, which evolves as a random walk, and a
transitory component:
Y = aptoae, &~ N(0,1),

2.1
ar = g1+ Oy, ne ~ N(0,1), 21)

where &; and 7; are independent standard normal Gaussian disturbances and their size, o,; and oz,
respectively evolve over time according to a SV process. Denoting hi; = Ino?, and hy = In a%t,

o2
hig = m+o1hig—1+6K1e,  hio~N <07 T _F”:b%) , w1~ N(0,07),
2
g

hoy = po+ @ahoy 1+ ko,  hog~N (07 T R;2> , k2~ N(0,02,).
— 93

(2.2)
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The model encompasses the traditional stochastic volatility model that is widely used in finance
(see for instance Shephard, 2006), which arises when the process o; degenerates to a constant.

The specification of the stochastic volatility processes differ only slightly from Stock and Watson
(2007) and Cecchetti et al. (2007), who assume a random walk process for the log-variances hi;, i =
1,2. In fact, their specification is encompassed by (2.2), which is a more canonical specification of a
volatility model (see for instance Jacquier et al., 1994, and Kim et al., 1998), since it arises as the
discrete-time approximation to the Ornstein-Uhlenbeck continuous time process used in finance,
and ensures the stationarity of n; and &, provided that |¢;| < 1,7 = 1,2. As a matter of fact, when
the autoregressive coefficients ¢; are close to unity and the constants p;,7 = 1,2, are close to zero,
specification (2.2) is virtually indistinguishable from a random walk.

When both variances o2, and a,zit do not vary with time, the model reduces to the the traditional
local level model. The latter has a IMA(1,1) reduced form, Ay; = & +9¢;_1, with & ~ NID(0, o2).
The structural parameters are related to the reduced form parameters by the two equations o(1 +

9?) = 0727 + 202, 029 = —o2, which are obtained by equating the autocovariances at lags 0 and

1, respectively; from these we obtain the moving average parameter 9 = [(q2 + 4q)% -2 - q} /2,

where ¢ = 0 /02 is the signal to noise ratio, and the prediction error variance (p.e.v.), 0> = —02 /9.
Notice that ¥ is restricted within the range [-1,0]. The local level model has a long tradition and
a well-established role in the analysis of economic time series, since it provides the model-based
interpretation for the popular forecasting technique known as exponential smoothing, which is widely
used in applied economic forecasting and fares remarkably well in forecast competitions; see Muth
(1960) and the comprehensive reviews by Gardner (1985, 2006). In the sequel we shall also consider
the cases when either o2, or U%t, or both, are constant.

The UC-SV model can be considered as an IMA(1,1) model with time-varying p.e.v. and moving
average parameter. This suggests taking, as a local measure of persistence, P, = 1 + ¢4, where 9,
varies with time according to the values of the time-varying signal to noise ratio ¢; = 0727t /o2, The
quantity P; decreases linearly from 0 to 1 as v increases from -1 to 0. Cecchetti et al. (2007) use
the implied time varying first order autocorrelation of Ay, as a measure of persistence; the local
autocorrelation (i.e. conditional on oz, and 0) is ps(1) = —1/(g: +2) = 9:/(1+97). Alternatively,
we can use the (conditional) normalized spectral generating function at the zero frequency, which
is

2
(o} 279t
pr—__ " _ _ =1+ 2p(1).
C= 2y T gy )

This measure decreases monotonically from 0 to 1 as 1 increases from -1 to 0.
As a measure of local predictability we can take the prediction error variance, conditional on
{hit,i=1,2,t =1,...}, which is defined as
o2 = 22t
Uy
A relative measure of predictability can be defined in terms of the Granger and Newbold (1986, p.
310) forecastability index:

Var(&|hit) 0
Pred; =1 — = . 2.3
redt Var(Aylhie) 1+ 9?2 (23)
0.2
In terms of the parameters of the UC-SV, the prediction error variance equals Var(&|h;) = ﬁ,

whereas the variance Var(Ay|hit) = o7, + 202, The above measure ranges between 0 (¢J; = 0) and
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0.5 (¥ = —1), and it is negatively related to the persistence of the process. As a matter of fact, as
¥; ranges from -1 to 0, predictability decreases from its maximum, 0.5, to zero.

2.3 Bayesian Estimation

This section provides an overview of the MCMC methodology adopted for the estimation of the
UC-SV model. All inferences are based on a Gibbs sampling scheme, according to which samples
are drawn componentwise from the full conditionals; for the components which cannot be sampled
directly a Metropolis-Hasting sub-chain is used within the Gibbs sampling cycle. In particular, the
posterior of the AR parameters, ¢1 and ¢s, is not available in closed form; see Kim et al. (1998)
and Bos and Shepard (2006). More details on the specification of the prior distributions, the full
conditionals and the Metropolis-within Gibbs steps are provided in Appendix A.

Let 0 = (M1,M2,¢1,¢2,021,0£2) denote the vector of hyperparameters, h;,i = 1,2, be the
collection of the values of the latent stochastic volatility processes, and « and y denote the stack
of the values of permanent inflation and the series, respectively. The Gibbs sampling scheme can
be sketched as follows:

1. Initialize h;, 6
2. Draw a sample from 6, aly, h;

a) Sample 0 from 0|y, o, h; (see Appendix A).
b) Sample « from aly, 0, h;, using the simulation smoother proposed by Durbin and Koop-
man (2002).
3. Sample h;,i = 1,2, from h;|a, y, 6, using a Random Walk Metropolis-Hastings algorithm;
4. Go to 2.

The most complex part of the algorithm deals with the simulation of the stochastic volatility
processes. We adopt a single move sampler based on the density:

Rit|Pi t415 i g—1, Yt e—1, 0. (2.4)

For this purpose, we implement a Random Walk Metropolis-Hastings algorithm, described in detail
in Appendix A; see also Cappé et. al. (2007). In order to sample from the full conditional we use
the following results:

F(hitlPit—1, hijg1, Yo, ey —1) o< f(higlhig—1) f(yelow, hae) falog—1, hay). (2.5)

2.4 Estimation Results

This section reports on the main estimation results for the model presented in section 2.2. The
MCMC sampler was initialized by setting all h;; = 0 and ¢; = 0.86, 0? = 0.07 and p; = 0.6. We
iterated the sampler for a burn-in period consisting of 12,500 iterations, before recording the draws
from a subsequent 25,000 iterations. The programm is written in Ox v. 5.10 console (Doornik,
2007) using our own source code. The time needed for all calculations (including the additional
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simulations required to evaluate the marginal likelihood with the Chib and Jeliazkov method) is
about 35 minutes.

Figure 2.2 displays the inflation series with the posterior mean of the permanent component, and
the interval estimates of two stochastic volatility components for the irregular and the permanent
disturbances, 0.4 and o,;. The third panel shows that the volatility of the permanent component
has been increasing from the 60ies up to 1982, and then is slowly decreasing. The volatility of the
transitory component (central panel) is much more stable, instead. In the sequel of the paper we
will address the question as to whether it can be considered as time invariant.

The estimates of the latent volatility processes are comparable to the corrected estimates ob-
tained by Stock and Watson (2007) and displayed in their Figure 2.2, referring to CPI (all items),
on page 8, panels (a) and (b), of the document available at http://www.princeton.edu/ mwatson.
In particular, the estimated standard deviation of the permanent component shows two distinctive
peaks in 1975 and 1981, and changes substantially over time; on the contrary, the volatility of the
irregular component is much less evolutive. The difference that arise are due to the different sample
considered and to the fact that Stock and Watson estimate a restricted version of the model (in
particular, ¢; = 1, 4; = 0,02, = 0.2,4 = 1, 2; notice that the variance of the volatility shocks is not
estimated).

Figure 2.3 displays the evolution of the Monte Carlo estimates of the posterior mean of the
signal to noise ratio, ¢;, of the persistence parameter, P;, the prediction error variance and the
predictability measure, Pred;. The graph reveals that the size of the random walk component
increases during the 70s, when the trend dynamics become more sustained, and it is lower in
the 80s. Persistence is time varying at values well below 1 and there is evidence for a strong
decreasing tendency during the 80s. The robustness of these results will be discussed later. As far
as predictability is concerned, the prediction error variance undergoes a decline after 1982 (this is
consistent with the results of Bos, Koopman and Ooms, 2008). In relative terms, the forecastability
index shows an increase in the 80s.

Table 2.1 reports some summary statistics concerning the posterior distribution of the parame-
ters and some convergence diagnostics. As for the assessment of convergence, we report the Geweke
statistics: let #U) denote the j-th sample of the sampling scheme for the generic parameter 6 after
the initial burn-in period. Let also 6, denote the average of the first n, draws, 8, the average of the
last ny draws at the end of the convergence period, which are taken sufficiently remote to prevent
any overlap, the Geweke’s convergence statistic (Geweke, 1992, 2005) is defined as

0o — Op

CG = s
VVia/ma+ Vip/mp
where
np—1
Vg =cor+2 Z wjcjk, k=a,b,
j=1

is the long run variance of the parameter sample path for the n; draws, based on a weighted
combination of the autocovariances of the draws at lag j, ¢;x, with weights w; that are decreasing
in j and ensure that V7, > 0. A customary choice is the set of linearly declining weights w; = éjr—{,
where [ is the truncation parameter.

The inefficiency factor is INEF = 1 + 22?;11 wjpj, where p; is the sample autocorrelation of

the draws at lag j. This can be interpreted as a normalized measure of persistence of the draws.
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Large values imply that the draws are strongly and positively autocorrelated (the spectral power
is concentrated at the origin), so that the chain explores the parameter space very slowly and the
additional information content of a draw is small.

The values reported in table 2.1 highlight that the convergence assessment of the chain are
not fully satisfactory, since the Geweke statistic for some parameters, like u; and ¢9, are strongly
significant.

Table 2.1: Posterior mean, Median, Geweke statistic and Inefficiency factor for UC-SV model

Parameters Mean | Median | Geweke’ G¢ | INEF
11 -0.0017 | -0.0015 -11.20 | 137.1
15 -0.0253 | -0.0252 -2.30 | 30.92
01 0.9356 | 0.9372 1.18 | 13.00
103 0.9885 | 0.9905 15.06 | 307.7
021 0.0491 0.0482 -2.38 | 24.43
o, 0.0487 | 0.0479 -0.18 | 63.41

2.5 Chib and Jeliazkov Method

Chib (1995) and Chib and Jeliazkov (2001) proposed a technique for estimating the marginal
likelihood useful to carry out Bayesian model selection. Define My, ..., M} as the k competitive
models, fr(Yr|6) as the sampling density (likelihood function) for model k, Y7 = {y1,...,y:} the
available observations and 7 () the associated prior density. Suppose that the Gibbs sampler has
been applied to model £ and we have a collection of samples:

{019 NG (2.6)

where 019 represent the draws of the parameters and z(9) is the latent data, for example a latent
process. The objective is to compute the marginal density m(Yrp|Mj) for the output obtained from
(2.6).

The posterior relation for each model is:

T (0|YT) = Jm

by virtue of m(Yp|My) to be the normalizing constant of the posterior density we can rewrite the

relation in the following way:

(Y| ) = SR, (2.7

taking the logarithm and evaluating the resulting expression at the highest density point, 8%, we
get:

logm(Yp|My) = log fr(Yr|0") + log m (%) — log mx (6% |Y7). (2.8)
This expression requires the evaluation at 6, of the log-likelihood function, log fi(Y7|0*), the log
prior density, log7m,(6*) and an estimate of the posterior ordinate, log m(6*|Y7). The original
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paper of Chib (1995) proposes a numerical algorithm to evaluate the log 7, (6*|Yr) in the case of
closed-form solution for the posteriors, this is easily done using the draws of the Gibbs sampler.
Although the technique proposed by Chib (1995) is very flexible it can deals just with closed-form
posterior of each parameter. Later Chib and Jeliazkov (2001) extended this technique to the cases
of no closed-form expression for the posteriors. The algorithm is valid virtually for every MCMC
algorithm, the main drawback rely on the high computational requirements. The main steps can
be summarized as follows:

(1) After a Gibbs sampler has been performed for all possible models;
(2) Evaluate the log 74 (6%) at a given point 6*;

(3) Evaluate the log-likelihood log fix(Y7|0*) at a given point 6*. The log-likelihood of a linear
state space model can be easily computed using the Kalman Filter, in case of nonlinear and
non-Gaussian state space model the log-likelihood has to be evaluated with the particle filter;

(4) Evaluate the quantity logm(6*|Yr) using the relations given in Chib (1995) and Chib and
Jeliazkov (2001);

(5) Evaluate formula (2.8) and repeat the steps 2, 3 and 4 for all the K possible models.
The model with the highest log m(Yp|Mj) will be the chosen model.

2.6 Auxiliary Particle Filter

The auxiliary particle filter (APF) has been proposed by Pitt and Shepard (1999) to overcome
one particular problem of the sequential importance sampling methods, it attempts to reduce the
variability of the importance weights. The resampling step takes place at the conclusion of one
iteration before moving to the next observation. It would be nicer and more efficient if one could
pre-weight the particles prior to the resampling step in order to reflect how they are compatible
with the next observation, this is essential the idea behind the auxiliary particle filter. The notation
used in this section is the same as section 1.4.

Assuming that oy, 1 is unknown the relationship, in the filtering and smoothing context, between
ay and g4 is:

P(Yet1loat, yi:e) Ip(Oét|y1:t)/ft+1(Oét+1|06t)9t+1(yt+1|04t+1)d06t+1 (2.9)

which is the integral of the joint distribution of ay.t+1 and y41 given yi... Defining g1 (yes1|ae) =
[ fea1(egr]ow) ges1 (Yes1|es1)dagsr it would be desirable to use a term of this sort to determine
how well a set of particles matches the next observation before the resampling step is performed.
The auxiliary particle filter employs some approximation §¢11(yi+1|coy) of the predictive likelihood
9t+1(Yr+1|on) in an additional pre-weighting step and uses an auxiliary variable A9 to make use of
these weights.

The general version of the auxiliary particle can be sketched as follows:

o At time ¢t = 1:

— Sample N particles from dgi) ~q(aq);
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, (4)
and normalize them Wl(l) = w;

Zj‘vﬂ wl(agj))

D) (@ . . . 1
— Resample {W1( ), ag )} to obtain N equally-weighted particles {N’ ag)};

— Compute the weights wl(agi))

e For t>2, until t =T

— Calculate the auxiliary weights /\,Ei) x gt(ytlagi_)l) and normalize such that Zf\i 1 )\gi) =1;

Sample gagi) such that P(gogi) =j)= /\gj ) (i.e. sample from the discrete distribution with

parameter /\§Z) );

; (2) . (4) .
Sample N particles from dg‘) ~ qi(a]at’_|) and set agzi +— (aﬁ_l, d£1)>;

, o ~ (1)
— Compute the weights wt(dgl)) and normalize them Wt(z) = M;

SN an(@)

- ) 1 .
Resample {Wt(z), dgz)} to obtain N equally-weighted particles {N’ agz)}.

The APF nests other algorithms in the literature as special cases, if we do not use a predictive
likelihood then the APF reduces to the bootstrap filter of Gordon et al. (1993). Johansen and
Doucet (2008) showed that it can interpreted as a standard sequential Monte Carlo algorithm
applied to a sequence of target distributions that take into account the approximate predictive
likelihood. Finally the auxiliary particle filter gives as output the log-likelihood as a weighted sum
of the first and second stage weights, see Appendix B.

2.7 Model Selection

Thus far the literature has focused on fitting the UC-SV model (sometimes with arbitrary restric-
tions on the parameters O'ZZ-) and describing the estimation result. There is a potential danger that
the UC-SV model could be overfitting the data, but little or no attention has been devoted to this
issue.

We thus turn our attention to Bayesian model selection. The models under comparison are the
following four variants of the local level model:

e M;: the Local Level Model with homoscedastic disturbances (UC);

e Mj: the Local Level Model with a SV disturbance only on the transitory component (UC-
SVt);

e Msj: the Local Level Model with a SV disturbance only on the permanent component (UC-
SVe);

e My: the Local Level Model with two SV disturbances (UC-SV).
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Bayesian model comparison entails the computation of posterior model probabilities, see Geweke
(2005) for more details. If the models have the same prior probability, the ratio of the posterior
mode probabilities is the Bayes factor, which is the ratio of the marginal likelihoods of two rival
specifications. The main difficulty lies with the evaluation of the marginal likelihood. For this
purpose we adopt the method proposed by Chib and Jeliazkov (2001), which is based on the
MCMC output, and additional draws from given partial full conditionals.

Denoting by f(y|0x, My) the conditional density of the data, given M} and the parameter vector
O, and by m(0x|My), ©(0k|y, M), the prior and posterior densities, respectively, of 6, the Chib
and Jeliazkov (2001) approach is based on the following basic marginal likelihood identity:

y| My, 0r) (0| My,)
(O |y, My) ’

where m(y|Mjy) is the marginal likelihood of model M.
The formal Bayesian approach for comparing any two rival specifications, My and M,., is through
the pairwise Bayes factor, defined as the ratio of marginal likelihoods:

B, _ m(y|My)
T om(y|My)

which can also be interpreted as the posterior odds ratio the two models, when they are assumed
to be equally likely a priori.

Taking logarithms of (2.10) and evaluating this function at some hight density point 6}, such
as the mean of the posterior density 7(0|y, M), we have:

log m(y|My,) = log f(y| My, 0},) + log w(0}| M}.) — log w(0} |y, My,) (2.11)

The conditional likelihood appearing as the first term on the right hand side is evaluated with the
support of the Kalman filter for the linear Gaussian homoscedastic local level model (M ); for the
other specifications, featuring stochastic volatility in at least one of the components, it is evaluated
by sequential Monte Carlo methods (particle filters). Full details are provided in Appendix B.
The second component is simply the product of the prior distribution for the parameters of each
model. The last component, i.e. the normalized posterior density of the parameters, requires
a specialized treatment. In Appendix C we provide the relevant details for its estimation, with
particular reference to UC-SV specification.

Table 2.2: Marginal likelihood for UC models of U.S. inflation.

Models | log f(y|My,0;) | logw(0;| M) | log m(6; |y, My) Total
ucC -369.56 -11.48 -0.12 | -380.93
UC-SVt -367.80 -8.83 7.24 | -383.87
UC-SVe -366.71 -2.51 -13.5 | -355.72
UC-SvV -356.10 -3.06 20.81 | -379.96

The results, reproduced in Table 2.2, clearly point out that the model that performs best is
the local level model with stochastic volatility in the permanent component. The variation in the
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Figure 2.4: Upper: Quarterly inflation and its posterior mean level; Bottom: Volatility of the permanent com-
ponent with 95% percent credible interval.

transitory one is by and large insignificant. The UC-SV has the highest conditional likelihood, but
receives a high “penalty” from the term log 7 (0} |y, M}). As a result the posterior odds of model
UC-SV against UC-SVc are close to zero. Hence, we conclude that the model with two stochastic
volatility components is likely to over-fit the data.

