Spiking Neural Networks As Continuous-Time Dynamical Systems: Fundamentals, Elementary Structures And Simple Applications

Mario Salerno, Gianluca Susi, Alessandro Cristini, Yari Sanfelice, and Andrea D’Annessa.
Institute of Electronics, Rome University at Tor Vergata
E-mail: gianluca.susi@uniroma2.it

Abstract — In this article is presented a very simple and effective analog spiking neural network simulator, realized with an event-driven method, taking into account a basic biological neuron parameter: the spike latency. Also, other fundamentals biological parameters are considered, such as subthreshold decay and refractory period. This model allows to synthesize neural groups able to carry out some substantial functions. The proposed simulator is applied to elementary structures, in which some properties and interesting applications are discussed, such as the realization of a Spiking Neural Network Classifier.

Index Terms — Neuron, Spiking Neural Network (SNN), Latency, Event-Driven, Plasticity, Threshold, Neuronal Group Selection, SNN classifier.

I. INTRODUCTION

In Spiking Neural Networks (SNN), the neural activity consists of spiking events generated by firing neurons [1], [2], [3], [4]. A basic problem to realize realistic SNN concerns the apparently random times of arrival of the synaptic signals [5], [6], [7]. Many methods have been proposed in the technical literature in order to properly desynchronizing the spike sequences; some of these consider transit delay times along axons or synapses [8], [9]. A different approach introduces the spike latency as a neuron property depending on the inner dynamics [10]. Thus, the firing effect is not instantaneous, but it occurs after a proper delay time which is different in various cases. This kind of neural networks generates apparently random time spikes sequences, since continuous delay times are introduced by a number of desynchronizing effects in the spike generation. In this work, we will suppose this kind of desynchronization as the most effective for SNN simulation. Spike latency appears as intrinsic continuous time delay. Therefore, very short sampling times should be used to carry out accurate simulations. However, as sampling times grow down, simulation processes become more time consuming, and only short spike sequences can be emulated. The use of the event-driven approach can overcome this difficulty, since continuous time delays can be used and the simulation can easily proceed to large sequence of spikes [11], [12].

The class of dynamical neural networks represents an innovative simulation paradigm, which is not a digital system, since time is considered as a continuous variable. This property presents a number of advantages. It is quite easy to simulate very large networks, with simple and fast simulation approach [13]. In the present work, exploiting the neural properties mentioned above, are introduced very simple logical elementary structures, which can represent useful application examples of the proposed method. With the purpose to show the structures capabilities as a processing block, a SNN classifier is presented. In this way, is possible to treat many problems, that involve the use of the classic artificial neural networks, by means of spiking neural networks. The paper is organized as follows: description of some basic properties of the neuron, such as threshold and latency; simulation of the simplified model and the network structure on the basis of the previous analysis. Then, with the aim to realize some simple applications, such as the SNN classifier, some elementary structures are analyzed and discussed.

II. ASYNCHRONOUS SPIKING NEURAL NETWORKS

Many properties of neural networks can be derived from the classical Hodgkin-Huxley Model, which represents a quite complete representation of the real case [14], [15]. In this model, a neuron is characterized by proper differential equations describing the behaviour of the membrane potential $V_m$. Starting from the resting value $V_{rest}$ the membrane potential can vary when external excitations are received. For a significant accumulation of excitations, the neuron can cross a threshold, called Firing Threshold (FT), so that an output spike can be generated. However, the output spike is not produced immediately, but after a proper delay time called latency. Thus, the latency is the delay time between exceeding the membrane potential FT and the actual spike generation. This phenomenon is affected by the amplitude and width of the input stimuli and thus rich dynamics of latency can be observed, making it very interesting for the global network evolution.

The latency concept depends on the definition of the threshold level. The neuron behaviour is very sensitive with respect to small variations of the excitation current [16]. Nevertheless, in the present work, an appreciable maximum value of latency will be accepted. This value was determined by simulation and applied to establish a reference threshold point [13]. When the membrane potential becomes greater than the threshold, the latency appears as a function of $V_m$. The latency times make the network spikes desynchronized, in function of the dynamics of the whole
network. As shown in the technical literature, some other solutions can be considered to accounting for desynchronization effects, as, for instance, the finite time spike transmission on the synapses [8], [9], [10]. A simple neural network model will be considered in this paper, in which latency times represent the basic effect to characterize the whole net dynamics.

