Inactivation of Human Salivary Glutathione Transferase P1-1 by Hypothiocyanite: A Post-Translational Control System in Search of a Role

Raffaele Fabrini¹, *, Alessio Bocedi¹, *, Serena Camerini², Marco Fusetti³, Fabrizio Ottaviani⁴, Francesco M. Passali⁵, Davide Topazio⁶, Federica Iavaroni⁶, Irene Francia¹, Massimo Castagnola⁵, Giorgio Ricci¹

¹ Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy, 2 Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy, 3 Department of Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy, 4 Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy, 5 Institute of Biochemistry and Clinical Biochemistry, Catholic University and/or Institute for Molecular Recognition, National Research Council, 00168 Rome, Italy

Abstract

Glutathione transferases (GSTs) are a superfamily of detoxifying enzymes over-expressed in tumor tissues and tentatively proposed as biomarkers for localizing and monitoring injury of specific tissues. Only scarce and contradictory reports exist about the presence and the level of these enzymes in human saliva. This study shows that GSTP1-1 is the most abundant salivary GST isoenzyme, mainly coming from salivary glands. Surprisingly, its activity is completely obscured by the presence of a strong oxidizing agent in saliva that causes a fast and complete, but reversible, inactivation. Although salivary z-defensins are also able to inhibit the enzyme causing a peculiar half-site inactivation, a number of approaches (mass spectrometry, site directed mutagenesis, chromatographic and spectrophotometric data) indicated that hypothiocyanite is the main salivary inhibitor of GSTP1-1. Cys47 and Cys101, the most reactive sulfhydryls of GSTP1-1, are mainly involved in a redox interaction which leads to the formation of an intra-chain disulfide bridge. A reactivation procedure has been optimized and used to quantify GSTP1-1 in saliva of 30 healthy subjects with results of 42±4 mU/mg-protein. The present study represents a first indication that salivary GSTP1-1 may have a different and hitherto unknown function. In addition it fulfills the basis for future investigations finalized to check the salivary GSTP1-1 as a diagnostic biomarker for diseases.

Introduction

Saliva is a complex mixture which contains more than 3,000 different proteins many of which may be associated with a disease phenotype and can be very informative for human disease detection [1]. Whole saliva represents an attractive diagnostic fluid because its collection is easy, noninvasive and rapid to obtain without the need for specialized health-care workers and equipments. A large number of medically valuable analytes in saliva have gradually been unveiled and some of them represent potential biomarkers for different diseases including autoimmune, bacterial, cardiovascular and viral diseases and cancer [2].

The use of saliva as a diagnostic fluid was until now limited by circadian variation and polymorphisms, but recent studies [3-5] have investigated these aspects, demonstrating that saliva based diagnostics may offer a robust alternative for clinicians to use in the near future to make clinical decisions and predict post treatment outcomes.

In this context, enzymes belonging to the glutathione transferase superfamily are interesting. These enzymes, abundantly expressed in all human tissues, are devoted to cell protection, catalyzing the conjugation of glutathione (GSH) to the electrophilic centre of many toxic and carcinogenic compounds [6]. A number of additional functions of specific GST isoenzymes have been also discovered, including the peroxidase activity [6], an anti-apoptotic role through the binding to cJNK [7], and the protection against nitrosative stress [8]. GSTs display also non-enzymatic ligandin properties [9]. These enzymes are often overexpressed in tumor tissues and thus considered an important marker of early tumor development [10]. Recently, a direct interaction has been described between the GSTP1-1 and the TRAF domain of TNF receptor-associated factor 2 [11]. In addition, a particular GST isoenzyme present in the erythrocytes, the GSTP1-1, is over-
pressed in case of increased blood toxicity as it occurs in nephropathic patients [12] and in healthy subjects living in polluted areas [13]. Thus, erythrocyte GSTP1-1 is considered a biomarker of blood toxicity. Human cytosolic GST isoenzymes are grouped in at least seven different classes named Alpha, Pi, Mu, Theta, Omega, Zeta, and Sigma [14]. While the distribution and expression of these isoenzymes in many human tissues are well known, the presence and the identity of GSTs in saliva is still unclear and only reported by a few authors, with contradictory evidences. In particular, Sreerama and coworkers observed the presence of Alpha, Pi and Mu class GSTs in saliva of healthy subjects only upon ingestion of large amounts of coffee and broccoli [15]. On the contrary, two proteomic studies revealed the presence only of GSTP1-1 [16,17] while Fang et al. found both GSTP1-1 and GSTA1-1 [18]. In any case, these proteomic studies gave no quantitative estimation of the salivary levels of these enzymes.