Hence, our preferred model is the UC-SVc¢ specification; table 2.3 and figures 2.4-2.5 report
the main estimation results for this model. In particular, figure 2.4 displays the posterior mean of
the permanent component, along with the 95% credible intervals. The bottom panel displays the
posterior mean and the interval estimates of the process o,;. The plot illustrates that the volatility
of the permanent component is subject to a steep decline in the years 1982-1995, whereas the trend
is reversed after 1995. The first panel of figure 2.5 displays the evolution of the posterior mean
of the signal to noise ratio, O'%t /o2, The persistence parameter, plotted in the top right panel of
figure 2.5, declined during the great moderation, but has been increasing since 1995. The trend in
predictability (see the bottom panels of figure 2.5) is the mirror image of persistence: predictability
increases during the great moderation, but declines at the end of the sample.
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Finally, figure 2.6 displays the nonparametric estimates of the posterior density of the parame-
ters of the permanent volatility process and the irregular variance, and table 2.3 presents summary
statistics concerning the distribution of the parameters and the convergence of the MCMC sampling
scheme. We notice in particular that the Geweke’s convergence diagnostics are fully satisfactory.

Table 2.3: Posterior mean, median, Geweke’s statistic and Inefficiency factor for UC-SVec model.

Parameters Mean | Median | Geweke’'s G | INEF
L2 -0.0233 | -0.0229 -0.93 | 26.61
o2 0.9791 | 0.9801 -0.13 | 69.74
o2, 0.0472 | 0.0463 -0.82 | 32.16
o? 1.2509 | 1.2403 1.80 | 135.00
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Figure 2.6: Upper graph: Posterior density of the autoregressive parameter of the stochastic volatility process.
Middle graph: Simulation against iteration for the variance of the stochastic volatility process.
Bottom graph: Simulation against iterations for the constant in the stochastic volatility process.

2.8 Conclusion

The paper has provided a full Bayesian analysis of the local level model with stochastic volatility
proposed by Stock and Watson (2007) for the U.S. quarterly CPI inflation rate. The model provides
a simple yet effective decomposition of U.S. inflation into a permanent component and a transitory
one, with stochastic volatility in the disturbances driving the two components. Bayesian model
selection enabled us to conclude that inflation’s volatility is subject to significant changes over
time, but the volatility affects only the permanent disturbances, not the transitory component.
The volatility of the permanent has been decreasing substantially after 1982, reaching a min-
imum around 1995, but has been increasing ever since, albeit at a small rate. The estimated
volatility pattern support the view that a turning point took place around the mid-90ies and the
great moderation is likely to be over. As correctly pointed out by a Referee, this result deserves
further investigation as for its economic interpretation and implications. There are to possible
explanation as to why it went undetected in previous analyzes: first and foremost, previous studies
were conducted on a much shorter sample; for instance, the sample period consider by Stock and
Watson (2007) ended in the fourth quarter of 2004, whereas our series ends in the 3rd quarter of
2008. The series, displayed in figure 2.1, does indeed display higher volatility at the end of the
sample. Secondly, there are two substantial differences in model specification and estimation, that
may play a role: on the one hand, our final specification, suggested by Bayesian model selection,
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is such that the volatility of the transitory component is constant. Also, the parameters of the
permanent disturbance volatility process are estimated, rather than fixed.

The persistence implied by the model has been decreasing during the years of the great mod-
eration and it stayed at historical lows up to the mid-90ies. Recently, persistence has been rising
again. Correspondingly, the predictability of inflation increased during the great moderation up to
maximum occurring around 1995 and it has been going down ever since.
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2.9 APPENDIX A: Metropolis - within - Gibbs sampling scheme

This Appendix illustrates the prior and posterior distributions used in our analysis. For the prior
distribution we assume an independent structure between each block of variables and within each
block so that m(0, v, h1, ha) = w(0)7(a)m(hy)mw(he), and, for instance,

7(0) = m(p1er, dy)m(pzlez, do)m(r|ar, by)m(pa|ag, ba)m(on, |v1, BT (08,2, Ba)-

The prior distributions and their hyperparameters are reported in table 2.4.

Table 2.4: Specification of the prior distributions

0 Prior Hyperparameters

i N(c;, d?) c; =0.00 | d; =10.00
¢; | Beta(ai,b;) | a; =20.50 | b; =1.50
o2 | IG(m,B1) | 11 =20.00| B =0.20
o2 | 1G(y2,B2) | v2=20.00 | B2 =0.20

The posterior densities are available in closed form for the core level of inflation (for which
samples are drawn by a multimove sampler known as the simulation smoother, here implemented
according to the algorithm presented in Durbin and Koopman (2002)), and for some elements of
the vector 6 for which we can exploit conditional conjugacy.

1. Given the choice of the prior distribution, the full conditional density of the parameter ¢; (and
similarly ¢) is not available in closed form; therefore, to sample from the full conditional
we employ a Metropolis-Hasting sampling algorithm, similar to the one described in Kim
et al.(1998), which enforces the stationarity of the stochastic volatility process. Another
possibility is to use a random walk Metropolis-Hasting that can be sketched as follows: if
d)z(-] ~U denotes the current value of the chain at the j-th iteration, we sample a new proposal
d)z(»] ) = d)z(»J - + wj, where w; is drawn a normal distribution with mean 0 and variance
0.1. If the proposal is within the stationary region then it is accepted with probability
min{1, g( )/g( ]7 )) where

9(¢i) = (i) f (il pi, 5, 02,

and, apart from a constant term,

20 + Log(1 - ¢?) — o1 (hirn — Gihig — i) .

20 2 2 202

2. Using a Normal prior, the full conditional distribution of the parameters p; is N (C’l,ﬁl)

where:
~ ~ ~ 1 T 71
CZZD 74‘72 it d)’l i t— 1) Dlz d712+0'7)2{1 . (213)

“ltl
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3. Using a conjugate Inverse Gamma prior, the full conditional of the variances of volatility
processes are:

2 n—1 2
n hio+ 2 im1 (hig1 — i — dihig)
Uii|y7a>hiv¢i7uiNIG{2+aia6i+ L0 = 2 - -

4. To sample from hiz|hi¢—1, hi 41, Yt, 04, 8, we adopt the single move Metropolis-Hastings sim-
ulation step, based on the factorization:

J(haelha -1, P11, e, o, 0) o f(hagl b1, Pagra, 0) f(yelaw, hae). (2.14)
It can be shown that
f(hatlhii—1, hiig1,0) = f(halhii—1,0) f(hii1|hae, 0) (2.15)
is a Gaussian density with mean

« W1 —=0)+d(hit—1+hitq1)

and variance )
’[}2 == O—Hi
o1+ ¢?

see Jacquier, Polson and Rossi, 1994). Random Walk proposals h(j ) can be made from this
( quier, : prop i

Gaussian density; their acceptance probability is min{l,g(hg]t))/g(hg*l))}, where

(h1t41 — 1 — d1h1s)? n (hit —p1 — prh1i—1)? H o

g(h1) =exp {— {

202 202
751 , r1 (2.16)
U S [_(yt—o‘t)]
exp(h1/2) 2exp(h1)

for t =1,...,n, whereas

g(h10) = exp {— (h1iy — 1 — dihio)* (1= D3, } |

2 2
207, 207,

and, for t = n,

(R — p1 — d1h1n—1)> }

hin) = exp{ —
R

A similar sampling scheme is adopted for ho;.
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2.10 APPENDIX B: Auxiliary Particle Filter

For evaluating the conditional likelihood, f(y|0k, M), for the SV specifications, we implemented
an auxiliary particle filter (see Pitt and Shephard, 1999). The latter estimates the one-step-ahead
predictive densities which enter the factorization: f(y|0k, My) = 1, f(ye+1|Ys, Ok, My,), where Y; =
{y1,...,yt}, and the predictive density is evaluated by sequential Monte Carlo methods as follows:

M
1 i 1 ‘
f(W411Ye, Ok, M) = Y ;Zl:wg,z): “R ;:1: wéjt)- (2.17)

Here M denotes the number of particles, wy ; are the so-called first stage weights, R is the number
of daughter particles (see below) and ws+ are the so-called second stage weights.
All the inferences will be conditional on (0, My); henceforth, for notational simplicity we will

omit these conditioning elements. After initializing the weights wq o = ﬁ and drawing samples

z(()i),z' = 1,..., M, from the initial distribution of the random vector z; = (o4, h1t, hay), at time
t =0, with
o2 o2
g ~ N (0, 1000) hl 0~ N O, az 2 h2 o N 0, 2 7 |5 (2.18)
bl 1 _ (251 ’ 1 _ ¢2

we iterate, for t = 1...T', the following steps:
1. Set the first stage weights, wy; = ﬁ

2. Predict the unobserved states one-step-ahead, and update the weights, by

2 = Bzl
) _ 0 (0 (2.19)
Wy = Wy X fWer112,71)
where f (yt+1\2§21) is a Gaussian density with mean o‘zile and variance exp(hj +1). The wgzl
are the first stage weights described in Pitt and Shephard(1999).

(4)
t

3. Resample the particles z;’ with replacement R times (by multinomial resampling).

Let Zt(i) denote the resampled particles.

4. Sample z,gi)l,i =1,..., R, from z1 |2£i),yt+1, using the approach by Godsill and Clapp(2001),

which is based on the factorization:

fzlze, Y1) = flowpalhoarr, o, yer) f (B [hae) f (R hog) (2:20)
where f(hji+1lhje),j = 1,2, are Gaussian densities with mean p; + ¢;h;; and variance cr,%j,
and

apy1lhoir1, oy ~ N(m, S°)
with

1 1 - Yt+1 at
5% = < + > m = 5> ( + 2.21
phart) T oxplhign) i) T el Y
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5. Compute the second stage weights:
2)
27)

G) f(yt+1|2§—i21)f(zt+1
1=

w ] (2.22)
T e 120 £,

)

(4)

6. Resample M particles by multinomial resampling, with probabilities proportional to wy ;.

7. Go to step 1.

2.11 APPENDIX C: Chib and Jeliazkov algorithm

This Appendix illustrates the steps of the Chib and Jeliazkov (2001) algorithm that are necessary
to estimate the posterior density 7(6|y) for the UC-SV model at a high density point #*. The latter
is the component of the basic marginal likelihood identity that is not automatically available from
the MCMC output.

The estimate is constructed as follows: denoting 6§ = {6;,j = 1,...,J} the vector containing
the hyperparameters, where the elements of the vector 6§ are {u1, ¢1, agl,ug, 2, a,%l}, consider the
factorization of the joint conditional density:

w(0%|y) = H7T 0y, 07, .., 05_1)

Further, let z = (hq, h2, a).
The Chib and Jeliazkov (2001) algorithm takes the following steps:

e From the MCMC sample evaluate the posterior mean of y; and set ;] equal to this value. A
Monte Carlo estimate of the first multiplicative factor, 7(67|y) = m(u}|y), is obtained from
the output of the MCMC sampling scheme by the technique known as Rao-Blackwellization.

e For estimating w(03|y,07) = 7(¢i|y, ui) run a reduced Metropolis-Hastings within Gibbs
chain for the following subset of parameters {¢1, 0',2{1,,[1,2, b9, 022, z}, where the value of u; is
kept fixed at pj.

e Estimate the value of the density 7(05|y, 07) = 7(¢7|y, u7), using the following steps:

1. Simulate G draws from the posterior of {¢1 ,a,ﬂ( 7N2 ,¢2 ,Ui;g 29Y g=1,...,G,

by the same MCMC methods presented in appendix A, conditional on pj.

2. Compute the posterior mean of ¢; by averaging across the draws qbgg ) and denote it ?].

3. Include ¢] in the conditioning set and sample J draws from the conditional distibutions:

2 2 2 2
W(Uﬁjl |y7 Z, Qﬁa MT? M2, 0,5 ¢2)7 7T(2|y7 O-nla/[fa Qﬁa w2, ¢27 U;@)ﬂ
2 2 2 2
77(#2‘% 2 MT) Qﬁa 0';@1>¢2> GHQ)’ W(QZ)Z‘yv 2 MT’ @bT’ Ok M2, Ung)v
2 2
W(U,‘ig‘y7 2, ,U;{, ¢>{7 Ufﬂvﬂ?; ¢2>
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These iterations provide the sample {a,%ﬁj ), ,uéj ), d)éj ,a,%gj ), z(J)} _,. Furthermore, at each

iteration we generate

¢(')NQ(¢17¢1’y7 7#17 nl( 7:“’2 7¢2 ’ Nz(j))

where ¢(6,,0%|u) is the proposal density for the transition from 6; to 93» conditional on u.

VRR
As a result, the collection {qZ) o’n1 ), s ,¢2 ,029), z(j)}jzl is are multiple (correlated)

draws from the distribution:
m(02, 2, b2, 00y 2|y, 1}, 0F) X a(6F, D11y, 2, 1, 07 s 2, b2, 05,).-
4. Denoting the probability of a move by

<y|¢’f,<,z>7r<¢>1: $) q(«bf,czs&g)ry,c,z)}
FWls?, 6, 2)m(6\7,5) ¢(¢', ¢t |y, <, 2)

Y(¢1, ¢1|u) = min {1

where ¢ is the collection of parameters (u}, o2 ,u2, ¢2,02,). The required marginal
density at ¢] can now be estimated as

— * * 2 2 * * 2 2
ot = & L (1, 6ty 29, it 0”1 08 0 ?) - q(@8”, dily, 29, iy, i p, 957, o)
“ly) =

2 2
Jil Zj Oé( (J)|ya ,/Ll,U,{SJ),ILng), gj)agﬁg]))

e Run a reduced Gibbs sampling scheme on the following parameters {o? 1 M2, $2,02 . 2} and

2,(%)

calculate o)

1427

e Run areduced Gibbs sampling scheme and calculate the ¢5 with the same procedure describe

before noticing that the ¢7, u7, 0,3’1(*) are fixed.

e Run a reduced Gibbs sampling scheme on the following parameters {ua, o ,{2,2} and calculate
13
e Run a reduced sampling scheme Gibbs on the following parameters {032,2} and calculate

2,(%)
Ok



Chapter 3

Missing values in dynamic factor
models

3.1 Introduction

It has long been observed that many countries experienced similar fluctuations in macroeconomic
aggregates and that these fluctuations exhibit substantial synchronization across countries, see
Moore and Zarnowitz (1986) for an early survey. Similarities in aggregate fluctuations in different
countries has been interpreted as a challenge to economic theory, suggesting the development of
business cycle theories which focus on the functioning of the market economies in general, rather
than on individual countries. The similarity of cycles across countries and across different Regional
areas is an important issue. If, for example, the business cycle is a worldwide phenomenon then it
is not responsive to domestic shocks like country monetary policy. Although there is a convincing
empirical evidence in favor of international business cycle linkages, see Gregory et al. (1997) and
Kose et al. (2003), economists and econometricians still dispute on the causes, the consequences, as
well as even on the measure of these comovements. For instance, the question concerning the pre-
dominance role of common shocks or common propagation mechanisms is far from being resolved.
Stock and Watson (2005) use a factor-augmented vector autoregression (FAVAR) estimated over
a pre and post-1983 subsample to investigate whether international or domestic shocks are the
source of the decline in volatility. They find the presence of an emerging European factor and
an emerging English-speaking group. Moreover for Japan, the sensitivity of international business
cycle decline sharply but the variance of the domestic shock increased during time. Other studies
like Heathcote and Perri (2004) found that the cross-country correlation among G-7 countries has
declined over time, similar results has been reported by Del Negro and Otrok (2008). These studies
are somehow limited due to data availability (missing values), and econometric intractability (inef-
ficient estimation due to the presence of a lot of parameters), for this reasons they are focused on
the analysis of a small group of countries, or to world aggregates. To overcome the second problem
Kose et al. (2004) and Kose et al. (2008) using Bayesian dynamic factor model studied the dynamic
comovement of macroeconomic aggregates in a broad cross section of countries. They provide an
analysis of world, regional, even country factors, showing that the world factor is an important
source of volatility for aggregates in most countries (world business cycle) and the region-specific
factors play only a minor role in explaining fluctuations in economic activity. With this approach

43
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they can handle many more series, but, they did not provide and efficient treatment of missing
data, that it is a standard characteristic in economic time series.

We use a new maximum likelihood estimation method for high-dimensional dynamic multi-
factor models in presence of large amount of missingness, to study the business cycle in a big
unbalanced panel composed by 150 countries. Recently there has been an increasing interest in
likelihood-based approach for the estimation of large scale data set. Since factors are explicitly
modelled and the estimation method takes into account the model specification, the factor can
represent aspects of economic theory. Doz et al. (2007) show, under mild conditions, that the esti-
mates of the unobserved factors obtained from a likelihood-based analysis are consistent estimators
for the true factors when T' — oo and N — oo, where N is the number of series and T is the number
of observations, even if the dynamic factor model is misspecified. Furthermore, they present evi-
dence that in some cases a likelihood-based analysis produces more precise estimates of the factors
than a principal component method. In a recent paper Jungbacker and Koopman (2008) proposed
a new method for likelihood based analysis for dynamic factor models; they demonstrated that
when N > ¢, where ¢ is the number of factors, the computational efficiency of Kalman filter and
smoother can significantly be improved by a simple computational device based on the projection
of the data on a reduced dimensional factor space. This device has been later extended to deal
with missing data by a suitable state space formulation, see Jungbacker et al. (2009).

The model is estimated by maximum likelihood and therefore has a well-articulated statistical
foundation for the estimates and inference under the maintained assumptions, nevertheless the
estimation of a high-dimensional unbalanced panel with N > T, is a very challenging task. In
contrast, a method like principal components is much simpler computationally but is unable to
isolate jointly world, regional and country-specific factors in a large scale unbalanced panel.

We mainly extend the research program on global business cycle in three dimension. First our
study is much more comprehensive then other studies as we use a large data set (150 countries)
with a longer time span 1950-2007 allowing for missing values. Second, unlike most existing studies,
we specifically consider the role played by the global factor and distinguish them from common
cycle to each specific region. Finally we employ a new econometric tool that allow the estimation
of all these quantities in a fast and efficient way even in presence of a large amount of missingness.

Our results can be summarized as follows. We analyze the same data set of Kose et al. (2004)
and we get virtually the same conclusion. Then we extend the study to 150 countries and we
provide a study of global, regional and country specific component. By computing the shares of the
variances of the aggregate variables accounted for by fluctuations in the various dynamic factors,
we quantify the aggregate fluctuations in each of the 150 countries. Although this kind of study
has been proposed before as far as we know this is the first time that this exercise is carry out in
a big data set, this allow us to provide new results about European accessing countries (Poland,
Hungary, Romania and Bulgaria) and emerging economies like China and India. According to
our calculation China and India are not related to the global and regional factor, these emerging
countries, have decoupled from industrial economies, in the sense that their business cycles are not
linked to them. This result is confirmed by the impressive growth performance of China and India,
in fact, they seems not to have been affected by the growth slowdown in a number of industrialized
countries.

We confirm the results of Kose et al. (2008) that there has been a decline over time in the
relative importance of the global factor. Finally we provide new results about regional factors
and we show that there is evidence of business cycle convergence within each industrialized region,
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providing support for the standard neoclassical growth theory (Solow, 1956), and a divergence
between rich and poor regions. The remainder of the paper is organized as follow.

The empirical questions and the data set are review in Section 3.2. The model specification and
the estimation strategy are presented in Section 3.3. In Section 3.4 we apply this new technique
to a different dimension data set. We use R? and Box-Ljung statistic to asses the accuracy of our
model. Furthermore we provide the variance decomposition to measure the relative contributions
of the world, region, and country factors. Finally we report some new results about world and
regional convergence. Section 4.7 concludes the paper. The data set is presented in the Appendix
A. The state space form and the derivatives useful for analytical maximum likelihood evaluation
are in Appendix B.