To this purpose, significant latency properties have been analysed using the NEURON Simulation Environment, a tool for quick development of realistic models for single neurons, on the basis of Hodgkin-Huxley equations [17]. Simulating a set of examples, the latency can be determined as a function of the pulse amplitude, or else of the membrane potential \( V_m \). The latency behaviour is shown in Fig. 1, in which it appears decreasing, with an almost hyperbolic shape. These results will be used to introduce the simplified model, in the next section. Some other significant effects can easily be included in the model, as the subthreshold decay and the refractory period [10]. The consideration of these effects can be significant in the evolution of the whole network.

### III. Simplified Neuron Model In View Of Neural Network Simulation

In order to introduce the network simulator in which the latency effect is present, the neuron is modelled as a system characterized by a real non-negative inner state \( S \). The state \( S \) is modified adding to it the input signals \( P_i \) (called burning signals), coming from the synaptic inputs. They consist of the product of the presynaptic weights (depending on the preceding firing neurons) and the postsynaptic weights, different for each burning neuron and for each input point [13]. Defining the normalized threshold \( S_0 \) (\( > 1 \)), two different working modes are possible for each neuron (Fig. 2):

- a) \( S < S_0 \), for the neuron in the passive mode;
- b) \( S > S_0 \), for the neuron in the active mode.

In the passive mode, a neuron is a simple accumulator, as in the Integrate and Fire approach. Further significant effects can be considered in this case, as the subthreshold decay, by which the state \( S \) is not constant with time, but goes to zero in a linear way. To this purpose, the expression \( S = S - \Delta t \cdot ld \) can be used, in which \( S \) is the previous state, \( \Delta t \) is the time interval and \( ld \) is the decay constant.

In the active mode, in order to introduce the latency effect, a real positive quantity, called time-to-fire \( t_f \), is considered. It represents the time interval in which an active neuron still remains active, before the firing event. After the time \( t_f \), the firing event occurs (Fig. 3).

**Fig. 2. Passive and active working modes.**

The firing event is considered instantaneous and consists in the following steps:

- a) Generation of the output signal \( P_r \) called presynaptic weight, which is transmitted, through the output synapses, to the receiving neurons, said the burning neurons;
- b) Reset of the inner state \( S \) to 0, so that the neuron comes back to its passive mode.

In addition, in active mode, a bijective correspondence between the inner state \( S \) and \( t_f \) is supposed, called the firing equation. In the model, a simple choice of the normalized firing equation is the following one:

\[
 t_f = 1/(S - 1),
\]

for \( S > S_0 \)

Time-to-fire \( t_f \) is a measure of the latency, as it represents the time interval in which the neuron remains in the active state. If \( S_0 = 1 + d \) (with \( d > 0 \)), the maximum value of time-to-fire is equal to 1 / \( d \). The above equation is a simplified model of the behaviour shown in Fig. 1. Indeed, as the latency is a function of the membrane potential, time-to-fire depends from the state \( S \), with a similar shape, like a rectangular hyperbola. The simulated and the firing equation behaviours are compared in Fig. 4.

The following rules are then applied for the active neurons:

- a) If appropriate inputs are applied, the neuron can enter in its active mode, with a proper state \( S_A \) and a corresponding time-to-fire: \( t_f_A = 1/(S_A - 1) \).
- b) According to the bijective firing equation, as the time increases of \( t_f < t_f_A \), the time-to-fire decreases to the value \( t_f = t_f_A - t_f \) and the corresponding inner state \( S_A \) increases to...
the new value \( S_b = 1 + 1/t_m \).

c) If, after the time interval \( t_e \), a new input is received, the new inner state \( S_b \) must be considered.

As a consequence, the effect of the new input pulse becomes less relevant for greater values of \( t_e \) (namely for greater values of \( S_b \)).

The proposed model is similar to the original integrate-and-fire model, except for the introduction of a modulated delay for each firing event. This delay time strictly depends from the inner dynamics of the neuron. Time-to-fire and firing equation are basic concepts to make asynchronous the whole neural network. Indeed, if no firing equation is introduced, time-to-fire is always equal to zero and any firing event is produced exactly when the state \( S \) becomes greater than \( S_p \). Thus, the network activity is not time modulated and the firing events are produced at the same time. On the other hand, if neuron activity is described on the basis of continuous differential equations, the simulation will be very complex and always based on discrete integration times.