The present study proposes to define which specific GST isoenzymes are mainly present in human saliva, their possible interaction with salivary components and to develop a simple method for their quantification. Results are also given for the level of the salivary GST in healthy subjects.

Materials and Methods

Materials

1-chloro-2,4-dinitrobenzene (CDNB), GSH, oxidized glutathione (GSSG), cysteine, potassium borohydride (KBH₄), dithiothreitol (DTT), lactoperoxidase (LPO) from bovine milk, hydrogen peroxide (H₂O₂), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), Biogel P2 and all other reagents were purchased from Sigma-Aldrich (St. Louis, USA) and used without further purification. θ-defensin 1 and 2 were Peptanova (Sandhausen, Germany) products.

Ethic Statement

30 healthy volunteers (age ranging from 20 to 65 years; 15 men, 15 women) were recruited. The experiments were undertaken with the understanding and written consent of each subject. The study methodologies conformed to the standards set by the Declaration of Helsinki. The study methodologies were approved by local ethics committee of University of Rome ‘Tor Vergata’.

Salivary Sample

For three consecutive days, human saliva samples have been collected every day with a minimally-invasive standard procedure using Salivette code blue (Sarstedt AG & Co., Numbrecht, Germany). Samples were collected three times per day fasting, before brushing teeth in the morning immediately after wakening (8:00 a.m.), before lunch (11:00 a.m.), and in the afternoon (3:00 p.m.). The swab was gently chewed for 1 min and then placed into the Salivette tube. The sample were stored at 4°C and in the same morning centrifuged at 10,000×g for 10 min at room temperature. The filtered sample was analyzed for protein content and glutathione transferase activity by following the standard reactivation procedure described below.

Enzyme activity and protein determination

Each saliva sample was incubated for 45 min at 37°C in a dry block thermostat with 5 mM final concentration of DTT. This protocol represents the optimized method for reactivation of oxidized salivary GST. The glutathione transferase activity was assessed by the classical method described by Habig and Jakoby [19], using 1 mM CDNB and 1 mM GSH in 0.1 M potassium phosphate buffer, pH 6.3 (25°C). The specific activity of purified GSTP1-1 at 25°C is 100 U/mg.

The protein content was estimated by Warburg-Christian equation:

\[
\text{Protein (mg/mL)} = 1.55 \times \text{Abs}_{280} - 0.76 \times \text{Abs}_{560}
\]

where Abs at 280 nm (proteins) and Abs at 260 nm (nucleic acids) are corrected for scattering (Abs at 500 nm). Moreover, the protein concentration was also randomly estimated using the Lowry method [20] and compared with the Warburg-Christian technique. The difference does not exceed the 7%.

Glutathione transferase variants

Recombinant GSTP1-1, single variants C47S-GSTP1-1 and C101S-GSTP1-1 and double variant C47S-C101S-GSTP1-1 were expressed in *E. coli* and purified as reported previously [21].

Chromatography on Bio-gel P2

The chromatography was performed by using a column (30×1.5 cm) packed with a Bio-gel P2 resin. The column was conditioned with ultrapure H₂O. Molecular markers or authentic saliva were loaded onto the column and eluted by ultrapure H₂O at 0.6–1.0 mL/min at room temperature. The molecular markers were GSH (MW = 307.3), reduced DTNB (TNB) (MW = 198.2), cysteine (MW = 121.2), phenol (MW = 94.1), SCN⁻ (MW = 38.1).