3.2 A world economy: empirical questions and data set

3.2.1 Open questions

The phenomenon of globalization and the synchronized slowdown of major world economies along-
side the contagious nature of financial crisis in emerging markets have recently incited the interest
in understanding the propagation and synchronization of business cycle fluctuations across national
borders as well as their evolution. Identify the degree of synchronization and analyzing the global,
regional as well as country-specific determinants of international fluctuations are relevant from a
number of perspectives including shot-run domestic and international policy coordination as well as
assessment of the long-run feasibility of monetary unions. There are still a number of unanswered
questions regards the technique and the data set used in those studies and our objective is to
provide a comprehensive empirical characterization of global, regional and country specific factors.
We focus on the following questions. What about the global convergence with a big number of
countries? Do we have different results with respect to other studies if we use a differ data set with
longer time span?

Stock and Watson (2005) using a Factor-Augmented vector autoregression (FAVAR) and Del
Negro and Otrok (2008) using a Bayesian approach provided evidence of an emerging European
business cycle and an English-speaking group. Can we confirm, using an exact maximum likelihood
framework, these results?

In the literature it is still not deeply analyzed the effect that European union have on accession
countries like Poland. Some studies like Artis et al. (2005) find that between the accession countries
and the euro area the synchronization indicators are generally rather low, with the exception of
Poland and Hungary. Can we confirm these results? What is the main source of the variability of
those countries is it the global, the regional or the country specific component?

Shin and Wang (2003) pointed out that as trade integration deepens in East Asia, it is expected
that there will be closer links in business cycles among East Asia countries. What can we say about
the East Asia countries 7 Are they more synchronized?

Finally what can we say about the poorest countries? Are they more related or detached to the
world factor? Is there evidence of an emerging regional areas or is the country specific component
the main source of variability?

The answers to these questions have important implications about the debate of global and
regional convergence.
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3.2.2 Data description

The data set used in our study is taken from Penn World Table (PWT 2009) freely available
from the web side http://pwt.econ.upenn.edu/. The observations are Annual Real GDP per capita
Constant Price: Laspeyres (base year 2005) and span the period between 1950 and 2007. The time
series extracted are 150 with 57 observations available at the most for each series, this leads to an
arbitrary pattern of missing data. After the logarithm transformation the series are assumed to be
I(1), so we differentiate and standardize all of them. We do this in order to ensure that all series
receive equal weight in the search of common factors. In addition it has been shown in Head (1995)
that the volatilities of aggregates after the log first-difference vary systematically with country size,
the smaller countries’ series tend to be more volatile, these countries series would receive higher
weigh as well. By standardizing the variance, we ensure that all the series are treated symmetrically
and the econometric procedure that extracts common components does not distinguish between a
2-percent growth rate in the United States and a 2-percent growth rate in China, see Gregory et
al. (1997) and Kose et al. (2004). We further analyze this issue for the G7 countries in Section
4. All the countries with the available sample are reported in Appendix A and they are divided in
6 different areas accordingly to Table 3.1. This division is somehow different from that proposed
by Kose et al. (2004) because we include the Oceania countries, divided accordingly to developed
and developing, in the Asia and Oceania Developed and Asia and Oceania Developing and Poor
regions. In the following we assume the presence of one global factor (f9/°%%!) and six regional factors
(fregienal ¢ o one each for North America, Latin America, Europe, Asia and Oceania Developed,
Asia and Oceania Developing and Poor and Africa). Thus for the series i we have:

Yis = )\;uorldftworld + )\Z‘egionfr’igion + Uiy, +— 1’ o 7Ty7 (31)

T
where u; ¢ are the country specific component, r is the region , t(') indicates the global and regional

)

factors and )\7(;’ are the global and regional factor loadings.

3.3 Dynamic Factor Model: specification and estimation

The estimation of the global and regional factors in a big unbalanced panel is a very challenging
task. We address this and the related issues by implementing the maximum likelihood estimation
for the state space form recently proposed by Jungbacker et al. (2009). Subsection 3.3.1 describes
briefly the dynamic factor model and the strategy to disentangle the global and the regional fac-
tors. Subsection 3.3.2 presents the likelihood for unbalanced panel. Subsection 3.3.3 present the
numerical performance of our algorithm. The state space form and the analytical derivatives are
reported in Appendix B.

3.3.1 Dynamic Factor Model and Block Structure in the Loading Matrix

Consider a panel of NV time series where we denote y;; as the observation at time ¢ in the ¢ series,
then the dynamic factor model is given by;

yi,t:A;ft+ui,ta t:]-a"'aT) ’L':]-a"‘aNa (32)

where A; is a ¢ x 1 vector of factor loadings, f; is a ¢ x 1 vector of unobserved common factors, u; ¢
is the country-specific noise, T is the number of observations and N is the number of series.
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Table 3.1: All the 146 countries divided accordingly to siz different areas.

47

North America 1-3
United States
Mexico
Canada
Latin America 1-7 8-14 15-21 22-28 29-32
Brazil Jamaica Barbados Guatemala Puerto Rico
Argentina Peru Costa Rica Honduras Trinidad Tobago
Bolivia Paraguay Dominica Nicaragua Suriname
Cambodia Uruguay Dominica Republic Panama St. Lucia
Chile Venezuela Ecuador Bahamas
Colombia Antigua El Salvador Bermuda
Cuba Belize Grenada Haiti
Europe 1-7 8-14 15-22 23-25
Germany Portugal Finland Romania
France Norway Denmark Poland
United Kingdom Netherlands Belgium Bulgaria
Ttaly Luxembourg Austria
Sweden Ireland Cyprus
Switzerland Iceland Malta
Spain Greece Hungary
Asia/Oceania Developed 1-4 5-8 9-12 13-15
Japan Australia Singapore Saudi Arabia
China New Zealand Thailand Kuwait
Taiwan Malaysia Republic of Korea Qatar
Hong Kong Turkey United Arab Emirates Israel
Asia/Oceania Dev. and Poor 1-6 7-12 13-18 19-24 25-27
Philippines Kiribati India Bangladesh Maldives
Indonesia Samoa Pakistan Iraq Mongolia
Brunei Solomon Islands Sri Lanka Nepal Syria
Laos Tonga Mauritius Oman Vietnam
Macao Vanuatu Iran Bahrain
Papua New Guinea Micronesia, Fed. Sts Jordan Bhutan
Africa 1-10 11-20 21-30 31-40 41-47
South Africa Senegal Comoros Liberia Sierra Leone
Egypt Somalia Dem. Rep. Congo Lesotho Swaziland
Morocco Tunisia Republic of Congo Malawi Tanzania
Nigeria Uganda Equatorial Guinea Mali Togo
Algeria Cameroon Gabon Mauritania Zambia
Central African Republic Botswana Gambia Namibia Zimbabwe
Cote d‘Ivoire Benin Ghana Niger Sudan
Ethiopia Burundi Guinea Cape Verde
Madagascar Burkina Faso Guinea - Bissau Mozambique
Rwanda Chad Kenya Sao Tome and Principe
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The dynamic factor model given in (3.2) can be represented in matrix form as follows:
yt:Aft—i—ut, t:l,...,T, (33)

where A = (A,..., A N)/ is a matrix of factor loadings, f; is a ¢ X 1 vector of unknown factors. The
common factor f; are modelled as a stationary first order vector autoregressive (VAR(1)) process,
and the error components u; are modelled as vector autoregressive of order one process (VAR(1)):

U1 = Qup + &, €~ N(0,%;), (3.4)

where ¢ is an N x N diagonal matrix and the disturbance variance matrix 3. is N x N diagonal
matrix of unknown parameters. In Appendix B it is shown how to represent the model (3.3) and
(3.4) in state space form.

The approximated factor models of Stock and Watson (1989) and Forni et al. (1998) are quite
efficient in extracting factors, however they cannot be applied in situation where is necessary to
impose zero restrictions on some factor loadings to identify a factor that belongs to all the series
and some factors belonging to a particular group of countries. One of the main advantages of our
estimation methodology is relatively easy way to impose constraints in the loading matrix that is
useful to disentangle the global and regional factors. The block structure of the A matrix considered
in this paper is:

Usa Agleb \regl 0 0 0 0 "
Mezico Agleb st 0 0 0 0 glob Ugy
Canada )\gl')b )\geg ! 0 0 0 0 0 E"egl Uz
Brazil X0 N 0 0 0 0 reg? U g

t
_ reg3
— + ,
Germany NP o 0 NE 0 00 0 rega U3,
t
regd
t
) reg6
Sounth Africa )\%%b 0 0 0 0 0 )\71“8%6 t U103,¢

(3.5)
where )\ZglOb and A corresponds to the global and regional factor loadings.

The global factor loads to all the series and is associated with a pattern of co-movement among
all the countries. The non zero elements, A;“Y, in the remaining columns represent the regional
factor loadings, they represent the co-movement between the countries in a specific region. In case
of unrestricted A, see section 3.4, to ensure that all parameters are identified, we set A = ()\/1, )\'2)/
where \j is a ¢ x ¢ lower triangular matrix and Ag is a (N — ¢q) x (N — ¢) full matrix.

3.3.2 Maximum Likelihood for Unbalanced Panel
The log-likelihood function for the considered model is:
l(y) = IOgP(yl,ta s 7yi,t; 0)7 (36)

where p(-) is the Gaussian density function, y; ; is the observed data for the country i at time ¢ and
6 is the parameters vector. Following Jungbacker et al. (2009) and Appendix B, the likelihood of
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our model can be expressed in this form:
I(y) = constant + 1(y", y*™) + 1(y"), (3.7)

where

CUL = {Afyt(Ot,Otfl)}, yo’m = {yt(otamtfl)}v ?JH = {Aﬁyt(OtaOtfl)}v t=1,...,T, (3~8)

yt = {AFyi(o4,00-1)} and y>™ = {y;(0;,m4_1)} corresponds, respectively, to the reduced part of
observed values at time t and ¢ — 1 and the observed values at time ¢ but missing at time ¢t — 1.
The likelihood related to this two components is evaluated with the Kalman Filter. Kalman Filter
is not applied to y = {AHy;(0s,0:_1)}, and this partial likelihood is calculated accordingly to:

T T
1 1 f
I(y") = constant — 3 Z log (|Xc4]) — 3 Z etZE;et, (3.9)
t=1 t=1
where
et = (I — Ze AV Allyi(or,001) — 0 ye-1(0n,00-1)] t=1,...,T, (3.10)

and AtL is a transformation matrix, see for a detailed discussion Jungbacker and Koopman (2008,
Lemma 2).

The maximization of this likelihood with respect to the parameter vector 6, involves a high
dimensional maximization problem. Large scale optimizations problems are solved, in general, by
quasi-Newton type algorithm as described in Nocedal and Wright (1999). These algorithms require
the evaluation of the log-likelihood function, I(y), and the score vector at each iteration. Due to
the high dimension of the parameters space numerical derivatives are not feasible, fortunately, ana-
lytical expression for the score is available and the derivation is provided in Appendix B. Following
Koopman and Shephard (1992), we can write the likelihood for our model in the following way:

T
log £(3,6) =~ 5 > log | Hu(6) | +1og | Q:(6)|
t=1

T

> [Ht(e)fl{(yt — ¢t = Zyouyn) (e — ¢t — Zyay) + ZtPt|nZ£}}
=1 (3.11)

N =

| =
WE

[Qt(e)_l{ﬁt|n77;\n + By — Te P14 — Pt,t—l\nTg + TtPt—1|nTt/}}

t=1

I

1 1
— Qlog | Py | —5(040 —ag) Py (ap — ag) — log f(a|Yn; 0),

where 1y, = (apq1pn — dt — Tray,), and Py_y), is the smooth covariance between the states.
To evaluate the likelihood and the derivative the smooth covariance P;;_ 1), as to be calculated
according to the following formula:

Pt,t—1|n = Cov(at, at,1|n) = thlpt—l\n — Zn’tNtflLtflpt_”t_Q, (3.12)

where all the quantities are given as output by the Kalman filter and smoother. Although other
solutions could be applied those are, in presence of many missing data, highly inefficient or difficult
to implement.
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3.3.3 Numerical performance

Recall the division outlined in Table 3.1 and the formulation proposed for each series:
yi,t = )\;Uorldftonld + )\;‘egionf:;gion + ui,b t = 17 cety T7 Z - 17 LU 7N7 (313)

where i denotes the countries and r denotes the region and the w;; follows AR(1) processes given
by

Uit = Pillit—1 + Eigs e ~ N(0,02,),
E(f':i,tej,tfs) =0, for i 75 7,5>0.

The corresponding state space form with missing values is provided in Appendix B, see (3.26)
and (3.27). The parameter vector # consists of elements of Z and T, the diagonal elements of ¢(*)
and X, and the parameters corresponding to the missingness, indeed ) and ¢*). In the case of
150 countries the number of coefficients to estimate in A are 2N x 1 = 300. Where N x 1 coeflicients
corresponds to the global factor loadings and N x 1 corresponds to the regional factor loadings,
recall formula (3.5). Assuming seven factors, one global and six regional, in the matrix 7" we have
¢® = 49 and in the diagonal matrices ¢(©) and . we have a total of 2N = 300 parameters. Finally
the number of () and ¢*) are dependent on the missingness, and they are equal to 96 and 1
respectively. The dimension of 4 is therefore 746. The huge number of parameters and the random
starting points gives multiple solutions for our likelihood, this kind of behavior is quite common
with our parameters dimension. We repeat the maximization 2000 times, every time with random
starting values, moreover, we keep track of the parameters stability. As a measure of parameters
variation we use a normalized Euclidean distance:

_eW -6

, (3.14)

where ©* is the parameters value at the chosen highest maximum and O is the parameters value
at the ¢ maximum. We report the likelihood values against iterations, the distance measure and the
distribution of the distance measure in figure 3.1. The picture shows that the likelihood is moving
around a range and the most significant maximum is reached different times. When we are closed
to the highest maximum the distance measure goes to 0, indeed the parameters values are very
near. The results presented in the following sections are taken from the most likely value reached
by the likelihood, in other worlds we take as our likelihood an iteration with a value that falls in
the mean value of upper graph of figure 3.1. One of the main advantage of this procedure is the
reduce computational time, in Table 3.2 we report the evaluation time for the model considered in
the paper. The program is written in Ox v. 5.10 console (Doornik, 2007) using our source code
and is running on a standard desktop computer.

3.4 Empirical application

This paragraph examines the evolution of different factors and analyzes their ability to track im-
portant business cycle episode. We present the results for the Kose et al. (2004) data set (60
countries with time span 1960-1990) and the full data set (150 countries with time span 1950-2007)
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Figure 3.1: Upper graph: Likelihood variation against iteration. Middle graph: Distance measure for parame-
ter’s variation. Bottom graph: Distribution of the distance parameter.
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Table 3.2: FEvaluation Time
Model BFGS Iter Time for 100 iter. Evaluation Time Data Points Missing values Parameters
Seven factors 102 4 minutes and 20 seconds 5 minutes 1891 30 361

60 countries

period 1960-1990

Seven factors 220 9 minutes 21 minutes 8550 1245 746
150 countries

period 1950-2007

Seven factors without 380 12 minutes 45 minutes 8550 1245 1699
restrictions

150 countries

period 1950-2007
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Figure 3.2: World Factor plus 83 and 66 quantile percent bands, estimated using the Kose et al. (2004) data
set. We report the NBER recessions with the vertical lines.
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in Subsection 3.4.1 and 3.4.2 respectively. To check if our global factor rely mainly on biggest
countries, we carry out a sensitivity experiment in Subsection 3.4.3. The diagnostic checking and
model fit are presented in Subsection 3.4.4, the variance decomposition in Subsection 3.4.5, and
finally in Subsection 3.4.6 we present new results about global and regional convergence.

3.4.1 Global and Regional factors using reduced data set

We now examine the global and regional factors using a data set similar to Kose et al. (2004).
The 60 countries used in this study are reported in Appendix A and they are divided accordingly
to Table 3.1. Figure 3.1 reports the estimated global factor with the 33 and 66 percent quantile
bands. The fluctuations of the factor is very similar to Kose et al. (2004) and reflect the major
economic events of those 30 years: the expansion in the period of the 1960’s, the recession of the
mid-1970’s (same period of the first oil price shock), the strong recession in the early 1980’s, caused
by the debt crisis and the tight monetary policies started in Usa around 1979.

As in previous studies the estimated global factor confirms that the recession in the early 1980’s
was stronger than the recession of mid 1970’s. The inclusion of the Latin America countries that
suffered a lot from the debt crisis of the early 1980’s, strongly influenced the global factors. Finally
it is clearly shown the downturn of the early 1990’s.

Thanks to an efficient treatment of the missing values we can estimate the global and regional
factor using all the 150 countries, in this experiment the time period is still 1960-1990. In the bottom
graph of figure 3.3 we report the estimated global factor with the 33 and 66 percent quantile bands.
Looking at the graph we can notice that the movement is quite similar to that of figure 3.2. The
inclusion of more countries does not change a lot the estimate of our global factor. The downturn
of early 1970’s seems to be less strong, this effect could be due to the inclusion of Asia and Oceania
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Developed countries, that in the 70’s experimented a long growth period, see figure 3.4.

3.4.2 Global and Regional factors using complete data set and all the time span

We begin by considering the general properties of our estimated world and regionals factors using
all the 150 countries for whole period. Figure 3.3 upper graph reports the estimation of the global
factor with the recessions as vertical lines. We use Usa recessions as a proxy of global recessions
until 1985, before that year the global recession date are not available, see http://www.imf.org/.
Figure 3.4 shows the estimated regional factors.

The global factor reflects the major economic events from the 1950 until 2007. The 1958
recession, the expansion in the period of the 1960’s, the downturn of early 1970’s, the recession of
the mid-1970’s and the strong recession in the early 1980’s. Moreover the figure shows the global
recessions that according to the IMF chronology, see hitp://www.imf.org/, corresponds to: 1990 -
1993, 1998 and 2001 - 2002. Finally we can notice the expansion of middle 2000. In some cases the
thoughs of the world cycle corresponds quite closely with those of Usa output (NBER recession).
In contrast the NBER thoughs in 1970 and 1980 appear to be principally Usa specific phenomena.
The Usa seems not to have an overall tendency to lead the world business cycle. Figure 3.3, middle
graph, reports the estimated factor using all the 150 countries for the time period 1950 - 2007, but
we show only the results around the period 1960 - 1990. This graph is very similar to the global
factor estimated using 150 countries for time period 1960 - 1990, bottom part of figure 3.3. This
shows that using longer time span gives no different picture of our global factor, this is useful to
asses the robustness of our estimation technique. To study the economic evolution of every single
area we report in figure 3.4 the regional factors.

The upper left part of figure 3.4 reports the North America regional factor with NBER recessions
as grey vertical line, as it is clear, this factor closely follows those recessions. In the last part of
the graph we can notice a long period of growth until 2000 that coincides with the Clinton Era
that strongly interested this area. After this period we have the 2001 recession caused by the
collapsed of Dot-com bubble and September 2001 attacks, this recession seems to be different from
the recent one, in fact, it has been neither so strong and nor so persistent. This result is in line
with some findings in the literature, see for example Nordhaus (2002). Interestingly the downturn
of 1994-1995 is not a Usa recession but a strong drop of the Mexico’s GDP related to the Mexican
peso crisis.

Factor 2, Latin America regional area, shows the debt crisis of the 1980’s with decrement in
the factor started around 1979 until 1983, see Weeks (2000). The trough clearly showed by the
figure corresponds to a severe recession that took place in this area around 1989. The downturn of
the factor in 1995 is the impact of the Mexican economic crisis of the Southern Cone (Argentina,
Chile, Paraguay and Uruguay) and Brazil labeled as the Tequila Effect. Moreover it is evident the
slowdown in the factor in the period 1999 - 2001 that corresponds to the Argentina’s default and
the global recession.