The introduction of the continuous time-to-fire makes the evolution asynchronous and dependent on the way by which each neuron has reached its active mode.

In the classical neuromorphic models, neural networks are composed by excitatory and inhibitory neurons. The consideration of these two kinds of neurons is important since all the quantities involved in the process are always positive, in presence of only excitatory firing events. The inhibitory firing neurons generate negative presynaptic weights \( P_i \), and the inner states \( S \) of the related burning neurons can become lower. For any burning neuron in the active mode, since different values of the state \( S \) correspond to different \( t_f \), time-to-fire will decrease for excitatory, and increase for inhibitory events. In some particular case, it is also possible that some neuron modifies its state from active to passive mode, without any firing process, in the case of proper inner dynamics and proper inhibitory burning event. In conclusion, in presence of both excitatory and inhibitory burning events, the following rules must be considered.

a. Passive Burning. A passive neuron still remains passive after the burning event, i.e. its inner state is always less than the threshold.

b. Passive to Active Burning. A passive neuron becomes active after the burning event, i.e. its inner state becomes greater than the threshold, and the proper time-to-fire can be evaluated. This is possible only in the case of excitatory firing events.

c. Active Burning. An active neuron affected by the burning event, still remains active, while the inner state can be increased or decreased and the time-to-fire is properly modified.

d. Active to Passive Burning. An active neuron comes back to the passive mode without firing. This is only possible in the case of inhibitory firing neurons. The inner state decreases and becomes less than the threshold. The related time-to-fire is cancelled.

The simulation program for continuous-time spiking neural networks is realized by the event driven method, in which time is a continuous quantity computed in the process. The program consists of the following steps:

1. Define the network topology, namely the burning neurons connected to each firing neuron and the related values of the postsynaptic weights.

2. Define the presynaptic weight for each excitatory and inhibitory neuron.

3. Choose the initial values for the inner states of the neurons.

4. If all the states are less than the threshold \( S_p \), no active neurons are present. Thus, the activity is not possible for all the network.

5. If this is not the case, evaluate the time-to-fire for all the active neurons. Apply the following cyclic simulation procedure:

   5a. Find the neuron \( N_f \) with the minimum time-to-fire \( t_{f_{min}} \).

   5b. Apply a time increasing equal to \( t_{f_{r}} \). According to this choice, update the inner states and the time-to-fire for all the active neurons.

   5c. Firing of the neuron \( N_f \). According to this event, make \( N_f \) passive and update the states of all the directly connected burning neurons, according to the previous burning rules.

   5d. Update the set of active neurons. If no active neurons are present the simulation is terminated. If this is not the case, repeat the procedure from step 5a.

In order to accounting for the presence of external sources, very simple modifications are applied to the above procedure. In particular, input signals are considered similar to firing spikes, though depending from external events. Input firing sequences are connected to some specific burning neurons through proper external synapses. Thus, the set of input burning neurons is fixed, and the external firing sequences are multiplied by proper postsynaptic weights. It is evident that the parameters of the external sources are never affected by the network evolution. Thus, in the previous procedure, when the list of active neurons and the time-to-fire are considered, this list is extended also to all the external sources.

In previous works [13], the above method was applied to very large neural networks, with about \( 10^6 \) neurons. The set of postsynaptic weights was continuously updated according to classical Plasticity Rules and a number of interesting global effects have been investigated, as the well known Neuronal Group Selection, introduced by Edelman [18], [19], [20], [21]. In the present work, the model will be applied to small neural structures in order to realize useful logical behaviours. No plasticity rules are applied, thus the scheme and the values of presynaptic and postsynaptic
weights will be considered as constant data. Because of the presence of the continuous time latency effect, the proposed structures seem very suitable to generate or detect continuous time spike sequences. The discussed neural structures are very simple and can easily be connected to get to more complex applications. All the proposed neural schemes have been tested by a proper MATLAB simulator.