Mass spectrometry analysis

High-resolution HPLC-ESI-MS/MS experiments were carried out using an Ultimate 3000 Micro HPLC apparatus (Dionex, Sunnyvale, CA, USA) equipped with a FLM-3000-Flow manager module and coupled to an LTQ Orbitrap XL apparatus (Thermo Fisher Scientific, Waltham, MA). The chromatographic column was a Zorbax 300 SB-C18 (3.5 μm particle diameter, column dimension 1 mm i.d. × 15 cm). High-resolution HPLC-ESI-MS experiments were performed by using the following eluents: (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile-water 80/20 (v/v). The applied gradient was 0–4 min 5% B, 4–34 min from 5 to 50% B (linear), 34–54 min from 50 to 90% B (linear), at a flow rate of 80 μL/min. High-resolution positive MS/MS spectra were collected in data-dependent acquisition mode; the three most intense multiply charged ions were selected in a time window of 3 milliseconds and fragmented by using collision induced dissociation (35% normalized collision energy) and spectra were recorded. Tuning parameters were: capillary temperature 230°C, source voltage 4 kV, capillary voltage 48 V, tube lens voltage 170 V.

Preparation of HOSCN/OSCN⁻ and 5-thio-2-nitrobenzoic (TNB) stock solutions

Hypothiocyanite (HOSCN/OSCN⁻) was prepared by the LPO-catalyzed reaction of SCN⁻ with H₂O₂ [22]. Stock solution of TNB was generated by reduction of DTNB. About 10 mg of KBH₄ was added to 2 mL of 1 mM DTNB in 10 mM potassium phosphate buffer pH 7.4 and the solution was mixed for 10 min at room temperature until a constant orange color was formed. The excess of KBH₄ was destroyed by adding a few drops of HCl (10 M). The solution was neutralized with some drops of NaOH 10 N to reach a final pH of 5–6. TNB concentration was estimated spectrophotometrically measuring the absorbance at 412 nm (ε₁₀⁺cm⁻¹ = 18.1 mM⁻¹ cm⁻¹). Finally, the concentration of HOSCN/OSCN⁻ stock solutions were measured by detecting the loss of absorbance at 412 nm after adding an excess of TNB.
The stoichiometry of the reaction between HOSCN and TNB is 1:2.

Results and Discussion

GST activity in human saliva

Under the usual assay conditions for GST activity (1 mM GSH and 1 mM CDNB in 0.1 M potassium-phosphate buffer, pH 6.5) no detectable catalysis could be observed in 20 different saliva samples obtained from healthy subjects as described under Experimental Procedures. To check the possible presence of salivary GST inhibitors, we performed various controls. Saliva samples were supplemented with variable amounts of GSTP1-1, GSTM2-2 or GSTA1-1, as representative GSTs belonging to the most abundant classes expressed in humans (Alpha, Pi and Mu) [6]. While the activity of GSTA1-1 and GSTM2-2 in the samples was satisfactory (95–100%), the one of GSTP1-1 was less than 1% (Figure 1A). The observed inactivation was reversible and likely due to an oxidative event. In fact, treatment of these samples with 1 mM DTT at room temperature for 120 min restored the expected activity (Figure 1B). Really, exogenous GSTP1-1 underwent a fast inactivation in saliva (Figure 1A) and even diluted saliva samples were still able to inactivate this enzyme in a few minutes (Figure 2). Saliva samples not supplemented with exogenous GSTP1-1, and treated with DTT, also disclosed a detectable GST activity ranging from 30 to 50 mU per mg of salivary proteins. The observed fast inactivation is not a catalytic event but likely caused by a stoichiometric interaction of the enzyme with a component of the saliva. In fact, fixed amounts of saliva incubated with variable over-stoichiometric levels of GSTP1-1 gave the same amount of inhibited GSTP1-1 (not shown). Furthermore, incubation of a fixed amount of the enzyme with saliva samples at increasing dilutions gave different levels of inhibited enzyme correlated to the different dilutions (Figure 2). From these data and assuming a 1:1 stoichiometry for the reaction GST-inhibitor, we estimated the concentration of the inhibitor from 5 to 15 μM in ten different saliva samples.