About European region, factor 3 shows that these countries suffer a lot from the recession of
the mid - 70’s but less from the recession of the early 1980’s. Moreover, it displays the decline
starting from 1990 and ending with a deep value of the factor in the 1992-1993, the same period
of the EMS crisis, see Eichengreen (2001). As other areas in the world the European region was
interested by the 2001 recession.

Factor 4, Asia and Oceania Developed region, shows the high growth period of the 1970’s,
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Figure 3.3: Upper graph: World Factor estimated using all 150 countries for time period 1950-2007 plus 33
percent and 66 quantile bands. Gray vertical line, USA recessions, green vertical lines global reces-
stons. Middle graph: World Factor estimated using all 150 countries for time period 1950 - 2007
but zoomed around 1960 - 1990 plus 33 percent and 66 quantile bands. Gray vertical line USA
recessions. Bottom graph: World graph estimated using all 150 countries but using sub-sample
1960-1990 plus 33 and 66 percent quantile bands. Grey vertical line USA recessions.
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Table 3.3: Estimated VAR coefficients and Eigenvalues for 150 countries, period 1950 - 2007. Real is the real
part of the eigenvalues, that ranges between a mazimum of 0.36 and a minimum of 0.045. Img is
the complex conjugate for the eigenvalues.

Var Coefficients Eigenvalues
Factor World Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Real Img
World 0.171 0.005 0.030 0.030 0.030 0.011 0.004 | Eigy  0.36  0.000
Region 1 0.010 0.139 0.041 0.018 0.036 0.026 0.110 | Eigo  0.16  0.008
Region 2 0.136 0.026 0.182 0.003 0.023 0.004 0.070 | Eigs  0.16 -0.008
Region 3 0.111 0.112 0.061 0.156 0.023 0.010 0.105 | Eigy 0.095 0.043
Region 4  0.010 0.123 0.039 0.033 0.138 0.041 0.062 | Eigs 0.095 -0.043
Region 5 0.015 0.029 0.045 0.019 0.025 0.082 0.047 | Eigg 0.082  0.000
Region 6 0.039 0.035 0.010 0.003 0.029 0.033 0.110 | Eigy 0.045 0.000

moreover the debt crisis of the early 1980’s seems to affect marginally this area. This factor shows
clearly the financial crisis that took place in these countries around 1997. This region has been
strongly affected by the 2001 global recession.

About Asia and Oceania Developing and Poor and Africa these regional factors seem to follow
a different path, this finding is in line with Kose et al. (2004). We will justify this more rigorously
in Subsections 4.4 and 4.5.

Table 3.3 reports the estimated VAR coefficients together with the eigenvalues organized in
descending order. Looking at the table we can conclude that the factors are estimated as stationary
and they seem to be quite persistent, the largest eigenvalue is around 0.36. We find the presence of
two not persistent cyclical behavior in the factors since conjugate pair of complex eigenvalues are
obtained whereas the real part is equal to 0.16 and 0.095.

Figure 3.5 reports in a bar plot the estimate of the autoregressive parameters, ¢(9), that are
used to calculate the percentage of country specific component. To facilitate the reading of this
graph we divide it in the six regional areas using vertical lines. The autoregressive parameters range
from a minimum around 0.01 to a maximum around 0.5. This figure reports in the horizontal line
the 3 biggest eigenvalues of Table 3.3.

The figure also reports the first order autocorrelation, (1), of the raw series. We can notice the
reduction in the estimated autocorrelation given by our estimation procedure , this indicates that
great part of the dynamics is picked up by our formulation. The highest values of the autoregressive
parameter qﬁ(o) corresponds to few poorest countries, in this case they dynamics is not so well
described.

3.4.3 Sensitivity experiment: G7 countries

To ensure that our results are due to the scope of the sample and not to our approach, we employ
our procedure to estimate a dynamic factor model using the aggregate data of the G7 countries
see Appendix A. This exercise is in line with Gregory et al. (1997) and we get virtually the same
results. The estimated global and regional factors are presented in figure 3.6. Focusing just on G7
countries the global factor exhibit a more severe recession in 1974 that in 1982, the same observation
has been done by Kose et al. (2004). About the regional factors just the North America regional
factor is similar to the one presented in figure 3.4. This is can be explained by the fact that two
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Figure 3.5: Red bars: $\°) parameters for the autoregressive component, see formula (3.26). White bars: Sam-
ple autocorrelation of order one, v(1), of the raw series. The vertical lines divide the ¢(0) parameters
between the areas. (A) North America Region; (B) Latin America Region; (C) European Region;
(D) Asia and Oceania Developed Region; (E) Asia and Oceania Developing and Poor Region; (F)
Africa Region. The horizontal lines reports the largest eigenvalues estimate using the mazimum
likelihood, see Table 3.3.
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up to three countries in this region compose the G7 group, and Mexico seems not to be related to
the North America region, see Subsection 4.5 and 4.6 for a detailed discussion.

3.4.4 Diagnostic checking and model fit

In this subsection we discuss the model fit and the model diagnostics using the R? and Ljung-Box
statistic. The actual estimate of A is not easy to interpret and therefore Stock and Watson (2002)
proposed to focus on the R? goodness-of-fit statistics which is obtained by regressing the univariate
time series y; ¢, for each i = 1,..., N, on a constant and a particular principal component estimate.
These R? statistics are then regarded as proxies for the correlations (in absolute values) between the
series and each principal component. In our framework, we can evaluate the correlations between
the series and each factor directly. The N regressions can be repeated for each principal component
and the resulting N dimensional series of R? statistics can be displayed as an index plot for each
principal component. We present the N series of R? statistics for the seven factors, in case of
unrestricted and restricted A in figure 3.7 and in figure 3.8. To make it more readable the R? is
split based on the areas.

Figure 3.8 shows the R? in the case of restricted A, for the global (left hand side) and the
regional (right hand side) factors, divided accordingly to the different areas. In terms of the shares
of variance accounted for by the common factor the quantitative importance of the world business
cycle varies widely across countries.

The global factor is quite correlated with USA, with value around 0.22. Canada has almost
the same value around 0.20. Mexico shows a good link with the global factor with a value for the
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Figure 3.6: Upper graph: World Factor estimated using the G7 countries for time period 1950-2007 plus 33
percent and 66 quantile bands. Gray vertical line, USA recessions. Buttom graph: Regional Factors
for G7 countries with 38 percent and 66 percent quantile bands. (A) North America Region; (B)
European Region; (C) Asia and Oceania Developed Region; The vertical lines are the NBER USA
recessions that we report just for the North America Region.
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global R? around 0.18. More interestingly the regional R?, is high correlated with USA and Canada
with values around 0.85 for USA and 0.91 for Canada. This is quite natural if we consider that
Canadian economy is strongly linked to USA. Mexico seems not to share a lot with the regional
factor.

The global factor is not very correlated with the Latin America countries, this seems reasonable
if we consider that almost all of those countries are very poor, moreover the regional factor seems
not to be very important for this area as well.

The global factor has an important effect in Europe with highest value around 0.60. Germany
presents a good link with the global factor similar to France and less than the UK, the global factor
is very important for UK and Italy. This finding is coherent with the main features of the Italian
economy mostly oriented to exportations. The regional factor is very important for the European
countries in fact Germany, France, Italy, and Belgium are very correlated with the regional factor.
United Kingdom is not influenced a lot by the European regional factor. We will analyze deeply
those findings in Subsection 4.5.

The correlation between the Asia and Oceania Developed countries with respect to the global
factor is quite interesting. The country with more correlation is the Saudi Arabia, this seems
reasonable if we consider that Saudi Arabia’s economy is petroleum-based and almost the 90 percent
of export earnings come from the oil industry. Then, among other, Taiwan, Hong Kong and Japan
are correlated with the global factor in this area. Two special cases are: Japan that seems to be
quite correlated with the global factor but is not influenced by the regional one, and China that
is not so correlated with both factors. It seems that all its variability is explained by the country
specific component, see Subsection 4.5.

The correlation of Asia and Oceania Developing and Poor region with the global factor is small,
with null value for some countries like Pakistan and Nepal. Finally the Africa macro area has
not a strong correlation with the global factor, and the regional factor seems not to be important.
For most of them the countries specific effect is the prominent element that explains the economic
fluctuations, see Subsection 4.5. Finally looking at figure 3.7 and 3.8 we can notice the difference in
the R? for the unrestricted and restricted case. The regional R? are very different between the two
figures, showing the importance of the factor loading restrictions to disentangle global and regional
factors.

Another advantage of this framework is to easily account for model misspecification tests and
diagnostics concerning normality, heteroskedasticity and serial correlation and it can be seen as
an effective tool for model selection. The Kalman filter allows us to calculate in few seconds the
prediction errors for our data set even in presence of missing values. Thanks to this tool we can
carry out easily the Ljung-Box test (1978). The Ljung-Box Q(q) statistic is based on the first ¢
sample autocorrelations 77, k = 1,...,q of the residual series and is computed by Q(q) = ZZ:1 7",%.

The Ljung-Box statistics for the 150 series is presented as index plot in figure 3.9 for ¢ = 6.
Almost all the series are in the confidence interval, and we can conclude that the our specification
well describe the collective dynamics in our data set. On the other hand some countries, mainly
poor countries, have very high value of this statistic, an important exception is Japan that shows
a very high value of the Q(q) statistic. In fact Japanese economy seems to be more detached from
other industrialized countries with the domestic shocks that explain big portion of its volatility,
see Subsection 4.5. The figure also reports with the white bar the Ljung-Box statistics for the raw
series, it is clearly showed the autocorrelation reduction after the estimation step.
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Figure 3.7: Global and Regional Factors in the unrestricted case. Left graph: R% for the Global Factor divided
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by areas accordingly to Table 3.1.

(A) North America Region; (B) Latin America Region; (C)

European Region; (D) Asia and Oceania Developed Region; (E) Asia and Oceania Developing and
Poor Region. Right graph: R? for the Regional Factor divided by areas accordingly to Table 3.1. (A)
North America Region; (B) Latin America Region; (C) European Region; (D) Asia and Oceania
Developed Region; (E) Asia and Oceania Developing and Poor Region; (F) Africa Region.
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Figure 3.8: Global and Regional Factors in the restricted case. Left graph: R* for the Global Factor divided
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North America Region; (B) Latin America Region; (C) European Region; (D) Asia and Oceania
Developed Region; (E) Asia and Oceania Developing and Poor Region; (F) Africa Region.
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Figure 3.9: Grey lines: Ljung-Box Q(6) statistics for the generalized least squares residuals of dynamic factor
model. White lines: Ljung-Box Q(6) statistics for the raw series. The vertical lines divide the
regional areas accordingly to: (A) North America Region; (B) Latin America Region; (C) European
Region; (D) Asia and Oceania Developed Region; (E) Asia and Oceania Developing and Poor
Region; (F) Africa Region. The horizontal line is the critical value.
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3.4.5 Variance Decomposition

To measure the relative contributions of the world, regional and country factors to variations in
aggregate variables in each country, we estimate the share of the variance of each macroeconomic
aggregate due to each factor. We decompose the variance of each observable into the fraction that is
due to each global, regional and the country specific factors. With orthogonal factors the variance
of observable ¢ can be written in the following way:

Var(y; ;) = ALy 2Var(frortd) 4 ()\Tegmn)2Var(fT,t) + Var(countryy,¢), (3.15)

)

where r is the region and the variance of the country component is given by the unconditional
variance of AR(1) process. The fraction of the volatility explained by the global factor is given by:

(Ai)*Var(fiortd)
Var(y;+)

, (3.16)

this measure is calculated using the parameters and the factors estimated using maximum likelihood
technique.

Table 3.4 contains the share of variance accounted for by each factors. This table displays the
variance decomposition for the same countries used in Kose et al. (2004) study plus a selection
of countries. The considered time span are two: 1960 - 1990 and 1950 - 2007. As measure of the
importance of the factors we report the 33 percent and the 66 percent quantiles that are calculated
based on a Gaussian approximation, therefore it is not guaranteed that they are in the bounds.
The full tables are available from the authors upon request.
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As Table 3.4 shows, the world factor explains a significant fraction of the fluctuations in all the
North America countries. The fraction of variability explained by the global factor seems to be less
important for USA and Canada and quite stable for Mexico in the period 1950-2007. The regional
factor is very important for USA and Canada, moreover it shows a substantial increase for USA.
As far as Mexico is concerned the share of variability explained by the regional factor is increased,
this effect can be related to the NAFTA agreement.

As far as EU is concerned the table shows that the volatility explained by the global factor is
very important between the two periods for almost all the countries. The variability explained by
the regional factor is increased among other for Germany, Italy and France, the same conclusion
has been reached by Bataa et al. (2009). According to Bataa et al. (2009) the contemporaneous
correlations between on these Euro-area countries increased in 1984 and 1998. One important
exception is United Kingdom where the variability explained by the global factor is substantially
increased between the two periods and the variability explained by the regional factor has decreased.
These values confirm the findings in Stock and Watson (2005), in particular UK seems not to
be related to European factor any more. Table 4 also provides the variance decomposition of
four accession countries in the European union namely Poland, Hungary, Romania and Bulgaria.
Poland and Hungary have a very good link with the global factor, but just Hungary has a significant
link with the regional factor. Almost all the variability of the other two countries, Romania and
Bulgaria, is explained by the country specific component. Our estimations suggest that integration
of these countries, except Hungary, with the European Union will require more time.

Though less important than in North America and Europe, the world and regional factors
explain a noticeable fraction of aggregate volatility in few countries of the Latin America re-
gion. Among other it is interesting to analyze the variance decomposition evolution for Brazil
and Venezuela. In Brazil the percentage of variability explained by the global factor has increased
between the two periods and the regional factor has slightly decreased. Venezuela experimented a
substantial decrease in the global factor, a substantially stable value for the regional factor and an
increment in the country specific component. This effect could be due to the Venezuela crisis in
the 80’s and the corresponding slowdown of the economic activities. Moreover other countries, like
Chile, seems to be more detached from the global factor with an increasing share in the regional
one.

As far as Asia and Oceania Developed is concerned, Japan is less influenced by the global factor
during the period 1950-2007. The regional factor seems not to be important in explaining the
variability of this country as well great proportion of Japan’s variability is explained by country
specific component. If we compare these values with those corresponding to the period 1960-1990
we can notice that during the 1990’s, cyclical fluctuations in Japanese GDP became more detached
from the global factor, with domestic shocks explaining big portion of these movements. Hong Kong
suffered from a substantial decrease in the percentage of the global factor between the two periods
and a substantial increase in the regional factor. This suggests a stronger link of this economy with
the other countries of this area. One important case is China that seems not to be influenced by the
global and regional factor, all its variability is explained by the country specific component. South
Korea experimented a substantial increase of the global factor and an almost stable percentage of
regional factor between the two periods, moreover the country specific component has decreased
substantially. These results are in line with the Korean economy as described in Pecotich and
Shultz (2006). Korea is the seventh largest trading partner of the United States and the eighth
largest trading partner of the European Union, moreover is the Asia’s biggest exporter of refined
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Figure 3.10: Bar plot for the variance decomposition of the global, regional and country specific factor. We
report the most industrialized economies and a selection of developing and poor countries.
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oil products.

Unlike North America and Europe for Asia and Oceania Developing and Poor and Africa regions,
the country specific component explains almost all the output volatility, therefore these countries
seem to be detached from the world economy. One important exception is the Philippines. In this
country the global factor decreased between the two periods and the regional factor increased a lot,
consequently the idiosyncratic component decreased substantially. This effect could be explained
by the fact that during the 1960s, the economy was regarded as the second largest in Asia, second
to Japan. However, the leadership of Ferdinand Marcos proved disastrous, by transforming the
market economy into a centrally planned economy. The country suffered severe economic reces-
sion, and only recovered in the 1990s with a program of economic liberalization, see Gargan (1997).
Table 3.4 shows an important regularity, the world factor plays a more important role in explaining
the economic activities in advanced industrialized economies than it does in developing economies.
Figure 3.10 further illustrate this point showing the variance decomposition for a selection of coun-
tries. The first 10 countries are selected between the most industrialized economies, the global
and regional factors plays a major role in explaining their fluctuations. The main exception is the
China where all its variability is explained by country specific component. This can be justify by
the continuous growth of this country that not seems to follow the other industrialized economies.
The country specific effect has the prominent role for the other countries.
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Table 3.4: Variance Decomposition for different data sets. The arrows indicates the variation between periods
of the variance decomposition. The ~ indicates almost no variation between periods. The country
reported with the (*) are the same countries used in Kose et al. (2004). We report the complete
countries for the North America and Europe Region and a selection of countries for the other regions.
Variance Decompositions for North America Region
World Regional Country
1/3  Med 2/3 1/3 Med 2/3 1/3  Med 2/3
United States(*) 1960-1990 21.43 38.26 54.04 19.52 34.86 49.23 15.05  26.87 37.95
1950-2007 17.11 30.62 43.30 | 27.46 4895 69.10 f 11.43 2042 28.84 |
Canada(*) 1960-1990 27.36 48.87 69.03 18.54 33.10 46.76 10.09 18.01 25.44
1950-2007 17.56 31.27 44.14 | 19.00 33.93 4792 ~ 19.64 34.98 49.37 v
Mexico(*) 1960-1990 10.15 18.12 25.59 1.13 2.02 2.85 44.72  79.85 112.80
1950-2007 9.12 16.50 23.52 | 2.62 4.42 6.11 f 44.26 79.02 111.62 =~
Variance Decompositions for European Region
World Regional Country
1/3  Med 2/3 1/3 Med 2/3 1/3  Med 2/3
Germany (*) 1960-1990 19.62 35.04 49.49 5.33 9.52 13.45 31.04 5542 78.28
1950-2007 21.81  38.89 54.92  f+ 14.72 26.29 3713 ff 1948 34.81 49.18 |
France(*) 1960-1990 38.91 69.48 98.14 12.12 21.64 30.56 4.97 8.87 12.53
1950-2007 9.67 17.22 2430 | 27.71 49.49 69.90 {f 18.61 33.38 47.03 19
Ttaly (*) 1960-1990 30.84 55.07 77.79 9.79 17.48 24.690 15.37  27.44 38.76
1950-2007 22.10 39.48 55.77 | 19.40 34.62 48.89 ff 14.50 25.89 36.57 |
UK(*) 1960-1990 6.89 12.32 17.40 12.51 22.34 31.56 36.59 65.33 92.28
1950-2007 26.89 46.84 65.54 1t 6.86 13.43 19.59 | 2224 39.72 56.10 |
Sweden(*) 1960-1990 20.20 36.07 50.95 2.04 3.65 5.16 33.75 60.26 85.12
1950-2007 20.39 36.40 5142 =~ 12.37 22.08 31.19 f 23.25 41.51 58.63 1
Switzerland (*) 1960-1990 15.16 27.08 38.25 20.97 37.45 52.90 19.86 35.46 50.091
1950-2007 32.86 58.68 82.884 1 3.95 7.06 9.98 || 19.18 34.25 48.38 |}
Spain(*) 1960-1990 27.15 48.49 68.49 241 4.32 6.09 26.43 47.19 66.65
1950-2007 3.15 6.03 8.72 | 2449 43.73 61.77 f 28.35 50.23 70.74
Portugal(*) 1960-1990 8.20 14.65 20.70 23.41 41.81 59.05 24.38  43.53 61.49
1950-2007 20.06 35.83 50.61 f+ 10.68 19.07 26.94 | 25.25 45.09 63.68 1
Norway (*) 1960-1990 3.10 5.55 7.84 0.72 1.29 1.82 52.17 93.15 131.58
1950-2007 19.04 34.00 48.03 1 3.35 5.98 8.45 {+ 33.61 60.00 84.75 |
Netherlands(*)  1960-1990 29.68 53.00 74.86 5.19 9.27 13.09 21.12  37.72 53.28
1950-2007 9.24 16.50 23.31 | 22.30 39.42 55.47 v 24.46 44.07 62.46
Luxembourg(*)  1960-1990 5.69 10.16 14.35 25.60 45.72 64.57 24.70 44.11 62.31
1950-2007 1.12 1.29 1.32 | 27.00 48.20 68.08 ff 27.88 50.56 71.83 1
Ireland(*) 1960-1990 22.02 39.32 55.54 3.68 6.57 9.29 30.29  54.09 76.40
1950-2007 12.70 22.68 32.04 | 1487 26.54 3749 ff 28.43 50.77 7171y
Iceland(*) 1960-1990 13.05 23.30 32.91 0.72 1.28 1.81 42.23 75.41 106.52
1950-2007 13.86 24.75 34.96 1 1.25 2.23 3.15 | 40.89 73.01 10313 |
Greece(*) 1960-1990 18.25 32.58 46.02 3.85 6.87 9.70 33.90 60.54 85.51
1950-2007 12.81 23.50 33.52 | 2.94 4.94 6.82 || 40.24 71.54 100.90 1
Finland(*) 1960-1990 16.27  29.06 41.05 6.73 12.02 16.98 32.99 58.91 83.21
1950-2007 14.43 25.77 36.40 | 7.93 14.16 20.00 f+ 33.64 60.06 84.84 |
Denmark(*) 1960-1990 8.94 15.96 22.55 12.16 21.71 30.67 34.90 62.31 88.02
1950-2007 18.75 34.00 48.36 1+ 10.68 18.55 2593 | 26.57 47.44 67.00 |
Belgium(¥*) 1960-1990 33.98 60.67 85.70 14.24 25.42 35.91 7.78 13.89 19.62
1950-2007 35.53 63.42 89.53 1 6.44 11.51 16.26 | 14.01 25.06 3542
Austria(*) 1960-1990 25.00 44.63 63.04 7.09 12.67 17.89 23.91 42.69 60.30
1950-2007 30.53 54.51 76.99 1 2.23 3.98 562 |} 23.24 41.50 58.63 |
Cyprus 1960-1990 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1950-2007 5.20 9.30 13.13 0.91 1.62 2.30 49.88 89.07 125.81
Malta 1960-1990 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1950-2007 21.79 38.91 54.95 12.46 22.26 31.44 21.74 38.83 54.84
Hungary 1960-1990 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1950-2007 16.04 28.63 40.45 11.21 20.03 28.29 28.75 51.33 72.50
Romania 1960-1990 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1950-2007 2.78 4.99 7.06 1.43 2.55 3.59 51.78 92.45 130.59
Poland 1960-1990 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1950-2007 21.76  38.86 54.88 0.37 0.67 0.94 33.86 60.47 85.41
Bulgaria 1960-1990 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