IV. SOME BASIC DEFINITIONS AND CONFIGURATIONS

In this section, the previous theory will be applied to small group of neurons so that a number of SIMPLE continuous-time applications will be introduced. A very simple logic activity consists of the recognition of proper input spiking sequences by proper neural structures. The input sequences can differ from their spike time arrival, and the recognition consists on the firing of a proper output element, called the Target Neuron TN. A basic function called the dynamic addition will be introduced, by which many simple structures can be defined, in which the input spike time of arrival can be used.

The basic function of a target neuron is to produce an output spike when the correct burning spikes are received in the proper time interval (Fig. 5). No output spike is generated if some of the inputs are not received, or else, if their arrival times are not properly correct. It is evident that the target neuron will become active under the following two conditions:

1. the sum of the burning input amplitudes is greater than the threshold.
2. the burning spikes are properly synchronized.

\[ P_r (P_a + P_b + P_c) - ld (\tau_1 + \tau_2) > S_0 \]

in which \( P_r \) is the presynaptic weight, \( P_a, P_b, P_c \) are the postsynaptic weights referred to the target neuron, \( ld \) is the subthreshold decay, \( S_0 \) is the normalized threshold and \( \tau_1, \tau_2 \) are the interspike intervals.

The input spike time tolerance is strictly related to the subthreshold decay and to the presynaptic weight values, considered as external control parameters. On the basis of the proper choice of these parameters, a certain tolerance of the input synchronism could be obtained. Different target neuron tolerances could be achieved. Indeed, greater target neuron tolerance is observed in correspondence to greater presynaptic weights, as well as less \( ld \) values (Fig. 7). This kind of behaviour should be quite useful to synthesize higher complex structures and applications.

A new global useful parameter can be defined, namely the working mode activity level (WMAL). With reference to a target neuron, this parameter represents the number of equal amplitude synchronized input spikes necessary to let the target neuron over the threshold level (Fig. 8). In the previous discussion, the only considered effect was the target neuron threshold level overtaking. On the basis of the previous discussion, the actual output spike generation will occur after the proper time-to-fire, if of course other burnings will be not present in the meantime.
V. ELEMENTARY STRUCTURES

In this section, a number of elementary applications of the simplified neuron model will be presented. The purpose is to introduce some neural structures in order to generate or detect particular spike sequences. Since the considered neural networks can generate analog time sequences, time will be considered as a continuous quantity in all the applications. Thus, very few neurons will be used and the properties of the simple networks will be very easy to describe.

A. Analog Time Spike Sequence Generator

In this section, a neural structure, called neural chain, will be defined. It consists of \( m \) neurons, called \( N_1, N_2, \ldots, N_m \), connected in sequence, so that the synapses from the neuron \( N_k \) to the neuron \( N_{k+1} \) is always present, with \( k = 1, 2, \ldots, m-1 \) (Fig. 9).

In the figure, \( EI_i \) represents the external input, \( N_i \) the neuron \( k \), and \( P(N_{k-1}, N_k) \) the product of the presynaptic and the postsynaptic weights, for the synapses from neurons \( N_{k-1} \) to neuron \( N_k \).

If all the quantities \( P(N_i, N_k) \) are greater than the threshold value \( S_0 = I + d \), any neuron will become active in presence of a single input spike from the preceding neuron in the chain. This kind of excitation mode will be called, level 1 working mode. It means that a single excitation spike is sufficient to make active the receiving neuron. If all the neurons \( 1, 2, \ldots, m \), are in the level 1 working mode, it is evident that the firing sequence of the neural chain can proceed from 1 to \( m \) if the external input \( EI_i \) is firing at a certain initial time. This course of action is an open neural chain, but, if a further synaptic connection from neuron \( N_k \) to neuron \( k+1 \) is present, the firing sequence can repeat indefinitely and a closed neural chain is realized (Fig. 10).

The basic quantity present in the structure is the sequence of the spiking times generated in the chain. Indeed, since all the positive quantities \( P(N_{k-1}, N_k) \cdot S_0 \) can be chosen different with \( k \), different latency times will be generated.

thus the spiking times can be modulated for each \( k \) with the proper choice of \( P(N_{k}, N_{k+1}) \).