Mass spectrometry

The GSTP1-1 wild-type is an homodimeric enzyme with four cysteines (14, 47, 101, and 169) in each subunit (Figure S1). Mass spectrometry demonstrated that in the native enzyme the inactivation occurring in saliva is due to the formation of an intra-chain disulfide bridge. In fact, the molecular mass of the inactivated GST displays a value corresponding to a single monomer but with two Da units lower than the native subunit (Table 1) (Figure S2). This result excludes that this disulfide may involve cysteines of the adjacent subunit as well as mixed disulfide of the protein with small salivary proteins or with small thiols like GSH or Cys. Cys47 and Cys101 are most likely involved because, as observed in the past, it is mainly this disulfide that is formed...
under oxidizing conditions [23-25]. However, in the absence of Cys101, alternative disulfides can be formed, as indicated by the loss of two mass units found using the Cys101Ser variant. MS/MS fragmentation of the intact proteins was very poor (due to the disulfide bridge). Only few fragments of the g and b series around 133-150 residues were detected, suggesting that Cys169 is not involved in the formation of these alternative disulfides (data not shown).

Kinetics experiments with GSTP1-1 variants
Experiments with specific Cys variants of GSTP1-1 further confirmed the involvement of Cys47 and Cys101 in the observed inactivation. As shown in Figure 3, replacement of both these residues by Ser fully prevented the inactivation due to the salivary inhibitor. Conversely, single point mutations involving only Cys47 or Cys101 allowed salivary inactivation but to a lower extent and with slower kinetics than that observed with native GSTP1-1. The fast and almost complete inactivation observed within the native enzyme confirms that its inactivation mainly involves the oxidation of only Cys47 and Cys101 (Figure 3). As above indicated, alternative intramolecular disulfides can be formed, but only in the absence of Cys47 or Cys101 and possibly involving Cys14.

GSH and cysteine protect GSTP1-1 from inactivation
The presence of GSH in the saliva samples was found to protect the exogenous GSTP1-1 from inactivation. As Cys47 and Cys101 are located near the G-site, this protection has been first explained on the basis of a steric hindrance of these two cysteines by the bound GSH, as it has been observed using glutathione analogs in the presence of other GSTP1-1 inhibitors [26]. However, the protective effect is still present when GSH is only 10-20 μM, concentrations unable to saturate the G-site (K_G = 100 μM) [27]. Furthermore, also cysteine and other thiols at similar low concentrations display identical behavior suggesting that the protection is due to a direct and stoichiometric interaction of the GSH and cysteine with GSTP1-1 (Figure 3). As above indicated, alternative intramolecular disulfides can be formed, but only in the absence of Cys47 or Cys101 and possibly involving Cys14.

Salivary Glutathione Transferase P1-1
Table 1. Mass for GSTP1-1 and C101S variant after reaction with human saliva.*

<table>
<thead>
<tr>
<th>Protein</th>
<th>[M+H]⁺ (m/z)</th>
<th>[M+H]⁺ (m/z)</th>
<th>ΔM</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSTP1-1 (Swiss Prot code P09211)</td>
<td>23340.092</td>
<td>23342.030</td>
<td>1.938</td>
</tr>
<tr>
<td>GSTP1-1 (Met, missing)</td>
<td>23209.040</td>
<td>23210.989</td>
<td>1.949</td>
</tr>
<tr>
<td>GSTP1-1 C101S mut.</td>
<td>23324.155</td>
<td>23326.053</td>
<td>1.898</td>
</tr>
<tr>
<td>GSTP1-1 C101S mut. (Met, missing)</td>
<td>23193.117</td>
<td>23195.012</td>
<td>1.895</td>
</tr>
</tbody>
</table>

*GSTP1-1 and C101SGSTP1-1 were incubated with human saliva (30 min at 25 °C) (mass data are reported on the left column). On the central column, the theoretical values for the reduced GSTP1-1 and C101SGSTP1-1 are also reported.

Hypothiocyanite is the real GSTP1-1 inhibitor
A few low mass oxidizing compounds lacking disulfides are also present in saliva. Among them H₂O₂ has been first considered. H₂O₂ is actively produced in saliva by bacteria but mainly by epithelial Nox/Duox NADPH oxidases [32] and it is able to oxidize GSTP1-1 [33]. Interestingly, its estimated average
concentration in human saliva (10 μM) [34] is close to that calculated for the unknown inhibitor. However, this concentration and even much higher levels (100–200 μM) only cause very slow oxidative inactivation of GSTP1-1, not comparable with the very fast inhibition observed with authentic saliva (Figure 7). Furthermore, pre-incubation of human saliva with catalase did not decrease or abolish the inhibition event.