1950-2007 1.70 2.94 4.10 0.65 1.17 1.65 54.97 94.80 136.81
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Variance Decompositions for Latin America Region
World Regional Country
1/3  Med 2/3 1/3 Med 2/3 1/3  Med 2/3
Brazil(*) 1960-1990 17.02 30.39 42.93 20.31 36.27  51.23 18.66  33.32 47.07
1950-2007 17.40 31.06 43.88 1 14.70 26.28 37.13 |} 23.91 42.65 60.23
Argentina(*) 1960-1990 22.88 40.85 57.70 6.05 10.80 15.26 27.07 48.34 68.28
1950-2007 18.86 33.63 4749 | 17.23 30.82 4354 f 19.90 35.54 50.20 |
Bolivia(*) 1960-1990 6.83 12.20 17.23 1.16 2.08 2.94 48.00 85.71 121.06
1950-2007 8.65 1544 21.82 4 0.09 0.16 023 | 4726 84.38 119.19 «~
Chile(*) 1960-1990 20.13 35.95 50.78 3.75 6.70 9.47 32.11  57.33 80.98
1950-2007 1.96 3.50 495 | 11.07 19.76 2791 v 4297 76.73 108.38 |
Venezuela(*)  1960-1990 23.68 42.28 59.72 5.85 10.46  14.77 26.46  47.25 66.74
1950-2007 2.37 4.25 6.02 | 1219 21.78 30.81 f 4145 7397 10446 1
Variance Decompositions for Asia and Oceania Developed Region
World Regional Country
1/3  Med 2/3 1/3 Med 2/3 1/3  Med 2/3
Japan(*) 1960-1990 37.39 66.76 94.30 1.56 2.78 3.93 17.05 30.44 43.00
1950-2007 30.02 53.70 75.90 | 0.18 0.25 0.32 |} 25.82 46.07 65.05
China 1960-1990 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1950-2007 0.04 0.07 0.14 4.56 8.11 11.39 51.40 91.81 129.70
Taiwan 1960-1990 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1950-2007 2.07 3.70 5.23 5.93 10.50 14.79 4799 85.78 121.22
Hong Kong(*) 1960-1990  33.33 59.51 84.05 0.77 1.39 1.96 21.89 39.10 55.22
1950-2007 24.93 44.52 62.88 | 12.78 22.82 3223 ff 18.29 32.65 46.12
South Korea (*)  1960-1990 0.87 1.55 2.20 8.82 15.75  22.25 46.31 82.68 116.79
1950-2007 15.05 26.90 38.01 1f 11.26 15.19 20.81 ~ 29.68 56.90 82.42
Variance Decomposition for Asia and Oceania Developing and Poor Region
World Regional Country
1/3  Med 2/3 1/3 Med 2/3 1/3  Med 2/3
India(*) 1960-1990 10.07 17.98 25.40 16.03 28.62 40.43 29.90 53.38 75.41
1950-2007 3.77 6.75 9.54 |} 5.44 9.74 1376 | 46.79 83.51 117.93 1
Indonesia(*)  1960-1990 9.43 16.84 23.78 0.04 0.08 0.12 46.52 83.07 117.33
1950-2007 5.71 10.19 1440 | 4.00 715 10.11 { 46.28 82.64 116.73 <~
Philip.(¥*) 1960-1990 15.84 28.29 39.95 0.82 1.47 2.08 39.33 70.23 99.20
1950-2007 14.83 2649 3742 | 12.98 23.17 3273 f 2819 50.33 71.09 |
Pakistan(*) 1960-1990 12.14 21.68 30.63 1.42 2.55 3.60 4243 75.76  107.01
1950-2007 1.42 2.50 352 | 0.07 0.10 0.13 | 54.59 97.47 137.67 1
Variance Decompositions for Africa Region
World Regional Country
1/3  Med 2/3 1/3 Med 2/3 1/3  Med 2/3
S.Africa(*)  1960-1990 12.36 22.07 31.18 3.64 6.50 9.18 40.00 71.42 100.88
1950-2007 6.18 11.04 15,59 | 0.07 0.13 0.19 || 49.74 88.82 12546 1
Egypt 1960-1990 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1950-2007 3.15 5.63 7.95 13.28 23.72 33.51 39.56 70.64 99.77
Morocco(*)  1960-1990 20.15 35.98  50.82 9.97 17.81 25.16 25.87 46.19 65.25
1950-2007 0.03 0.02 0.01 | 10.25 18.31 25.87 ~ 4574 81.68 11537 1
Nigeria 1960-1990 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1950-2007 16.68 29.78 42.06 2.57 4.59 6.49 36.75 65.61 92.68
Algeria 1960-1990 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1950-2007 23.62 42.17  59.57 0.33 0.60 0.85 32.04 57.22 80.82
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3.4.6 Global Convergence or Decoupling?

The phenomenon of globalization and regional convergence, which refers to the rising trade and
financial integration of the world and regional economy, has been studied extensively in recent
decades. Kose et al. (2003) showed that globalization leads to an increase in the degree of syn-
chronization of business cycle. Helbling and Bayoumi (2003) examined the synchronization among
the Group of Seven (G - 7) countries using simple descriptive statistics, they shown that synchro-
nized slowdown, and in particular the slowdown of 2000 - 2001, has been the norm rather then the
exception. Economic theory does not provide definitive guidance concerning the impact of increas-
ing trade and financial linkages on the degree of business cycle synchronization between regional
areas. Some studies, like Shin and Wang (2003), analyzed the impact of trade integration in East
Asia countries and found an increasing synchronization in this area. Other studies like Stock and
Watson (2005) and Del Negro and Otrok (2008) provide some results about Europe. As far as we
know there is not a shared framework that gives insight to global and regional synchronization.
Here we want to analyze if the patterns of international business cycle synchronicity have
changed over time in response to the globalization. We repeat the exercise presented in Kose
et al. (2008) providing a variance decomposition for each region in two different subperiod: the
pre-globalization (1950-1984) and the globalization (1985-2007) periods. Figure 3.11 reports the
regional mean of the variance decomposition attributable to each factors for the two time periods,
plus the mean value of the variance share attributable to each factors for all the countries. Contrary
to the convergence hypothesis the average contribution of the global factor to output fluctuation
falls around 10,7 percent between the two time periods confirming the results of Kose et al. (2008).
More deeply the global factor explains around 21,6 percent of output growth variation among all
countries in the period 1950-1984 and it also account for 19,3 percent variability in the period
1985-2007. While this numbers may seem small at first glance, note that they are calculated across
a very large and diverse set of countries. In contrast to the global factor the regional factors
have a different behavior, their importance has increased markedly for the developed regions, with
the highest increment for the European union. The measure reported in figure 3.11 is a static
representation of the variance evolution, for this reason we propose to compare over time the
variance of the raw data set with the variance of the estimated residuals. The estimated residuals
are given by: o
Ut:yt—Aft, t= 1,...,T, (317)

where y; is the vector of GDPs at time ¢ (recall that we have missing values), A are the estimated
factor loadings and f; are the estimated smoothed factors. The proposed convergence measure is
calculated accordingly to the fraction of the series explained by the estimated factors, indeed:

¢ = vilvi, t=1,...,T, i= Global, Regional, (3.18)
moreover the raw series variance is calculated as follows:
@l = y;yt, t=1,...,T, = Global, Regional. (3.19)

The difference between the two quantities is a measure of variance reduction introduced by the
estimated factors, in other world if a factor, say the global factor, explains big portion of the
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Figure 3.11: Bar plot for the variance decomposition for the pre-globalization period (1950-1984) and the global-
ization period (1985-2007). First two quantities means of the global, regional and country specific
composes. The other quantities are the percentage of the global, regional and country specific
component for different regions: (A) North America Region; (B) Latin America Region; (C) Eu-
ropean Region; (D) Asia and Oceania Developed Region; (E) Asia and Oceania Developing and
Poor Region; (F) Africa Region.
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Figure 3.12: Upper graph: Global g+ (dotted line) against global (; (solid line) for the pre-globalization period
(1950-1984); Bottom graph: Global ¢+ (dotted line) against global (; (solid line) for the globaliza-
tion period (1985-2007).
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variability the (7% should be less then 9@, Figure 3.12 reports, divided accordingly to the
pre-globalization and globalization period, the variance of the raw series p; and the convergence
measure (; for the global factor. Figure 3.13 reports the same indicators for each region.

Looking at figure 3.12 we can notice that the variance explained by the global factor is bigger
in the first period respect to the second, confirming the fact that the global factor is much more
important during the pre-globalization period. We get a completely opposed conclusion looking to
figure 3.13. While there is no support for the hypothesis of global convergence, there is a higher
degree of synchronization in business cycle within the regions composed by industrialized countries,
indeed North America, Europe and Asia and Oceania developed region. At the same time looking
at the mean of global and at the mean of regional factors, see figure 3.11, emerges the presence of
stronger regional-specific factor provides partial support to the decoupling hypothesis. Among other
European countries seems to be more influenced by region-specific factor, in globalization period
then they were in pre-globalization period. How can we explain a global decoupling? According
to Kose et al. (2008) there were large common disturbances during the pre-globalization period,
for example the two oil shocks and the inflation reduction with the associated increment in the
interest rates that occurred in the early 1980’s, see Goodfriend and King (2005). From the mid-
1980s onward common global disturbances have become less important with an associated decline
of the global factor. How can we explain regional convergence? The standard neoclassical growth
model (Solow, 1956 and Swan, 1956) asserts that per-capita output across countries converges when
they have similar preferences, technology levels and institutional and legal systems. Thus gaps in
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Figure 3.13: Upper graph: Regional p: (dotted line) against regional (; (solid line) for the pre-globalization

period (1950-1984); Bottom graph: Regional ¢: (dotted line) against regional (¢ (solid line) for
the globalization period (1985-2007).(A) North America Region; (B) Latin America Region; (C)

European Region; (D) Asia and Oceania Developed Region; (E) Asia and Oceania Developing and
Poor Region; (F) Africa Region.
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national or regional outputs must disappear over time. On the other hand, the endogenous growth
model (Romer, 1990 and Grossman and Helpman, 1991) asserts that per-capita income is mainly
influenced by country-specific factors with endogenously influence output dynamics. If this is the
case, countries will not converge over time given that per-capita income only responds to country
specific factors. The elimination of trade barriers and adoption of common trade, industrial, fiscal
and monetary policies in the European union has spurred regional convergence. At the same time
similar preferences and legal system drove United Kingdom far away form European Union and
more related to USA (English speaking group). Finally, common level of technology (for example
South Korea and Taiwan for the information technology), elimination of the trade barriers create
a new economic area for Asia and Oceania developed countries. These facts provide support to
the neoclassical growth model for those regions. Finally, the endogenous growth model seems to
explain well the dynamics of China, that is an important exception in its area, and the dynamics
of the poor countries with an absence of country or regional convergence.
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3.5 Conclusions

In this paper we have employed a new Maximum Likelihood approach to estimate the latent factors
and to study the dynamic comovement of macroeconomic aggregates in a broad cross section of
countries. We provide an analysis of comovement across the world and across regions, for different
periods and different cross section dimensions. Our paper also makes a methodological contribution
as it provides a useful framework to study factors in a large scale data set with different pattern
of missing values. We find that the global factor has become less important in macroeconomic
fluctuation both for developed and poor countries. The analysis was done using a pre-globalization
(1950-1984) and globalization (1985-2007) period in the same line of Kose et al. (2008). Moreover
we find that the regional factors are more important in explaining the macroeconomic fluctuation
for the industrialized countries during the globalization period. These results indicate that rising
trade and financial integration does not bring to global convergence but to a different level of
convergence, indeed a regional convergence of the rich countries and a divergence of the poor
countries with respect to them.

To check the robustness of our methodology we carry out two experiment. First we estimate
the same data set of Kose et al. (2004) and we get virtually their conclusions, indeed there is a
significant common global factor that explains a substantial fraction of the variability of developed
economies. Moreover there is no evidence of regional business cycle except for the North America
region. Second we estimate the world and regional factors for the G7 countries in the same spirit
of Gregory et al. (1997) and we show that our estimated global factor is different form the one
estimated using the whole data set reaching the same conclusion of Kose et al. (2004). Finally we
provide the regional factors for the G7 countries.

Using variance decomposition we provide the following results. First the global factor explains
great part of the variability for the most industrialized countries, but is not very important for the
developing and poor countries. Second there is evidence of an emerging European cycle, indeed a big
portion of the volatility of the European aggregates can be attributed to a common European factor.
Third, Japan seems to be detached from the global factor and great portion of its variability, during
the period 1950-2007, is explained by the country specific component. Finally United Kingdom
seems to be more related to the global factor and less with the European one.

State space methods allows us to compute model misspecification test and diagnostics from one
step head prediction error even in presence of missing data. We provide the Ljung-Box statistic for
our data set and we find that this model specification is a good enough to represent our series.

There are many other applications of our methodology, for example it can be used in the
analysis of mixed frequency data set, see Proietti (2008), in order to provide an exact solution to
the problem, or it can be used in every framework that require the analysis of large scale unbalanced
panel in fast and efficient way. The extension of this technique in order to incorporate a notion of
regime switching to capture the business cycle asymmetries, is far beyond the scope of the present
paper and we leave it as topic of further research.

3.6 Appendix A: Dataset
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Europe

Country Sample

Germany*! 1970 - 2007
France*:! 1950 - 2007
Italy*! 1950 - 2007
United Kingdom*! 1950 - 2007
Sweden! 1950 - 2007
Switzerland! 1950 - 2007
Spain! 1950 - 2007
Portugal! 1950 - 2007
Norway! 1950 - 2007
Netherlands' 1950 - 2007
Luxembourg! 1950 - 2007
Ireland® 1950 - 2007
Iceland? 1950 - 2007
Greece! 1951 - 2007
Finland! 1950 - 2007
Denmark! 1950 - 2007
Belgium ! 1950 - 2007
Austria ! 1950 - 2007
Cyprus 1950 - 2007
Malta 1970 - 2007
Hungary 1970 - 2007
Romania 1960 - 2007
Poland 1970 - 2007
Bulgaria 1970 - 2007

West and Central Asia

Country Sample

Israel 1950 - 2007
Turkey 1950 - 2007
Indial 1950 - 2007
Pakistan! 1950 - 2007
Sri Lanka! 1950 - 2007
Mauritius 1950 - 2007
Iran 1955 - 2007
Jordan 1954 - 2007
Bangladesh? 1959 - 2007
Iraq 1970 - 2007
Nepal 1960 - 2007
Oman 1970 - 2007
U.AE. 1970 - 2007
Bahrain 1970 - 2006
Bhutan 1970 - 2007
Maldives 1970 - 2007
Mongolia 1970 - 2007
Saudi Arabia 1970 - 2007
Kuwait 1970 - 2007
Qatar 1970 - 2007
Syria 1960 - 2007

America

Country Sample

United States*'! 1950 - 2007
Mexico? 1950 - 2007
Brazil® 1950 - 2007
Argentinal 1950 - 2007
Bolivial 1950 - 2007
Cambodia 1970 - 2007
Canada™! 1950 - 2007
Chile! 1950 - 2007
Colombial 1950 - 2007
Cuba 1970 - 2007
Jamaical 1953 - 2007
Peru! 1950 - 2007
Paraguay! 1951 - 2007
Uruguay'! 1950 - 2007
Venezuela! 1950 - 2007
Antigua 1970 - 2007
Belize 1970 - 2007
Barbados 1960 - 2007
Costa Rical 1950 - 2007
Dominica, 1970 - 2007
Dominica Republic! 1951 - 2007
Ecuador! 1951 - 2007
El Salvador! 1950 - 2007
Grenada 1970 - 2007
Guatemalal 1950 - 2007
Honduras? 1950 - 2007
Nicaragua 1950 - 2007
Panamal 1950 - 2007
Bahamas 1970 - 2007
Bermuda 1970 - 2007
Haiti 1960 - 2007
Puerto Rico 1950 - 2007
Trinidad Tobago! 1950 - 2007
Suriname 1970 - 2007
St. Lucia 1970 - 2007

Table 3.5: (Y Corresponds to countries that are used in Kose et al. (2004), (*) Corresponds to G7 countries
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East Asia and Oceania