In this way, a desired sequence of spiking times can be obtained. The sequence is limited for open neural chain, periodic for closed neural chain. The above elementary neural chain can be modified in many ways. A simple idea consists of substituting a neuron \( N_0 \) in the chain with a proper set of neurons \( N_k \) with \( h = 1, 2, \ldots, m_i \) (Fig. 11).

B. Spike Timing Sequence Detector

In this section, two elementary structures are discussed to detect input spike timing sequences. The properties of the structures depend on the proper choice of the values of postsynaptic weights, together with the basic effect called subthreshold decay. The idea is based on the network shown in Fig. 12. It consists of two branches connecting the External Inputs \( EI_i \) and \( EI_j \) to the output neuron \( TN_{10} \).

The detection is called positive when the firing of the target neuron is obtained, otherwise negative.

In the figure, \( P(10, 1) \) is the product of the presynaptic and the postsynaptic weights for the synapses from \( EI_i \) to \( TN_{10} \), while \( P(10, 2) \) refers to the synapses from \( EI_j \) to \( TN_{10} \). If the values are properly chosen, the system can work at level 2 working mode. This means that \( TN_{10} \) becomes active in presence of the two spikes from \( EI_i \) and \( EI_j \). As and example, if \( P(10, 1) = P(10, 2) = 0.6 \), and the spikes from \( EI_i \) and \( EI_j \) are produced at the same time, \( TN_{10} \) becomes active with the state \( S(TN_{10}) = 1.2 > S_0 \), so that an output spike is produced after a proper latency time. In this case, the output spike generated by \( TN_{10} \) stands for a positive detection. However, if the spiking times \( t_i \) and \( t_j \) of \( EI_i \) and \( EI_j \) are different (for instance \( t_i > t_j \)), only the value of \( S(TN_{10}) = 0.6 \) is present at

Fig. 8. Case of WMAL equal to 3. Three equal and synchronized burning pulses are necessary. A less number of burning pulses as well as proper desynchronization can make the output not present.
Taking into account the linear subthreshold decay, the state at the time \( t_1 \) will grow down to \( S(TN_{10}) = 0.6 - (t_2 - t_1) ld \). Thus, the new spike from \( EI_3 \) could not be able to make active the target neuron \( TN_{10} \); thus, the detection could be negative. This is true if the values of \( P(10, 1) \) and \( P(10, 2) \), the time interval \( (t_2 - t_1) \) and the linear decay constant \( ld \) are properly related. In any case, the detection is still positive if the interval \( (t_2 - t_1) \) is properly limited. Indeed, for a fixed value of \( t_1 \), the detection is positive if \( t_2 \) is in the interval \( A \), as shown in Fig. 13. Therefore, the proposed structure can be used to detect if the time \( t_2 \) belong to the interval \( A \).

The value of \( Dt \) can be obtained as the latency time of \( DN_j \), from a proper value of \( P(3, 1) \). Of course the neuron \( DN_j \) must work at level 1 working mode.

**C. Spike Timing Sequence Detector With Inhibitors**

In this section a structure able to detect significant input spike timing sequences will be introduced. The properties of the proposed neuron structure strictly depend on the presence of some inhibitors which make the network properties very sensitive. The proposed structure will be described by a proper example. The scheme is shown in Fig. 15. The network consists of three branches connected to a Target Neuron. The structure can easily be extended to a greater number of branches. The neurons of Fig. 15 can be classified as follows:

**Table I. Firing Table For The Case A Simulation. The Detection Is Positive.**

<table>
<thead>
<tr>
<th>n</th>
<th>( t )</th>
<th>n</th>
<th>( t )</th>
<th>n</th>
<th>( t )</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>7.0000</td>
<td>35</td>
<td>7.0000</td>
<td>35</td>
<td>7.0000</td>
</tr>
<tr>
<td>37</td>
<td>7.0000</td>
<td>37</td>
<td>7.0000</td>
<td>37</td>
<td>15.0000</td>
</tr>
<tr>
<td>36</td>
<td>7.0000</td>
<td>36</td>
<td>7.0000</td>
<td>36</td>
<td>15.5714</td>
</tr>
<tr>
<td>1</td>
<td>17.0000</td>
<td>1</td>
<td>17.0000</td>
<td>3</td>
<td>17.0000</td>
</tr>
<tr>
<td>2</td>
<td>17.0000</td>
<td>2</td>
<td>17.0000</td>
<td>2</td>
<td>17.0000</td>
</tr>
<tr>
<td>3</td>
<td>17.0000</td>
<td>3</td>
<td>17.0000</td>
<td>3</td>
<td>17.0000</td>
</tr>
<tr>
<td>31</td>
<td>18.9231</td>
<td>31</td>
<td>18.9231</td>
<td>31</td>
<td>18.9231</td>
</tr>
<tr>
<td>33</td>
<td>18.9231</td>
<td>33</td>
<td>18.9231</td>
<td>33</td>
<td>18.9231</td>
</tr>
<tr>
<td>32</td>
<td>18.9231</td>
<td>32</td>
<td>18.9231</td>
<td>32</td>
<td>18.9231</td>
</tr>
<tr>
<td>10</td>
<td>19.9231</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>