Hypothiocyanite (OSCN−) is another oxidizing salivary component that displays a molecular mass compatible to that predicted by the exclusion chromatography on Biogel P2 (molecular mass = 74.1 Da). This compound represents one of the most active salivary antimicrobial agent formed in virtue of large amounts of salivary thiocyanate, H2O2 and salivary lactoperoxidase. Hypothiocyanite is not stable but its level in saliva is stabilized at about 10–20 μM concentration by the presence of a large excess of thiocyanate and a continuous generation of H2O2 by salivary bacteria and by epithelial Nox/Duox family NADPH oxidases [32,35,36]. A first indication that this compound may be the real inhibitor for GSTP1-1 has been obtained by using authentic OSCN−. Kinetics and the peculiar pH dependence of GSTP1-1 inactivation (Figure 8 and 9) are almost identical to those found using salivary samples. Moreover, using TNB as specific OSCN− titrant [22], we found that the concentration of this compound in saliva is almost identical to that calculated on the basis of GSTP1-1 inhibition (not shown). Furthermore, after titration of salivary OSCN− with stoichiometric amount of TNB
and subsequent removal of DTNB with GSH (DTNB is a strong inhibitor of GSTP1-1 [23]), the salivary sample becomes unable to inactivate GSTP1-1 (Figure 10). A more accurate analysis allowed us to calculate the second order kinetic constants for the inactivation of GSTP1-1 in the presence of OSCN$^-$ or H$_2$O$_2$ ($k_{OSCN}=2.5\times10^5$ M$^{-1}$ min$^{-1}$; $k_{H2O2}=3\times10^5$ M$^{-1}$ min$^{-1}$). The ratio k_{OSCN}/k_{H2O2} is about 800. In other words, hypothiocyanite is about 800 times more efficient than H$_2$O$_2$ in the GSTP1-1 inactivation.

Reactivation of GSTP1-1

The oxidized form of GSTP1-1 is characterized by a considerable structural re-arrangement as suggested by the change in electrophoretic pattern and by the modification of the CD and fluorometric spectra [23]. Cys47 is located 1.9 nm away from Cys101 and even further from Cys14 and Cys169. Similar large distances separate Cys101 from Cys169 and Cys14. It is therefore reasonable that significant structural changes follow an intra-chain disulfide formation [37]. Reactivation experiments permit us to examine the process and also obtain insights in the molecular mechanism. Kinetics of reactivation by DTT depends linearly on DTT concentration (Figure 11). This suggests that in our conditions the rate limiting step is the chemical reduction of the protein disulfide and not the structural rearrangement that likely follows the chemical step. In the latter case the reactivation should be almost independent on the DTT concentration. Kinetics of reactivation shows a pH dependence as that expected for a simple thiol-disulfide exchange, with a progressive increase of the rate at higher pH values. The optimized conditions for a fast and quantitative reactivation of the salivary GSTP1-1 were 5 mM DTT in 0.1 M potassium-phosphate buffer, pH 8.0, 37°C for 45 min.

Salivary GSTP1-1 in healthy subjects

The salivary GSTP1-1 activity of thirty healthy, non-smoking subjects (15 women and 15 men) has been measured in three consecutive days using the reduction procedure mentioned above. Saliva samples were collected as described under “Experimental procedures” in the early morning at least one hour from consumption of water or food. The total average of 90 recoveries (three for each subject in different days) was 42±4 mU/mg (Figure 12A). The inter-day variation was lower than 8%. Women display about 15% higher values than men (Figure 12B). No correlation has been found between GST activity and age ($r^2=0.07$ $p=0.18$). Interestingly, salivary GSTP1-1 concentration (mU/mg) follows a circadian rhythm with the lowest level in the afternoon (Figure 12C). A similar trend has been found for the GSTP1-1 expressed as mU/ml (Figure 12D).