Africa

Country Sample

South Africal 1950 - 2007
Egypt 1950 - 2007
Morocco? 1950 - 2007
Nigeria 1950 - 2007
Algeria 1960 - 2007
Central African Republic 1960 - 2007
Cote d‘Ivoire! 1960 - 2007
Ethiopia 1950 - 2007
Madagascar 1960 - 2007
Rwanda, 1960 - 2007
Senegal! 1960 - 2007
Somalia 1970 - 2007
Tunisia 1960 - 2007
Uganda 1950 - 2007
Cameroon! 1960 - 2007
Botswana 1960 - 2007
Benin 1959 - 2007
Burundi 1960 - 2007
Burkina Faso 1959 - 2007
Chad 1960 - 2007
Comoros 1960 - 2007
Dem. Rep. Congo 1950 - 2007
Republic of Congo 1960 - 2007
Equatorial Guinea 1960 - 2007
Gabon 1960 - 2007
Gambia 1960 - 2007
Ghana, 1955 - 2007
Guinea 1959 - 2007
Guinea - Bissau 1960 - 2007
Kenya! 1950 - 2007
Liberia 1970 - 2007
Lesotho 1960 - 2007
Malawi 1954 - 2007
Mali 1960 - 2007
Mauritania 1960 - 2007
Namibia 1960 - 2007
Niger 1960 - 2007
Cape Verde 1960 - 2007
Mozambique 1960 - 2007
Sao Tome and Principe 1970 - 2007
Sierra Leone 1961 - 2007
Swaziland 1970 - 2007
Tanzania 1960 - 2007
Togo 1960 - 2007
Zambia, 1955 - 2007
Zimbabwe! 1954 - 2007
Sudan 1970 - 2007

Country Sample

Japan*:! 1950 - 2007
Australia® 1950 - 2007
New Zealand! 1950 - 2007
Philippines! 1950 - 2007
Thailand® 1950 - 2007
Taiwan 1951 - 2007
China 1952 - 2007
Indonesial 1960 - 2007
Hong Kong! 1960 - 2007
Malaysia'! 1955 - 2007
Singapore! 1960 - 2007
Republic of Korea! 1953 - 2007
Brunei 1970 - 2007
Laos 1970 - 2007
Macao 1970 - 2007
Papua New Guinea 1960 - 2007
Kiribati 1970 - 2007
Samoa 1970 - 2007
Solomon Islands 1970 - 2007
Tonga 1970 - 2007
Vanuatu 1970 - 2007
Micronesia, Fed. Sts. 1970 - 2007

Table 3.6: () Corresponds to countries that are used in Kose et al. (2004), (*) Corresponds to G7 countries
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3.7 Appendix B: Analytical Score

We provide a review the state space formulation for dynamic factor model in presence of missing
values, this section draws heavily for Jungbacker et al. (2009).
The dynamic factor model given in (3.2) can be represented in matrix form as follows:

Yt :Aft—l—ut, t= 1,...,T, (320)

where A = (\,...,\y) is a matrix of factor loadings, f; is a ¢ x 1 vector of unknown factors, T is
the number of observations and N is the number of series. The common factor f; are modelled as
a stationary first order vector autoregressive (VAR(1)) process, and the error components u; are
modelled as vector autoregressive of order one process (VAR(1)):

Ugr1 = Quy +&¢, g~ N(0,%), (3.21)

where ¢ is a N x N diagonal matrix and the disturbance variance matrix >, is N x N diagonal
matrix of unknown parameters.
The model (3.20) and (3.21) can be represented in state space form:

Yt = Loy + Uy,

(3.22)
a1 =Tag+m 1~ N(0,%,),

in order to get the representation (3.22) consider that f; can be rewritten as a linear combination
of the unobserved state a; using a suitable full rank selection matrix G, in particular:

ft = Gay, (3.23)
where a; has the following state space representation
ary1 =Toar+m,  me~ N(0,5y), (3.24)

and Y, is the variance covariance matrix, of the states. In our particular case the factors and the
latent states follow a VAR(1) process and the selection matrix G is just the unitary matrix. Finally
the Z matrix is given by the combination of the A and the selection matrix G, indeed Z = AG.

The likelihood function for this model can therefore be calculated by means of the Kalman
filter while the unobserved factors can be estimated using the associated smoothing algorithm.
The optimal properties of Kalman filter only apply when the observation equation (3.22) has
disturbances u; that are not serially correlated. To get read of the errors we can premultiply the
state space formulation (3.22) by polynomial lag operator (1 — ¢L):

Yt = OYi—1 + Zoy — dLay—1 + &4 e ~ N(0,%,),

—a+(Z2 —¢2) (;:Z) +éi (3.25)

() =Gan) () e

this formulation keeps the dimension of the states under control. The equations (3.25) defines the
state space model for the observed values, this state space formulation will be enlarged temporarily
with the u’s that accounts for the missing values.
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Now take a vector of time series y; for t = 1,..., T, the following expression y;(o¢, 0;—1) indicates
the observations present at time ¢ and time ¢ — 1. In the same way we have y;(my, m;—1) for missing
values at time ¢ and ¢ — 1. Moreover we have all the other possible combinations: y;(m¢,0i-1),

Yye(ot, my—1), yr(mes1,01).
We accomplish this notation with the following state space formulation:

(yt(ot,0t1)) . gbgo)yt(ot,ot_l) n Z(04,0¢-1) —QZ)EO)Z(Ot,Ot_l) 00 G+ (6(0t,0t1)>
- t )
ye(og, my—1) 0 Z (0o, mi—1) 0 I 0 0

(3.26)
with state equation a; given by:
0 T 0 0 0 ay n
. 0 N 1 0 0 0 a1 N 0
o =
i 0 0 0 0 Jt¢§1)(mt,mt) Ut(Ot,mt—l) Jt€t(mt)
6 ys(meg1, o) oM zE 0 0 0 u(me) et(mis1,01)
(3.27)

where

u(my) = (ut(mt’mt_l)> , (3.28)

ut(mta 0t—1)

Jt is a selection matrix of 0’s and 1’s and ¢§o) is a diagonal matrix. We include those entries of wy
in the state vector that correspond to missing entries in y; and/or y;—1. When both element of
and y;—1 are present the state space form collapse to the one given in (3.25). The transition from
ug(my) to ugq(my) is the autoregressive update (3.28), see Jungbacker et al. (2009) for a more
formal treatment of these equations.

We can still apply the computational device of Jungbacker and Koopman (2008) to the missing
value state space formulation to get a significant computational gain. Define

Af = CFIZ;F/ZQ}, Zy = |Z(01,00-15.), =8\ Z(0r,0-15) |, S = Lo 4(04,00-1; 01, 04-1),
(3.29)

and C; is chosen such that . .
CiCy = 2,517, t=1,...,T. (3.30)

The transformation A% is applied only to the v;(os, 0;—1) and does not require to consider the
element of the state vector associated with the u; since they do not affect y;(ot, 01—1).

Define the matrix
4 = ( A{f) , (3.31)

where AfT is chosen as AFY, ;AH "= 0 and A, is a full rank matrix. Applying the transformation
matrix given in (3.31) to (3.26) we get:

Afyi(or,00-1)\ _ (AFeg .G 0 0 0\ .
<A£{yt(0t70t—1) =) Lo 000 aiy + Ager(or, 04-1), (3.32)

where Var[Ase.(ot, 04—1)] is a block diagonal variance matrix with upper block given by Var[A;e¢(os, 04—1)] =
I, and dy is given in formula (3.27). It follows that the second part A”y; does not depend on the
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state vector and is not considered in the KFS step. From equation (3.32) we can split the likelihood
as in formula (3.7).

We now derive the exact score for the state space model of formulation of (3.26) and (3.27).
The model can be rewritten more compactly as:

Yt = ¢t + Loy + €y, €tNN(O,Ht),

(3.33)
apy1 = dp + Tioyy + Rymy, ne ~ N(0,Q¢),

where oy ~ N(ay, Py|o) as initial conditions, and t = 1,...,T.
Taking the first derivatives of the likelihood respect to the system vectors and matrices ¢, d,
Zy, Ty, Hy and )y we obtain the following derivatives:

ol - = ol L=
W) = RiQ; 'Re(ap 1), — Trag, — di), W) = R,Q; 'Ry(Mr, + dyay), — TyMz,),

dd, T,

My) _ - My) _ - /

o, Nyt — Ziaygn — 1), oz, 1t H(ye — cr)ay,, — ZiMz,),

lly) _ - I S _

=@ 1MQtQt = sdiag{Q; 1MQtQt 1}7

Q¢ 2

oy) _ #- L Fr—

OH, = H; "My, H, ' — §dw9{Ht "My, Hy 'Y,
(3.34)

with:
Mg, = E(mnglyr, - yn) — Qs Mz, = Gy 11y + Prstgn (3.35)

My, = (y¢ — ¢t — Zyag,)(ye — ¢t — Ztat|n)/ + ZtPt|nZt/ — 0, Mz, = at|na;‘n + By

R is a selection matrix and the matrix ﬁt is constructed using the y;(o¢, m—1) as index due to
singularity of H;. Finally the matrix Mg, can be evaluated by 7; = R(O{t+1 — Tyay — dy) and by
Py114n using formula (3.12) and P,

The system vectors and matrices further depends on our parameters of interest so applying the
chain rule, see Magnus and Neudecker (2007), we have:

’ ’

Jvec(l(y)) <8vec(l(y))>/ ((E)vec(Tt))/ Jvec(l(y)) <6vec(l(y))>/ dvec(ct) n <8vec(l(y)))/ dvec(Zy)
dvec(T) - Ovec(Ty) Odvec(T) dvec (¢§")) - dvec(ct) Hvec (¢§‘7)) dvec(Zy) dvec (¢£0))

dvec(i(y)) <avec(l(y)) )' <8vec(Zf,) ) ! dvec(l(y)) <8vec(l(y)) ) " oveetd) ) . <8vec(l(y))>/ vee(s) |
Ovec(Zy) B dvec(Zy) Ovec(Z) dvee (¢£*)) - dvec(dy) dvec (¢E*)) Odvec(Tt) dvec (¢£*))

’

dvec(l(y)) _ (avcc(l(y)))l ( Avec(Tt) ) A
dvec ((;551)) dvec(Ty) Svec (d)gl))

(3.36)



Chapter 4

Bayesian model selection

4.1 Introduction

Nelson and Plosser (1982) analyzed fourteen annual US macroeconomic time series for the presence
of unit root using the Dickey-Fuller (1979) method. They pointed out that American macroe-
conomic time series present, quasi systematically, stochastic tendencies and unit root properties.
Since this seminal work researchers have paid considerable attention to the presence of stochastic
trends in macroeconomic variables, influencing the way how macroeconomists think about trends
and short-run fluctuations.

If a time series contains a unit root, it should be analyzed after transforming it by taking first
difference; this kind of time series is called a differences-stationary (DS) process. If a time series
does not have a unit root and can be described using a time series model which includes a purely
deterministic trend, it is called a trend-stationary (T'S) process. The main reason to investigate
unit roots in univariate time series is that the DS processes assume that shocks have a permanent
effect, while such shocks only have a transitory effect for T'S processes. Nelson and Plosser (1982)
found that only one of the fourteen time series they investigate, the Unemployment series is T'S and
hence most of time series analyzed can be described by DS processes. Then, why testing, almost
thirty years later, the presence of unit roots in the same macroeconomic series using Bayesian model
selection? There are two main reasons for that.

The first concerns the distinction between trend stationary and difference stationary that is
critical in some contexts. For example Real GNP is a particularly important series to investigate,
the evidence for or against the existence of a unit root in this series provides support for the validity
of competitive macroeconomic theories, see Mocan (1994).

The second reason relates to some researches that advocate forcefully for Bayesian alternatives
over the classical approaches such as the ADF test, see Koop (1992), Sims (1988) and Sims and
Uhlig (1991). These economists cited several advantages of the Bayesian approach over the classical
approach. For example, it is well known that ADF tests have low power against plausible alterna-
tives, especially against trend-stationary alternatives. The Bayesian approach, on the other hand,
would reveals that both, the unit root and the trend-stationary hypotheses, would receive similar
posterior probabilities, providing a more reasonable summary of sample informations. Another
problem with the classical unit root tests is the discontinuity of the classical asymptotic theory in
the presence of a unit root. The Bayesian approach is based on the likelihood function that does

7
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not have the same discontinuity problem, moreover since it is conditional on the observed sample
provides exact small sample results. This is not possible in classical tests because they suffer from
a small sample bias, see Koop (1994) for a detailed discussion.

Despite the apparent advantages of the Bayesian approach over the classical one in unit-root
testing only a relative small number of papers have appeared using this approach. This is mainly
due to the critic of Phillips (1990). He argues that the selection between competitive models is
very sensible to the chosen priors. Schotman and van Dijk (1991) gives some examples how the
prior can be misleading in model selection.

Recently there has been an increasing interest in Bayesian model selection; Frithwirth-Schnatter
and Wagner (2009) provided a new testing methodology for state space models. Model specification,
is a challenging task for these models as one has to specify which components to include and to
decide whether they are fixed or time-varying. Unfortunately in this context some regularity
conditions are violated and standard criteria, like AIC and BIC, cannot be applied. The Bayesian
approach is, in principle, able to deal with such non-regular testing problems. Given K models
M, ..., Mg as the potential data generating processes of a given time series y = {y1,...,y:}, we
assign a prior probability p(My) to each model that is necessary to derive the posterior probability
p(Mpg|y). The model with the highest posterior probability is most likely to describe the data.

The main objective of this paper is to show the potentiality of the Bayesian approach to in-
vestigate whether stochastic trends are present in economic time series. We run two experiments
and in each we test the Nelson and Plosser (1982) data set and a similar data set with updated
observations. The first experiment provides a modify version of the test allowing for autoregressive
parameters, that adds some dynamics to the available models. In this case the test can be seen as
the Bayesian counterpart of the Leybourne et al. (1999) test and an extension of the test proposed
by Koop and Van Dijk (2000). The second experiment uses seven competitive models but does not
allow for autoregressive components.

The remainder of the paper is organized as follows. In section 4.2 we briefly review the method-
ology proposed by Frithwirth-Schnatter and Wagner (2009), the modified version of the test is also
provided. In section 4.3 we discuss the prior specification and the Bayesian estimation. In section
4.4 we provide the empirical results of our testing procedure. In section 4.5 we provide a robustness
analysis against different prior specifications. In section 4.6 we provide a Monte Carlo experiment.
Section 4.7 concludes the chapter. The dataset is presented in Appendix A.

4.2 Methodology

Leybourne et al. (1999) suggested an optimal method for selecting the order of the autoregressive
components, p, in the autoregressive integrated moving average model, (ARIM A(p,d, q)), on which
the stationarity test is based. They considered a local level model with autoregressive parameters:

O(L)yy =p+oap+e, e ~iid(0,02),
= g1 +mn, e~ i.0.d.(0,07), (4.1)
ap =0, t=1,...,T,

where €; and 7; being mutually uncorrelated. Frithwirth-Schnatter and Wagner (2009) showed that
the selection procedure proposed by Shively et al. (1999) can be extended to state space models.
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Starting from a local linear trend model:

Yt = o + €, er ~ N(0,02),
ay = ap + By + e, ne ~ N((),U%), (4.2)
B = Bi—1+ G, e~ N(0,0%),

and writing the model in non-centered form, see section 4.2, they introduce indicator variables that
are useful to add or delete the latent processes. This specification encompasses different models,
for example, without the latent processes the model collapses to a N (0,062). Usually economic
time series have more dynamics then it is allows by the specification given in (4.2), this suggests
to modify the test to get a more appropriate tool for empirical researches.

Extending the state space formulation (4.2) with autoregressive parameters provides the Bayesian
counterpart of Leybourne et al. (1999) test and an extension of the Koop and Van Dijk (2000) test.
The main advantage with respect to the Leybourne et al. (1999) test is that we do not apply a
two-step procedure but we can, jointly, estimate all the model parameters and test for the presence
of unit roots, moreover our test allows for the I(2) specification.

4.2.1 General model

Consider modeling a time series y = (y1,...,yr) where T is the number of observations, through
the local linear trend model:
Yt = Ut + E¢, EtNN(0703)7
pe = pe-1 + a1+, e~ N(0,01), (4.3)
ai = ag_1 + Ky, kit ~ N(0,02),

where pu; follows a random walk with a random drift starting from unknown initial values pg and
ap. This model can be shown to be second-order equivalent in moments to the ARIM A(0,2,2)

process
(1 - L)Qyt = (1 - eL)QCta Gt ~ N(an-g)a (44)
with complicated restrictions on the moving average roots, see Harvey (1989) for a detailed discus-
sion.
The foregoing model can be extended to more general local linear trend model with autoregres-
sive components:

Q(L)yt = pt + e, et ~ N(0,02),
fre = pr—1 + ai—1 +m,  ne~ N(0,01), (4.5)
ay = ag—1 + K, ke ~ N(0,02),

where ®(L) =1— ¢1L —--- — ¢,LP is a pth-order autoregressive polynomial in the lag operator L

with the roots outside the unit circle, clearly this formulation is equivalent to an ARIM A(p, 2, 2)
process. This model can be rewritten in the following form:

Yo = pt + P1Yp—1 + -+ Opyi—p + &t et ~ N(0,02),

ft = pe—1 + ap—1 + ne ~ N(0,01), (4.6)
ay = ag—1 + Ky, ke ~ N(0,62),
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and finally in state space form as follows:

ye = XB+ Zay + &y, eth(O,Ug),

ap = Tay—1 + Wy, W; ~ N(0,Q), (4.7)
where
X=W-a1 - wyp), B=(1 ... ¢p)/, ar = (pe ar), ws)
.8
Z=(10), T:<(1) 1) Q:(eol 902>.
The quantities given by (yt,l e yt,p) are constant because they are known at time ¢.

Following Frithwirth-Schnatter and Wagner (2009) we can rewrite the state space form (4.6) in
non-centered form. The latter transforms the latent states into scale free and location free processes
and transfers both location and scale to the measurement equation. The benefits are twofold. The
non-centered representation enables the treatment of the stochastic levels and trends as regression
effects, secondly it improves the convergence properties of the MCMC.

Define two independent random walk processes fi; and a; with standard normal independent
increments as well as an integrated process Ay:

fi = fle—1 + @1, W1 ~ N(0,1),
a; = ap—1 + Wot, Wop ~ N(O, 1), (49)
Ay = A 4.