**Table II. Firing Table For The Case B Simulation. No Firing For The Neuron \( TN_{10} \). The Detection Is Negative.**

**Table III. Firing Table For The Case C Simulation. No Firing For The Neuron \( TN_{10} \). The Detection Is Negative.**

**Table IV. Firing Table For The Case D Simulation. The Detection Is Positive.**

External Inputs : neurons 35, 36, 37;
Excitatory Neurons : neurons 1, 2, 3;
Inhibitory Neurons : neurons 31, 32, 33;
Target Neuron       : neuron 10.

The network can work in different ways on the basis of the values \( P(k, h) \) of the products of the presynaptic and the postsynaptic weights.

Since the firing of the target neuron depends both on the excitators and the inhibitors, the detection can become very sensitive in function of the excitation times of the external inputs, with proper choices of the quantities \( P(k, h) \). Indeed, some target neuron excitations can make it active so that the firing can be obtained after a proper latency interval. However, if an inhibition spike is received in this interval, the target neuron can come back to the passive mode, without any output firing.

As an example, called Case A, the simulation program has been used with the following normalized values:

\[
\begin{align*}
P(1,35) &= P(2,36) = P(3,37) = 1.1; \\
P(31,1) &= P(32,2) = P(33,3) = 1.52; \\
P(10,1) &= P(10,2) = P(10,3) = 0.5; \\
P(10,31) &= P(10,32) = P(10,33) = -4.
\end{align*}
\]

In this example, the three parallel branches of Fig. 15 are exactly equal and the latency time for the target neuron firing is such that the inhibition spikes are not able to stop it. In the simulation, equal firing times for the external inputs are chosen (equal to the arbitrary normalized value of 7.0000). The firing times \( t \) for the neurons \( n \) are obtained by the simulation program (Tab. I). It can be seen that the firing of target neuron...
To this purpose, each feature detection will be represented as a set of three reference features. Each axis is coded as proper analog timings. The outputs will correspond to the activation of the related target neurons. In this way, different objects belonging to different classes will be mapped in a specific \( n \)-dimensional space. Proper input pulses will be defined as input to the network, and the information will be coded as proper analog timings. The outputs will correspond to the activation of the related target neurons.

A. Reference Classes As Spike Timing Representation

In a three dimensional space, a single object can be represented as a set of three reference features. Each axis is referred to a time interval (\( \tau \)) that permits to quantify a reference feature. To this purpose, each feature detection will be afforded by a proper sequence recognizer. Thus, any significant elementary structure will be synthesized in the proper interval detection, so that any feature will correspond to a specific action domain. Therefore, a proper set of recognizer will be necessary in order to indentify a specific class. The following examples will be considered.

Example 1. In this example, an object is described by a single feature (Fig. 16). Thus, a single sequence recognizer is necessary, to identify the class of the object. The time interval is centered on the instant \( t \), with a proper tolerance.

![Fig. 16. Case of a single class, described by a single feature](image)

If objects belonging to more different classes are of interest, a number of different sequence detectors will be used, centered on proper intervals of the same axis (Fig. 17). These sequence detectors can work in parallel, in order to activate different target neurons according to the particular class of the object.