Finally, we noted that no irreversible inactivation possibly due to proteolytic break-down occurs in the temporal span from the sample collection to the enzyme analysis (about 1–3 hours at 4°C).
In fact an unchanged GST activity was observed if the DTT treatment and the GST activity is made within five min from collection and similar unchanged activity was also found five hours from collection at 4 °C. The absence of a detectable turnover allows an approximate estimation of the daily production of the salivary GST i.e. 120 mU/ml. As the total volume of saliva produced by humans is 1 l/day, they produce 120 U of GSTP1-1 per day (at 25 °C) corresponding to 1.2 mg of enzyme (the specific activity of purified GSTP1-1 is about 100 U/mg).

Conclusions

This paper demonstrates that GSTP1-1 is present in saliva and that its activity may be easily measured after a simple reduction step with DTT. Other GST isoenzymes are not represented or are below the limit of detection. This conclusion represents a clarification of the contradictory evidence reported previously in this context [7,8,10,12]. Even if other GSTs may be present in trace amounts in saliva, GSTP1-1 clearly represents the most abundant isoenzyme. Mass spectrometry and site-directed mutagenesis show that in saliva this enzyme is always in an oxidized disulfide form mainly involving Cys47 and Cys101, the most reactive cysteines among the four present in each monomer. The presence of glutathionylated GSTP1-1, which is another possible oxidized form of this enzyme, can be excluded due to the absence of any glutathionylated fragment. The results presented here, such as the particular pH dependence of the rate of inactivation, the diagnostic reaction with TNB and the size exclusion chromatog-
The maximal concentration in the early morning i.e. 4:20 mU/ml. This value corresponds to about 70 nM of GSTP1-1 in the total saliva. The presence of hundred times higher concentrations of OSCN\(^{-}\) (10–20 \(\mu M\)) in saliva explains the total absence of transferase activity in all tested salivary samples. These data represent the first reference values for future investigations finalized to check the salivary GST as biomarker for specific diseases. Stability during storage, and changes of levels caused by specific diseases will be object of a subsequent investigations. What is the origin of the salivary GSTP1-1? Does it come from oral epithelial cell lysis due to natural or mechanical stress or, alternatively is it a salivary gland secretion? The second suggestion is more probable. In fact, the intra-day variation of salivary GSTP1-1 (see Figure 12) agrees with the well know circadian rhythm of gland secretion and is less compatible with an epithelial cell lysis. Furthermore, the relevant amount of salivary GSTP1-1 produced every day (see below) is improbable to come from an oral cell exfoliation.

The presence of an inactive oxidized form of GSTP1-1 in saliva is a surprising finding and represents an interesting enigma. In previous studies we and other researchers demonstrated that, except for Cys47, replacement of Cys101 and all other cysteines by Ser perturbs the enzymatic activity of this enzyme only slightly or not at all [21,39]. It is thus somewhat surprising that all the four cysteines found in the human GSTP1-1 are conserved exactly in the same sequence location in many mammalian GSTP1-1 such as cow, pig, horse etc. This strict conservation during evolution seems paradoxical because these cysteines represent a sort of Achilles’ heel for all these transferases because they may be easily inactivated by oxidation. However, nothing in nature is casual, and it is possible that the oxidized GSTP1-1 may have some physiological relevance. One possibility is that it could display a peculiar catalytic or ligandin activity yet to be discovered, or alternatively it could act as signal for cellular receptors.