All the processes are assumed to start at zero: fig = a; = flt = 0. Combine the state equation (4.9)
with the following observed equation:

Yr = po + aot + D1Y—1 + .. + Gpyi—p + VO it + V02 A + 1, e ~ N(0,02), (4.10)

where the constant pg and the slope ag are equal to the initial values of the level and the drift
component and 61 and 0 are equal to the variances of the latent processes defined in equation
(4.6), in the following we assume an AR(2) specification for the autoregressive part. Define the
indicators vector T = (50 01 do M 'yg) that are used to include or delete, the time trend, the
autoregressive parameters, the stochastic trend and the stochastic slope, more concisely to select
between competitive models. It turns out that the available models is equal to 2° = 32. We restrict
our analysis to 21 models avoiding the combinations with §; = 0 that corresponds to ¢1 = 0, it is
clear that these specifications can be easily handled in this framework.
The general model becomes:

Yt = o + Soaot + S11Yi—1 + Sadayi—a + V1V O1jie + 2/ 024 + e, g ~ N(0,02),
G — 1 G &1 ~ N0, 1),
lft ftt 1 : 1t ~11& ( ) (4‘11)
ar = G¢—1 + Way, ot ~ N(0,1),

Ay = A+ a1,
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that brings to the following 21 competitive models:

(Model 1) y; = po + e Y = (0,0,0,0,0)
(Model 2) yy = po + 010191—1 + €¢ T =(0,1,0,0,0)
(Model 3) yi = po + 6101yt—1 + 0202yt 2 + & T =(0,1,1,0,0)
(Model 4) y; = o + aot + & Y = (1,0,0,0,0)
(Model 5) y; = po + dpapt + 0101Y1—1 + €¢ YT =(1,1,0,0,0)
(Model 6) yy = po + dgagt + 01P1Ys—1 + d2doys—o + ¢ T =(1,1,1,0,0)
(Model 7) y; = po + v1\/ 01 fie + &4 T =(0,0,0,1,0)
(Model 8) y: = o + 01h1yi—1 + 71V 01 fie + €4 T =(0,1,0,1,0)
(Model 9) y, = pio + S1¢1ye—1 + S22ys—2 + 711/ 01 fie + & T=(0,1,1,1,0)
(Model 10) yt:uo—&—&oaot—i—’yl\/aﬂt—i—et T =(1,0,0,1,0)
(Model 11) y;, = puo + doaot + d1¢1ye—1 + 1\ 01 fic + & T=(1,1,0,1,0)
(Model 12) y; = po + doaot + 6101Ye—1 + O2baye—2 + 1/ 01 jue + €4 T=(1,1,1,1,0)
(Model 13) y, = po + Soaot + y1v/01 /i + y2/02A; + & Y =(1,0,0,1,1)
(Model 14) yy = po + 711/ 01ji + Y21/ 02 As + & T =(0,0,0,1,1)
(Model 15) yr = po + 0101y1—1 + 11V 01fie + 12/ 024 + & T =(0,1,0,1,1)
(Model 16) y; = pio + 0161yt—1 + S2¢2ys—2 + 11V 01jie + 72/ 02A¢ + & T=(0,1,1,1,1)
(Model 17) y; = po + Soaot + 1¢1yi—1 + VO fir + Y2/ 024, + &, Y =(1,1,0,1,1)
(Model 18) y; = pio + Soaot + ya/02A; + & T =(1,0,0,0,1)
(Model 19) ys = po + doaot + d1P1y1—1 + ’yg\/HZ/L + & Y =(1,1,0,0,1)
(Model 20) y; = 1o + Soaot + 0161ye—1 + S2ays—o + y2\/ 02 Ay + &4 T =(1,1,1,0,1)
(Model 21) y; = puo + Soaot + 611ye—1 + Saaye—s + 11/ 01 fie + v2/ 024, + &4 T=(1,1,1,1,1).
(4.12)
We can rewrite formulation (4.11) and (4.12) as follows:
ye = XB(6) + Z(v) e + &1, er ~ N(0,02), (4.13)
a=Toa1+¢&, &~ N(0,Q),
where ag = 031 and:
Z(y) = (mvl 0 72v0), X=00 t g1 w-2),
B(6) = (1 dot 011 52¢2)/, o= (i a At)l7
(4.14)

100 100
T=10 1 0], Q=101 0],
01 1 000

clearly this state space form changes depending on the chosen model, see Frithwirth-Schnatter and
Wagner (2009).
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4.3 Prior and Bayesian estimation

To perform the Bayesian estimation we have to choose a prior distribution for the indicators p(d,~),
for the autoregressive parameters ¢, and ¢9, for the \/#; and v/f3 parameters and for the irregular
variance 2. Choosing the priors to perform a unit root test is a quite challenging problem as
explained by Phillips (1990) where he showed that flat priors are not uninformative but unwittingly
introduce a tendency toward stationary models. Schotman and van Dijk (1991) pointed out that
improper priors, like the uniform and the Jeffrey’s prior, are less suited for Bayesian inference on
a sharp null hypothesis as the unit root.

Our framework is quite different, but the problem of choosing the right priors still remains. In
fact choosing a sensible prior is very important in model selection. In this work we follow the rule
of thumb mentioned in Koop (2003): when comparing models it is acceptable to use uninformative
priors over parameters which are common to all models. However, informative, proper priors should
be used over all other parameters.

The prior used in our study can be summarized as follows:

01 0 1 00
G| ~N|l0],l0 1 0 (¢1>~TN<<8>,<(1) 2)) (4.15)
ag 0/ \o 0 1 ¢2
the remaining prior is p(up) o 1, a few comments are in order. First, we use a partially proper
prior which combines the improper prior for the constant parameter pg with a proper prior on
the remaining unrestricted parameters, this implies some modifications to the standard marginal
likelihood that are described below. Second we choose for the autoregressive parameters, ¢; and
@2, the truncate normal prior. Beta(-,-) prior does not bring to closed-form expressions for the
posteriors and for the marginal likelihood p(y|d, v, ). Drawing from the truncated Normal dis-
tribution, rather then simply a Normal adds a slight complication. However drawing from the
truncated Normal distribution can be done by drawing from the untruncated variant and simply
discarding the draws which fall outside the stationary region. Provided that the autoregressive
parameters lie within (or not too far outside) the stationary region, this strategy works well. In
our examples we have small amount of rejections and this algorithm is not very inefficient. To
be more conservative about observation variance o2, we follow the advise of Ley and Steel (2009)
and Frithwirth-Schnatter and Wagner (2009). We choose the hierarchical prior because it increases
the flexibility and decreases the dependence on prior assumptions. The prior for the irregular
variance is given by o2 ~ IG(cy/2,Co/2) where Cy ~ G(go,Co) with cg = 2.5 , go = 5 and
Go = (90/0.75 - Var(y)(co — 1)). The hierarchical prior requires an additional sampling step where
Cp is sampled conditional on o2 from the conditional Gamma posterior Cy|o2 ~ G(go+co, Go+1/02)
at each sweep of the sample.

Define the following quantities, 8 = (uo ag d1 Pa O1 \/@)/ as the regression coefficients,
(0,7) = (1 0g 01 02 m 72) as the related indicators and o = (a1, . .., ar) as the non-centered
latent states, see (4.13) and (4.14). The measurement equation defined in (4.13) can be written

more compactly:
Yt = zfﬁﬁéﬁ + &, &t~ N(07 0-2)7 (416)

/ 5 _ ~
where 3% = (po  dpao S1¢1 a2 VO Y2v02) and ) = (1 ¢t yi1 ye—2 i A;), when
all the indicators take value one. Otherwise the restricted parameters 8% and the correspond-
ing predictors z%7 contain the elements corresponding to the indicators equal to 1, e.g. [%7 =
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(o doao G161 0 7V0O1 0)/ brings to zf’v =(1 ¢t y—1 0 f 0). Equation (4.16) define a
regression model that under the the conjugate priors:

B~ N(ad7, AYY), o2 ~ IG(co/2,Co/2), (4.17)
has the following marginal likelihood, see Geweke (2005):

L AP D(er)(C5)
(m)T72 " | B3 T(eo) (CF7)

(4.18)

p(yr+d,7, ) =

The quantities Ai}’z, cr+ and C;’* are the posterior moments of 3%7 and o2 given below in (4.19).
I'(+) is the gamma function, Bg’7 is a matrix containing the prior variances for the unrestricted
parameters and T is given by the number of observations minus two, where two is the maximum
number of autoregressive parameters. Finally the subscript 7™ underlines the fact that we lose two
observations, e.g. yr- = {y3,...,y:}. Under the conjugate prior the posterior moments are given
by the following expressions:

, -1
A5 = ((Z80) 03 28 + (A7)

6, 6, 57 ! — 57 - 57
apl = Azl ((ZT;Y) (02) yr- + (A5") 1‘107) ;
. * (4.19)
CT+ = 5(60 +T )7

6y _ 1 51,67y 5.7 4
CTZ = 5(00 + (yr- — ZTjaTZ) (Yr+ — ZTJGTZ))-
The Gibbs sampler can be sketched as follows:

(a) Draw the indicator (51 0y 03 04 M ’)/2) the constant parameters (,ug ayg @1 ¢2), the
2

variance parameters v/, and /02 and the observation variance o2 jointly in one block:
— Sample the indicator p(d,~y|yr-, ) obtained from the Bayes’ theorem p(d,y|yp-, ) o
p(yr+|9, 7, a)p(d,y) where p(yr«|0,7, a) is the marginal likelihood defined in (4.18) and
p(d,7) is the prior, uniform in our case.

— Sample o2 from IG(CT*,C%;Y) where ¢y« and Cp+ are given in equation (4.19);

2
€

parameters /0 and /65 jointly from the normal posterior N (a%:l, A%Z) moreover sample

— Conditional on o2 sample pg and ag (if unrestricted) and the unrestricted variance

¢1 and ¢5 jointly from a TN(agLZ, Agﬂ) where ap+ and Ap+ are given in equation (4.19).

Notice that under our prior specification ag’7 = 0 it follows that the quantity (Ag’“’)*la,g’7

of equation (4.19) can be safely removed, moreover Ay = <0 . >;
0
— Set to 0 all the parameters that do not enter to the selected model.

(b) Sample a = (a1, ..., ar) from the state space form (4.14) using the simulation smoothers of
Carter and Kohn (1994), De Jong and Shepard (1995) or Durbin and Koopman (2002);
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(c) Perform a random switch with probability 0.5 for /f; and fig,t = 1,...,T. Thus with
probability 0.5 the draws of these parameters remain unchanged, while they are substituted
by —v/01 and —fi; with the same probability. Perform another random sign switch for /05,
dgand A fort=1,...,T;

(d) Go to step (a).

Step (c) is necessary due to non-identifiability of the non-centered reparametrization. The sign
of the variance parameters v/0; for i = 1,...,k, and the corresponding latent states can change
by multiplying all the elements by —1 without changing the integrated likelihood, see Frithwirth-
Schnatter and Wagner (2009) for a detailed discussion. In our study we use a uniform prior over
all the possible models although other priors are possible, Ley and Steel (2009) propose to use a
Beta prior that should outperform the uniform prior over large regression models.

4.4 Empirical Results

In this section we apply the testing procedure to different models and to different datasets. We
consider first all the possible models given in (4.12), and then a subset of seven competitive models
encompassed in specification (4.12). For each study we test two different datasets that are reviewed
in Appendix A. To speed up the computation we do not sample from the components that are not
selected, the program is written in Ox v. 5.10 console (Doornik, 2007) using our source code. We
run the unrestricted model without variable selection for the first 1000 draws, this allows us to
generate sensible starting values. Then the results are obtained by running the MCMC sampling
for 40000 iterations after a burn-in period of 20000. The time needed with T" = 500 observations is
less then 25 minutes in a standard desktop computer. Subsection 4.1 presents the results for the
first experiment and subsection 4.2 reports the results for the second experiment.

4.4.1 Full models

Table 4.1 reports the results for the 21 competitive models showed in section 2. The upper part
of table 4.1 reports the results for Nelson and Plosser (1982) data set and it shows that the
stationary hypothesis is rejected for almost all the series. Among them just three are stationary,
the unemployment, the industrial production and the velocity of the money. The first one is
stationary and is well represented by an AR(2) process. The second one turns out to be better
represented by a trend stationary process (T'S) with one autoregressive parameter that takes value
around 0.82. The third one has not clear evidence of a unit root, in this case the selected model
is a first order autoregressive process (AR(1)) with root equal to 0.96 . Note that models with
¢1 very close to 1 still produce I(0) series, where the memory decays exponentially, to deal with
these borderline cases fractionally-integrated models have been introduced, see Palma (2007) for
a review. Using fractional integrated processes, Caporale et al. (2005) showed that the velocity
of the money is likely to be a stationary process with a very low value of the estimated fractional
integration parameter. Our testing procedure cannot handle fractional integration but it seems
to pick up the stationary representation for this series. As far as the other series are concerned
we cannot reject the hypothesis of non-stationarity, confirming the results of Nelson and Plosser
(1982).
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The bottom part of table 4.1 reports the same experiment for the updated dataset. Among all
the series the just the monthly hours worked turns out to be a stationary series that is better fitted
by an AR(2) process with autoregressive roots equal to ¢; = 0.68 and ¢2 = 0.26. All the other
series are non-stationary of order one, I(1), with just the monthly CPI that is an I(2) process, this
is consistent with the monthly inflation rate selected as an I(1) process.

The inflation rate, one of the most analyzed macroeconomic variables, has been an important
subject of research, see among other Culver and Papell (1997). Whether inflation is best described
as a stationary or unit root process has a number of economic implications. Conventional sticky-
price models, such as Dornbusch (1976) imply stationarity of price level. While the higher-order
Phillips curves of Calvo (1983) requires a stationary representation for the inflation series. Table
4.1 shows that the monthly and the quarterly inflation series are clearly non-stationary, with a
different short-run behaviour. In fact the monthly inflation series is estimates as a local level model
with one autoregressive parameter equal to 0.30, that corresponds to an ARIM A(1,1,1) process.

The Phillips curve, based on the Non Accelerating Inflation Rate of Unemployment (NAIRU),
is a fundamental instrument to regulate the inflation pressures, see Stiglitz (1997). The NAIRU
is unobserved and has to be estimated using the unemployment series. For this reason it is very
important to study the short and long run behaviour of this series. A new approach to evaluate
the marginal likelihood that avoids MCMC has been proposed by Fiorentini et al. (2008). They
showed, using this technique, that the unemployment series is better described by a random walk
without drift. With our framework we can carry out the same analysis allowing for autoregressive
effects, accordingly to our results the model that better fit the unemployment series is a local level
model with two autoregressive roots equal to ¢1 = 0.60 and ¢9 = 0.26. This model corresponds to
an ARIMA(2,1,1) showing that the autoregressive roots together with stochastic trend are very
important to describe the dynamics of this series.

4.4.2 Restricted models

Recall the models presented in section 4.2 and apply the right restriction on the vector T =
(50 01 02 M 'yg) we get the following subset of models:

(Model 1) yp = po + €t T =(0,0,0,0,0)
(Model 2) yp = po + apt + &¢ T =(1,0,0,0,0)
(Model 3) y¢ = po + 71/ 01 fis + & T = (0,0,0,1,0)
(Model 4) y, = po + Soaot + v1v/01ju + & T =(1,0,0,1,0)
(Model 5) yy = po + doaot + y2v/02A; + & T =(1,0,0,0,1)
(Model 6) y = po + 71\ 01/ir + v2/02A¢ + & T =(1,0,0,1,1)
(Model 7) y; = po + Soaot + 1\ 01 jie + v2/024A¢ + & T =(1,0,0,1,1)
(4.20)

Table 4.2 reports the results for Nelson and Plosser data set (1982) and the results for the updated
data set.

Looking at the upper part of table 4.2 just two series are stationary, although the evidence is
quite different. On the one hand the unemployment is clearly selected to be stationary, on the
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percent results for the updated data set.

percent results for Nelson and Plosser data set. Bottom table

: Upper table

Table 4.1
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Table 4.2: Upper table: percent results for Nelson and Plosser data set. Bottom table: percent results for the
updated data set.

Series M1 M2 Mg M4 M5 M6 M7
Rgnp 0 1 0 37 429 4 15
Ngnp 0 16 0 33 277 21 21
Rpcgnp 0 0 0 423 36.2 1.3 20
Iprod 0 0 88 0.7 0 10 0.6
Emply 0 1.6 0 37 323 2.7 26.3
Unempl 49 0 37.5 3.6 2.6 3.6 3.5
Gnpde fl 0 31.2 0 34 16.7 2.7 154
Pcons 0 0.5 0.1 176 26.2 0.6 554
Nwage 0 327 0 303 185 2 164
Rwage 0 06 0 259 44.2 8.4 20.8
Money 0 15.8 0 38.1 16 3.9 26.1
Veloc 0 10.2 0.3 19 15.5 4 508
Interest | 14.8 0 227 42 105 3.6 44.1
Pstock 0 08 0.2 8.1 13.1 255 52.2
Series Ml M2 M3 M4 M5 MG M7
MInfl 0 0 100 0 0 0 0
QInfl 0 0 99.99 0.01 0 0 0
Unempl 0 0 1.9 6.7 123 76 715
GNP 0 16.5 0 20.1 7.1 5.5 51
CPI 0 03 0 2.2 4.2 1.9 91.3
GDP 0 0 0 166 404 0.37 425
FExcRat 0 0 0 0 12 79 9
1P 0 0 0 03 0.4 0 99.3
Awhman 0 48 74 155 79 81 124
M2 0 0 0 0 0 100
Mort 0 0 0 146 114 9.8 64

other hand the percentages of the nominal wages are very spread out between model 2 and model
8. The testing procedure underlines that the other series are non-stationary, with the CPI selected
to be a I(2) process.

Table 4.2, bottom part, reports the results for the updated data set. The table shows that
the unemployment rate is selected to be I(2) in sharp contrast with table 4.1 and Fiorentini et
al. (2008). The testing procedure carried out on a restrict set of models seems to overfit the
non-stationary order. This can be explained by the sum of the autoregressive parameters equal
to ¢1 + ¢ = 0.86 that guides the selection procedure to overfit the integration order. The same
behaviour can be found in the industrial production series, where model (8) of equation (4.12) better
fits the data, with ¢1 = 0.86. As far as the monthly and quarterly inflation series are concerned,
these series are always selected as non-stationary. Looking at table 4.1 and table 4.2 we can notice
that the quarterly inflation series is estimated as a local level model in both cases. On the contrary
the monthly inflation series is estimated to be a local level model with an autoregressive root in the
extended version of the test. Finally the monthly hours worked is always selected as a stationary
process.
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Table 4.3: The most frequently visited models for diffent prior specifications.

Prior Selected Model | Frequency in percentage
p(po) x 1, By = 0.1 8 90
p(po) x 1, By =1 8 99.8
p(po) x 1, By =10 8 100
p(uo) X 1, BO =100 8 100
p(po) o< 1, By = 1000 8 100

4.5 Robustness analysis

This section provides a robustness analysis of the testing procedure under different priors specifica-
tion. The robustness analysis is carried out using the monthly inflation series. Table 4.3 provides
clear evidence in favor of the unit root hypothesis, despide the fact that it has been considered a
wide range of priors. It can been seen that most evidence for a unit root is found when the prior
allocates less weight to the region near zero, in this case the percentage of the choice increases,
this results is consistent with Frithwirth-Schnatter and Wagner (2009). For a discussion about
robustness and prior specification for the Nelson and Plosser data set as well has for seasonal time
series see Koop and Van Dijk (2000).

4.6 Monte Carlo Experiment

This section illustrates the results of Monte Carlo experiment for the testing procedure presented
in this chapter.

4.6.1 Experiment Design
The series to be estimated and selected are generated by an ARIM A(1,1,1) process:

Yt = po + aot + d1ye—1 + VOijir +e¢ e~ N(0,02), t=1,...,T. (4.21)

for different value of ag, v/01, ¢1 and different sample sizes. The design of the experiment is the
following. The log of the normalized parameter is considered for the deterministic trend and for
the stochastic trend variance, indeed log (ag / 052) and log (\/@ / ag). Their values are given by 10°
where i = 2, ..., —6 and therefore they range between 100 to 107%. The other parameters are, the
autoregressive components that range from 0 to 0.90; the constant parameter pg and the irregular
variance o2 are fixed to 1 in all the simulations. Finally the considered sample sizes are T = 100,
T = 250 and T' = 500. To ensure that the testing procedure do not select the best model just by
chance, we simulate, estimate and a select a model, at each parameters combination, for 20 times.