Example 2. In this example, an object is described by a set of \( N \) features (Fig. 18). The number of \( N = 3 \) will be used, for the sake of convenience. A set of a \( N \) sequence detectors will be necessary in this case, to identify any single class. In the

![Figure 18. Case of three features, with three classes for everyone: a) Class 1 recognizer set. b) Class 2 recognizer set. c) Class 3 recognizer set. d) Single class domains, in the three dimensional feature space](image)
A possible limitation of the previous procedure seems to be the shape of the class domains, which is always right-angled. In particular, a rectangle for a double feature, a parallelepiped for three feature, a hyper-parallelepiped in the general case. This limitation can easily be overcome using proper subclass groups implemented by different neural recognizers, linked to the same target. A case of interest in the classification problem is to grow up or down the action domains related to the identified classes (Fig. 20).

As shown before, two external parameters can be used, in particular $P_r$ and $ld$ quantities. This possibility is very useful when different object could lie in adjacent zones in the feature space. In the case of multiple target activation, the proper change of the external parameters could get to the single target activation case. In similar way, if no target neurons are activated in correspondence to an input pattern, the corresponding class domain can be grow up, so that the interest point is included.

C. An Example: the “Art Paintings Classifier”
On the basis of the described structures, it could be possible to employ proper sequence detector sets for information recalling applications. The following example is an “art painting classifier” implemented. After a proper training, this “macro-structure” is able to recognize the art paintings. The training consists in the adjustment of the postsynaptic weights, with the aim of tuning the structures to the feature parameters; to do that statistical information are extracted from a reduced art painting data set to do that. For this purpose, the following five features ($N=5$) are considered:
- Red Colour Dynamics
- Green Colour Dynamics
- Blue Colour Dynamics
- Edge Factor
- Size Factor

The feature selection is made so that the features were robust to rotations and resizing of the image in exam. For the feature extraction a MATLAB code is used.

The complete classifier structure (Fig. 22) consists of $M$-detector groups, where $M$ is the number of considered art paintings.
painting (that corresponds to the classes that the classifier have to recognize). The input features vector, of each considered art painting, is provided to all groups. The classification of a particular art painting occurs when the external target of the related group fires. As discussed above, the latter are sensitive to the specific art painting.

Below are shown the results obtained considering the following three art painting (M=3): Leonardo da Vinci’s “The Mona Lisa”, Edvard Munch’s “The Scream”, Vincent van Gogh’s “The Starry Night”. The data set is consisted of 20 images, for each art painting, from the internet. After the training, a test set, consisting of 8 images, for each art painting, not presented in the training, is presented to each tuned detector group. In the following table are illustrated the results, in terms of accuracy and precision of the classifier:

<table>
<thead>
<tr>
<th>Detector Group</th>
<th>TP</th>
<th>TN</th>
<th>FP</th>
<th>FN</th>
<th>Accuracy (%)</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“The Mona Lisa”</td>
<td>8</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>“The Starry Night”</td>
<td>8</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>“The Scream”</td>
<td>8</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

With the aim to determine accuracy and precision, the following classical expressions are considered:

\[
\text{Accuracy} = \frac{TP+TN}{TP+FP+FN+TN}
\]

\[
\text{Precision} = \frac{TP}{TP+FP}
\]

Where: TP is the number of true positives; TN is the number of true negatives; FP is the number of the false positives; FN is the number of the false negatives.

Note the good performance obtained by this simple classifier. Due to its low computational cost and the promising performance, this discussed structure could be useful for many other pattern recognition problems.

**Conclusions**

In this work a very simple and effective analog SNN model is presented, considering a basic biological neuron parameter: the spike latency. The spike activity, generated in the proposed network, appears fully asynchronous and the firing events consist of continuous time sequences. The simulation of the proposed network has been implemented by an event-driven method. The model has been applied to elementary structures to realize neural systems that generate or detect spike sequences in a continuous time domain. These neural structures, connected to a more high level, can realize a more complex structure able to process the information, operating a distributed and parallel input data processing. In this regard, the implementation of a SNN classifier is shown. An effective transformation of the input data domain into related spike timings domain is necessary, thus the temporal sequences obtained are processed by the classifier. In future works, sets of sequence detectors could be used to solve complex classification problems, as the above example illustrated. In addition, the structures could be used to realize more complex systems to obtain analogic neural memories. In particular, proper neural chains could be useful as information memories, while proper sets of sequence detectors could be used for the information recalling.

**REFERENCES**


[17] NEURON simulator, available on: http://www.neuron.yale.edu/neuron/