The suggestion for a biological role is supported by the relevant energetic cost of GSTP1-1 synthesis in saliva. As above calculated, humans produce 1.2 mg of salivary GSTP1-1 every day i.e. about 108 mg during three months. This value should be compared to the amount of GSTP1-1 found in human blood (5.6 U/gHb) at 37°C [12] i.e. 4700 U in 6 l of blood corresponding to 3380 U at 25°C, i.e. about 34 mg of protein. This value represents a steady-state level but during the erythrocyte life, the degradation, if it occurs, is negligible. Preliminary data indicate an unchanged GST activity during weeks (blood at 37°C supplemented by glucose) and previous studies demonstrated a strict correlation between GST activity and GST protein expression [40]. Thus, we may assume that about 34 mg of GST represents the total amount produced during three months (the erythrocyte mean life) indicating that the energetic cost for the salivary GSTP1-1 synthesis is three times higher concentrations of OSCN\(^{-}\) the maximal concentration in the early morning i.e. 4:20 mU/ml. In a second experiment, before the addition of GSTP1-1, the saliva sample was treated with 10 \(\mu M\) of TNB, and then with the same amount of GSH to remove DTNB. The same experiment was performed in the absence of saliva, using authentic hypothiocyanite (5 \(\mu M\)) in potassium phosphate buffer pH 7.0. Each experiment was performed in triplicate (i.e. three different spectrophotometric determinations on the same sample). Error bars represent SEM. doi:10.1371/journal.pone.0112797.g010

Figure 11. Reactivation rate of GSTP1-1. Purified GSTP1-1 (20 pmol) was incubated with HOSCN (10 \(\mu M\), final concentration) for 20 min, 25°C. Then the samples were incubated with DTT at different concentrations for 2.5 min, 37°C in potassium phosphate buffer 0.1 M, pH 8.4, and the activity was measured. Each experiment was performed in triplicate (i.e. three different spectrophotometric determinations on the same sample). Error bars represent SEM. doi:10.1371/journal.pone.0112797.g011
GSTP1-1 activity expressed as mU/ml of saliva. Error bars represent SEM. pm). Values expressed as mU/mg of salivary proteins. (D) as in (C) with during three days at different time of saliva recovery (8 am, 11 am, 3 pm). (B) Sex distribution of the salivary GSTP1-1 as average of three days (early morning recovery). (C) Average of salivary GSTP1-1 (men-women) during three days at different time of saliva recovery (8 am, 11 am, 3 pm). Values expressed as mU/mg of salivary proteins. (D) as in (C) with GSTP1-1 activity expressed as mU/ml of saliva. Error bars represent SEM. doi:10.1371/journal.pone.0112797.g012

Figure 12. Inter-day and intra-day levels of salivary GSTP1-1. (A) Inter-day activity of GSTP1-1 (early morning recovery-Men-women). (B) Sex distribution of the salivary GSTP1-1 as average of three days (early morning recovery). (C) Average of salivary GSTP1-1 (men-women) during three days at different time of saliva recovery (8 am, 11 am, 3 pm). Values expressed as mU/mg of salivary proteins. (D) as in (C) with GSTP1-1 activity expressed as mU/ml of saliva. Error bars represent SEM. (TIF)

Figure S1 Tridimensional structure of human GSTP1-1. The structure of the dimeric enzyme (chain A and B) [PDB id: 6GSS] is shown in ribbon while the cysteine residues are reported in ball-and-stick (yellow). The picture was drawn using UCSF Chimera. [Reference: Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera. A visualization system for exploratory research and analysis. J Comput Chem 13:1605–1612.]

Figure S2 Mass spectrometry of wild type GSTP1-1 and the C101S variant after reaction with saliva. (A) Total Ion Current chromatogram of human GSTP1-1. (B) ESI-IT spectrum of GSTP1-1. (C) deconvoluted ESI spectrum of GSTP1-1. (D) Total Ion Current chromatogram of C101S variant. (E) ESI-IT spectrum of GSTP1-1. (F) deconvoluted ESI spectrum of C101S variant. (TIFF)

Scheme S1 Hypothetical GSTP1-1 oxidation by a disulfide inhibitor. (TIFF)

Scheme S2 Alternative inactivation pathways by hypothiocyanite. (TIFF)

Acknowledgments
We thank Prof. Jens Z. Pedersen for critical reading of the manuscript and our colleagues of the Department of Chemical Sciences and Technologies for salivary samples.

Author Contributions
Conceived and designed the experiments: GR. Performed the experiments: RF AB. Analyzed the data: IF. Contributed reagents/materials/analysis tools: MF FO FP DT. Contributed to the writing of the manuscript: GR RF AB LF. Contributed critical reagents/materials/analysis tools: MF FO FP DT. Contributed to the writing of the manuscript: GR RF AB MC. Performed mass spectrometry analysis: SC FI MC.

References