Due to the computational burdensome of this technique, 20 times is the maximum number of
repetitions that we can handle before the Monte Carlo experiment become unfeasible.

The simulated exercise proceeds as follows:
1 For T'= 100, T' = 250 and T = 500:
(a) For ¢1 =0, ¢1 = 0.25, ¢p1 = 0.50, ¢1 = 0.75 and ¢1 = 0.90, repeat 20 times the following;:
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For each value of log (\/E/ag) = 10%, i = 100, ..., —6, simulate, estimate and select
the model for all the possible values of log (ao/ag) = 10°, i = 100,...,—6. This

gives a total of 9 x 9 = 81 combinations.

(b) Report the most frequently chosen model for each parameters combination and go to
step (a);

2 Go to step (1).

4.6.2 Monte Carlo Results

Table 4.4 reports the results for 7' = 100, table 4.5 and table 4.6 report the results for T = 250
and T' = 500 respectively. The tables also report the number of times (in percentage) the model
has been selected in 20 iterations. This percentage varies across models and across parameter
combinations.

Table 4.4 shows that with a small sample size the test is biased for high values of the deter-
ministic trend and for the stochastic trend variance. In these cases the percentages are very low at
least for the first two columns of each panel of table 4.4. This indicates the difficulty of the testing
procedure to select correctly a model with these extreme parameter values. As the autoregressive
parameter rises towards 0.90, in combination with high values for the stochastic trend variance, the
procedure spuriously picks up two autoregressive roots with very high percentages, this behaviour
is still present with 7' = 250 and 7' = 500. The selection procedure, despite this bias, always
selects the non-stationary model when the stochastic trend variance is different from zero. As this
parameter decreases the model with deterministic trend becomes more important.

As the values of both parameters (deterministic trend and stochastic trend variance) go to zero,
the procedure selects the stationary model. In this case the autoregressive order is always rightly
chosen and the number of times the model has been selected is very high.

Table 4.5 reports the same exercise with 250 observations, and it shows that the bias introduced
by high values of the stochastic trend variance is less pronounced with respect to table 4.4. For
example the first columns of the first panel of table 4.5 shows that in some cases the procedure
selects the right model. Correspondingly to very high values for the deterministic trend and for the
stochastic trend variance, the selection procedure still picks up the wrong models, with a tendency
to overfit the non-stationary order. As the values of these parameters decrease the right model is
selected with an increasing percentage.

Table 4.6 reports the results for 500 observations. In this case the problem with the extreme
parameter values still remains, although less pronounced. Table 4.6 shows that the procedure in
this case is more precise and very often picks up the right model.

To conclude, tables 4.4, 4.5 and 4.6 show that, as the sample size increases, the precision of our
testing procedure increases. High values of the stochastic trend variance brings to overestimate the
autoregressive parameters. Moreover the procedure spuriously selects an I(2) process in the case
of high values for the stochastic trend variance and for the autoregressive parameters. This bias is
less severe with 500 observations.

In the case of small values for the deterministic trend and for the stochastic trend variance,
e.g. 1075, the procedure always selects the right autoregressive order but is oriented to stationary
models. This is consistent with our simulation scheme that assumes the irregular variance o2 fixed
to 1; in these cases it becomes the most important source of variability.
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deterministic trend. The columns are the values for the stochastic trend variance. Percentage of

panel o1 = 0.5, forth panel ¢1 = 0.75 and final panel ¢1 = 0.90. The rows are the values for the
times the model is selected in brackets.

Table 4.4: Results for simulated series with 100 observations. First panel ¢1 = 0, second panel ¢1 = 0.25, third
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deterministic trend. The columns are the values for the stochastic trend variance. Percentage of

panel o1 = 0.5, forth panel ¢1 = 0.75 and final panel ¢1 = 0.90. The rows are the values for the
times the model is selected in brackets.

Table 4.5: Results for simulated series with 250 observations. First panel ¢1 = 0, second panel ¢1 = 0.25, third

0.001  0.0001 107° 10-¢

0.01

100

NN AN N N N N N N

D ON OO0 OO IW
DD DD DO
NS AN i Bl BN R SN
<t <H <t —~ —
AN AN AN AN AN AN N N N
cCoowLIL O OO
SOOI DISIODD
i R NGNS R R
<t < < —
NN N N N N N N N
coowooooo
SOOI DDSDDD
— o o Y~~~
S N N S N N
<t <t
<t <t < M~ — — -
P e L T e T e e e
coowowmwo oo
SOOIV DDD
<t <¥ — =
P e T e e T e T
cCowmo oo owo
S S DODO D
— e S~ e N
((4(\71111
< <t ~
NN AN AN AN AN N N TN
T T R Tl Yo R = N Tl e i e
MO~ D bDDSD
R N N
coococor~ T -
it R | D~ I~
NN AN AN AN AN N N TN
ow oo oo owWo
S~ 000 SO~
p— S e S S S S N
bl =E=E=R=E
O v~ ™~ —
NN AN AN AN AN N N N
oo oW oW
0 0 0 0O S S 0 S 0

— S S

Py

P

P

—

P

~— N — N N

Py

— — — —

Py

— N

P

NSNS NN SN

o

A

e e e e o e e ey
(e RN R IO RN YR IR TR RS I I T I Y I Yool
00 1O D~ M P~ 10 O I~ 10
NS AN AN NI N N
1O — — — 00 00 00 GO OO

— o

e e e e e e
OO O MWW O
0V © <H b~ 10 © b~ 00 0

— —

NN N N N N N N N

WLOoOoWWLOVLL [Soomaoooon o
LIDL2LLILB RO R IFIRT R0
1510 00 O O W DI © IO N~ O~ — © 00 I~
— — — R T T s B TR e R | i
— —
— o =)
o =229 = o3 9
S o == So T2e=e2oo
= O OO0 O O O OO~

0.0001 107° 107¢

0.001

AN AN AN N N N N N N

[l Iol I i en Men M e M el o=l el
O OOy O OO OO
D e e T e T e TR e i e
0 10 10 A AN AN
TN SN AN AN AN AN SN N TN
O WO OO0 0O WO
OOV O OO OO oo
— O~ —
0 10 10 10 (o] [}
NN AN AN AN AN N N TN
S OO OO OO oo
OO DODOO,HYI O OO
— o S~
N S N N S N
10 AN
10 10 10 10O A AN AN
TN SN AN AN AN N N N TN
[l Il T B en R an B Yol == R en Rl an]
O OO O OO OO
— S S ] e S e e
(55((\2((\(
0 O o0 A AN AN
NN N N N N N N N
[l I B en R an B Y I I i en R en Bl an]
O OO O WOy Oy D
— e N N
0 — 00
—
NN N N N N N N
S O W O WL LW O O
O FOHOOoOo O OO
— O — — — — —
T
O — — o~ o0 o0
—
NN N N N N N N N
0 O O O O O W oW
DHDF OO OO
T oo O O
O~ = T 00 o0 T
— — — 00 o0
—

AN AN AN AN N N N N
O W0 10 10 O W0 O W O
I~ O~ OOy O OO O

— S

AN N AN N N N N N N

— S

0.001  0.0001 107° 10-6

0.01

NN N N N N N N

AN N AN N AN N N S N

AN N AN N N N N N N

AN N AN N N N N S N

o Lo T T Lo L Lo T T

Py

N — —

Py

N — N N N

Py

—

Py

— N S

0.001  0.0001 107° 1076

0.01

100

NN N N N N N N

1(\/\(\(\(\(\
1010 10

NN N N N N N N
ocowmwmin oo oW
SO 1 0SS
oSS 2LlLE2222
T om0 NN N
010

AN N AN N N N N S N

ocomwmwmo v O
SS DOm0 DS
—_ o O — N — N
T om0 NN N
010

NN N AN N N N N
oo omwmomw o
S DS DD F 00 S O Db
oSSl
1010 10

NN N N N N N N N
oo o ocoomwmooo
SIS REDOSSS
—_ o O N — N o —
010 ™
NN AN AN AN N AN N TN
o omommwo o
00 X 0 00 D - o0 O =

— N — —

Py

— N N N

Py

~— N N e e

Py

N N N




CHAPTER 4. BAYESIAN MODEL SELECTION 92

Table 4.6: Results for simulated series with 500 observations. First panel ¢1 = 0, second panel ¢1 = 0.25, third
panel o1 = 0.5, forth panel ¢1 = 0.75 and final panel ¢1 = 0.90. The rows are the values for the
deterministic trend. The columns are the values for the stochastic trend variance. Percentage of
times the model is selected in brackets.

100 10 1 0.1 0.01 0.001  0.0001 1075 107

100 10 (55) 11 (90) 10 (95) 10 (95) 4 (100) 4 (100) 4 (100) 4 (100) 4 (100)
10 10 (40) 11 (95) 10 (70) 10 (100) 4 (100) 4 (100) 4 (100) 4 (100) 4 (100)
1 10 (50) 11 (50) 10 (95) 10 (100) 10 (100) 4 (100) 4 (100) 4 (100) 4 (100)
0.1 7(60) 8(80) 10 (65) 10 (95) 10 (100) 10 (95) 4 (100) 4 (95) 4 (95)
0.01 8 (55) 8(95) 10 (100) 10 (100) 10 (100) 10 (100) 10 (100) 4 (60) 4 (55)
0.001 | 8(50) 8(95) 7(100)  7(90)  7(55) T (60)  7(70) 1(95) 4 (95)
0.0001 | 8(55) 8 (100)  7(80)  7(95)  7(90)  1(95)  1(100) 1 (100) 1 (95)
1075 | 8(50) 8(90)  7(85)  7(95)  1(95) 1(100) 1 (100) 1 (100) 1 (100)
1076 | 8(70) 8(75)  7(95)  7(90)  1(85)  1(65) 1(100) 1(100) 1 (98)
100 10 1 0.1 0.01 0.001 0.000L  107°  10°©

100 11 (50) 5 (80) 5 (65) 11 (100) 5 (85) 5 (85) 4 (95) 4 (80) 4 (85)

10 11 (40) 11(95) 11(85) 11 (86) 11 (45)  5(50) 5(75) 5(55) 5 (65)

1 11 (45) 11 (50) 11(75) 11 (90) 11 (100)  5(95) 5 (100) 5 (100) 5 (100)

0.1 11(65) 9(95) 11(85) 11 (90) 11 (100) 11 (100) 5 (100) 5 (100) 5 (100)

0.01 8(55) 9(80) 11 (60) 11(90)  8(95 11 (95) 5 (100) 5 (90) 5 (100)

0001 | 9(60) 9(85) 8(70) 8(95)  8(60)  8(70) 8(55) 8 (60) 2 (50)

0.0001 | 9(70) 9(70) 8(60) 8 (100)  8(85) 2(100) 2(95) 2(95) 2 (100)

1075 | 9(70) 9(95) 8(65)  8(95)  2(90) 2(100) 2 (100) 2 (100) 2 (100)

106 | 9(60) 9(90) 8(65)  8(95) 2(100) 2(100) 2 (100) 2 (100) 2 (95)

100 10 1 0.1 0.01 0.001 0.0001 10> 1079

100 11 (55) 6 (70)  5(95) 5 (100) 5 (100) 5 (100) 5 (100) 5 (100) 5 (100)
10 9(40) 12(95) 11 (40) 11 (40)  5(95)  5(95) 5(100) 5 (95) 5 (95)
1 11(65) 9(75) 11(100) 11 (95) 5 (100)  5(95) 5(100) 5 (100) 5 (95)
0.1 11 (55) 9 (95)  11(60) 11 (100) 11 (100) 11 (100) 5 (100) 5 (100) 5 (100)
0.01 9(70)  9(90) 11(100) 11(95) 11 (85) 11(100) 5(90) 5 (100) 5 (100)
0.001 | 9(45) 9(95)  8(90) 11(95) 11(55) 11 (55) 8(70) 8 (60) 2 (80)
0.0001 | 9(60) 9(90)  8(95)  8(95)  8(90) 2(100) 2(100) 2 (100) 2 (100)
105 | 9(65) 9(95) 8(100) 8 (100)  2(90) 2 (100) 2 (100) 2 (95) 2 (100)
106 | 9(50) 9(90)  8(95) 8(100)  2(90) 2 (100) 2 (100) 2 (100) 2 (100)
100 10 1 0.1 0.01 0.001 0.0001  10° 1079

100 12 (50) 6 (90) 5 (100) 5 (100) 5 (100) 5 (100) 5 (100) 5 (100) 5 (100)
10 9(30) 12(95) 11 (60) 11 (100) 5 (100) 5 (100) 5 (100) 5 (100) 5 (95)
1 9(60) 9 (60) 11(100) 11 (75) 11(100)  5(95) 5(90) 5 (100) 5 (100)
0.1 9(50) 9(95) 11 (60) 11(70) 11 (95) 11 (100) 5 (100) 5 (100) 5 (100)
0.01 9(60) 9(95) 11(95) 11(85) 11 (85) 11 (100) 5 (90) 5 (100) 5 (100)
0.001 | 9(70) 9 (100) 11 (95) 11(95) 11 (55) 11 (70) 8(60) 2 (100) 2 (95)
0.0001 | 9(60) 9(95)  8(95)  8(90)  2(95) 2(100) 2(100) 2 (100) 2 (100)
1075 | 9(40) 9(85)  8(95)  8(80)  2(65) 2 (100) 2(100) 2 (100) 2 (95)
106 | 9(50) 9(90)  8(95)  8(95)  2(85) 2(100) 2(100) 2 (65) 2 (95)
100 10 1 0.1 001 000l 00001 10=°  10°©

100 12 (84) 6 (84) 5(100) 11 (53) 5 (100) 5 (100) 5 (100) 5 (100) 5 (100)

10 12 (31) 12(92) 11 (61) 11 (100) 5 (100) 5 (100) 5 (100) 5 (100) 5 (100)

1 9(61) 9 (61) 11(100) 11(92) 11 (100) 5 (100) 5 (100) 5 (100) 5 (92)

0.1 9(38) 9(77) 11(61) 11(92) 11(92) 5(100) 5(100) 5 (100) 5 (92)

001 | 16(54) 9 (100) 11 (77) 11(61) 11 (100) 11 (92) 5(92) 5(92) 5 (84)

0.001 | 9(46) 9 (84) 11 (70) 11(84) 11(53) 8(69) 5(53) 2(61) 2 (70)

0.0001 | 9(61) 9(84)  8(84)  8(92)  2(92) 2(100) 2(100) 2 (100) 2 (100)

1075 | 9(38) 9(100)  8(92)  8(92) 2(100) 2(92) 2(92) 2(92) 2 (100)

1076 | 9(46) 9(92)  8(92)  8(69)  2(84) 2(100) 2(100) 2 (92) 2 (100)
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4.7 Conclusions

There is no doubt that unit root tests do suffer from low power in many situations of interests.
Researchers generally agree that the Bayesian approach offers an alternative and useful way to the
classical approach in empirical modeling.

In this paper, we provide a modify version of the Bayesian test proposed by Frithwirth-Schnatter
and Wagner (2009). This test can be seen as the Bayesian counterpart of the Leybourne et al. (1999)
test and an extended version of the test proposed by Koop and Van Dijk (2000). After a detailed
discussion about the prior specification we applied this test to Nelson and Plosser (1982) data set
and to an updated data set.

Empirical evidence, using real data, indicates that this approach is both simple to use and
yields reasonable results. For the Nelson and Plosser data set, the stationary hypothesis for the
unemployment rate, the velocity of the money as well as for the industrial production cannot be
rejected. In the updated data set the only stationary series is the monthly hours worked that is
well represented as an AR(2) process. We then presented the results for a subset of models that do
not allow for autoregressive parameters and we showed the high risk to overfit the integration order
in this case. We provided a robustness analysis for the monthly inflation series and we showed the
robustness of this procedure. Finally a Monte Carlo experiment confirmed the reliability of the
selection procedure. The extension of this testing procedure to time varying parameters, seasonality
models and to structural instability is far beyond the scope of this chapter and we leave it as a
topic of further research.
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Table 4.7: Upper table:Nelson a Plosser data set. Bottom table: updated data set.

Name Time span  Curtailment

Real GNP 1909 - 1970 Rgnp

Nominal GNP 1909 - 1970 Ngnp

Real per capita GNP 1909 - 1970 Rpcgnp

Industrial product index 1860 - 1970 Iprod

Total employment 1890 - 1970 Emply

Total unemployment rate 1890 - 1970 Unempl

GNP deflator 1889 - 1970 Gnpdefl

Consumer price index 1860 - 1970 Pcons

Nominal wage 1900 - 1970 Nwage

Real wages 1900 - 1970 Rwage

Money stock M2 1889 - 1970 Money

Velocity of money 1869 - 1970 Veloc

Bond yield 30-year corporate 1900 - 1970 Interest

Stock prices 1871 - 1970 Pstock
Name Time span Curtailment
Monthly Cpi all items 1960(1) - 2008(12) CPI
Monthly Inflation rate 1960(1) - 2008(12) MInfl
Quarterly Inflation rate 1960(1) - 2008(12) QInfl
Monthly Industrial product 1960 - 2009(10) IP
Quarterly GNP Deflator ) - 2009(3) GNPD
Quarterly GDP 194 ) - 2009(4) GDP
Monthly Conventional Mortgage Rate 30 years 1971(4) - 2009(10) Mort
Monthly Unemployment rate 1960(1) - 2010(10) Unempl
Monthly U.S./Euro Foreign Exchange Rate 1999(1) - 2009(11) ExcRat
Weekly M2 Money Stock 1980(11/3) - 2010(25/1) M2
Monthly Hours worked 1948(1) - 2009(11) Awhman

4.8 Appendix A: Dataset

The Nelson and Plosser (1982) data set are taken from the database of the Gretl software freely
available from the web side http://gretl.sourceforge.net/. The sample size range from 62 to 111
observations for each series. Except for the bold yield, the raw data are transformed into natural

logarithms.

The more recent data set are taken from Federal Reserve Bank of St.Louis freely

available from the web side http://research.stlouisfed.org/fred2/. The raw data are transformed

into natural logarithms.



Chapter 5

General Conclusions

Since the seminal paper of Kalman (1960) and Kalman and Bucy (1961), that introduced the
Kalman filter, a lot of work has been done in state space methodology. The usefulness of linear
and nonlinear state space model has been demonstrated in many applications in the last decades.
In this dissertation we have showed new fields of applicability of this methodology. Linear and
nonlinear state space models, classical and Bayesian estimation strategies as well as model testing in
a Bayesian framework have been considered. All the examples showed both the practical usefulness
and the economically relevant meaning of the state space approach, by extending the research
agenda of state space models in different directions.

After a review of linear and nonlinear and non-Gaussian state space models with the related
filtering and estimation strategies in chapter 1, in chapter 2 we studied the US inflation using
a nonlinear state space model. A Bayesian estimation strategy has been provided, along with
a Bayesian model testing procedure. This illustration showed the flexibility of the state space
methodology to resolve such complex problems that cannot easily be handled using the ARIMA
framework. In chapter 3 the state space methodology has been used to estimate the unknown
factors for a large unbalanced panel. A suitable state space form with the corresponding analytical
derivatives has been used to estimate in a fast and efficient way the unknown factors for a big
unbalanced panel. The chapter further shows new results for global and regional convergence.

Finally, in chapter 4, we provide a new Bayesian test for linear and Gaussian state space models,
showing how to include autoregressive components to the state space formulation. This new test
has been applied to the Nelson and Plosser (1982) dataset and to an updated dataset. A Monte
Carlo experiment confirmed the reliability of the selection methodology.
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