Energy 283 (2023) 128490

ELSEVIER

Contents lists available at ScienceDirect

EWERS I

Energy

journal homepage: www.elsevier.com/locate/energy

L))

Check for

Interpretable data-driven building load profiles modelling for Measurement  |%&s

and Verification 2.0

Massimiliano Manfren ?, Benedetto Nastasi >’

2 Faculty of Engineering and Physical Sciences, University of Southampton, Boldrewood Campus, SO16 7QF, Southampton, United Kingdom
b Department of Planning, Design & Technology of Architecture, Sapienza University of Rome, Via Flaminia, 72 00196, Rome, Italy

ARTICLE INFO

Handling editor: Neven Duic

Keywords:

Data-driven methods
Interpretability
Regression-based approaches
Measurement and verification
M&V 2.0

Energy analytics

Energy management

ABSTRACT

Accelerating the decarbonisation of the built environment necessitates increasing electrification of end-uses,
which in turn poses the issue of rethinking the role of energy efficiency in conjunction with flexibility in grid
interaction. This requires a better understanding of the electricity load profiles at hourly or sub-hourly intervals
using techniques that are simple, reliable, and interpretable. To this extent, this study proposes a reformulation
of the Time Of Week and Temperature modelling approach. This approach is able to separate the energy con-
sumption dependence on building operational characteristics (Time Of Week) and on weather (outdoor air
temperature), through a highly automated modelling workflow, necessitating minimal effort for model tuning.
These features, along with its intrinsic interpretability due to its formulation using multivariate regression and
the availability of open-source software, makes it an ideal starting point for applied research. The case study

TOWT selected for the research is a fully electrified public building in Southern Italy. The building has been monitored
for 5 years, before, during and after the COVID-19 lockdown. The novel model formulation is calibrated using
hourly interval data with a Coefficient of Variation of Root Mean Square Error in the range of 20.0-28.5%
throughout the various monitoring periods. The counterfactual analysis of electricity consumption indicates a
10.7-26.7% decrease in electricity consumption due to operational adjustments following COVID-19 lockdown,
highlighting the impact of behavioural change. Finally, the possibility of additional workflow automation and
enhanced interpretability is discussed.
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This presents the challenge of reinventing energy efficiency [6] in the
context of achieving decarbonisation targets [1] while resolving the
inherent flexibility concerns associated with electrification [7]. In the
process of increasing the energy efficiency of the building stock, multi-
ple issues must be considered, including refurbishment options [8],
appropriate design and sizing of technical systems [9], and neighbour-
hood [10] or district [11] and community-scale solutions that require
adequate policies [12], which are part of the current scientific debate at
global scale [13]. It is crucial to monitor [14] and control the dynamics
of energy usage and grid interaction, especially when on-site renewable
power generation is present and load-matching and grid interaction [15]
capabilities can be enhanced. In addition, a sufficient length for the
monitoring period [16] and a suitable data granularity are essential for
evaluating the actual dynamic building energy behaviour and deriving
relevant insights.

Indeed, energy bills with monthly data resolution are the simplest
form of datasets that can be obtained and analysed [17], but this is
insufficient if the objective is promoting a better integration of renew-
ables [18] and new business models [19] on the energy market, where
hourly to minute-level data resolution is crucial [20]. Additionally,
regarding the dynamic interaction between end-users and buildings,
research projects such as IEA EBC Annex 79 [21] have emphasised the
use of dynamic data to increase the understanding of user behaviour and
preferences. Despite the fact that user behaviour is not often the single
most important factor in energy consumption, there is frequently a
considerable lack of information about its actual impact on energy
consumption, even among building managers, resulting in a significant
information gap [22]. This is clearly an issue in light of the fact that the
exploitation of potential energy savings and flexibility reserves can have
both a major local (e.g., individual users, energy communities, etc.) but
also national-level implications.

In essence, the aforementioned issues, namely electrification, effi-
ciency, and flexibility, provide the framework for this study, the
objective of which is to propose a novel formulation of the energy time
series modelling approach known as Time Of Week and Temperature
(TOWT) [23] and to test it under conditions identified as critical for the
original TOWT software implementation, as discussed in prior research
[24]. The chosen case study is the Procida Town Hall in Southern Italy,
which was monitored for approximately five years before, during, and
after the COVID-19 pandemic lockdown period. The original goal of the
research was achieving a better knowledge of the dynamic building
behaviour (i.e. electric load profiles, the building is fully electrified) by
deploying methodologies that may be employed in a relatively
straightforward manner and automated further while retaining an
“intrinsic interpretability” [25], discussed more in detail in Section 2. At
the state-of-the-art, in the context of Artificial Intelligence and Machine
Learning (AI/ML) software testing [26], “interpretability” is defined as
the "level of understanding how the underlying (AI) technology works"
which entails how the model output and algorithmic logic can be un-
derstood in human terms. On the one hand, techniques such as linear
multivariate regression or regression and decision trees, for instance, are
classified as interpretable since they are easily comprehensible in human
terms. On the other hand, sophisticated data-driven methods used in a
variety of applications in the energy sector are often "black boxes", for
example load prediction for buildings with the presence of electric ve-
hicles (EVs) [27], automated rejection of unreliable predictions when
online building energy data are used [28], treatment of the fair-
ness/accuracy trade-off problem for data-driven methods in indoor
environment modelling [29] and many others. Despite having a lower
accuracy in many cases with respect to “black-box™ methods, (intrinsi-
cally) interpretable methods can be insightful [30] and be also preferred
by practitioners [31]. Promoting a "human in the loop" approach to
data-driven methods and increasing literacy both regarding energy and
AI/ML tools by leveraging simpler techniques, which can provide
adequate performance and automation potential but are easier to un-
derstand in human terms, is part of the research conducted. In this
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regard, the choice of the TOWT approach depends on its ability to
provide an algorithmic formulation that is at the same time interpretable
(regression-based), largely automated (minimal effort needed for model
tuning) and able to separate the energy consumption dependence on
building operational characteristics (Time Of Week) and on weather
(outdoor air temperature). The ability of the TOWT algorithm to identify
peculiar operational characteristics, including the automated identifi-
cation of “occupied” and “unoccupied” hours, can contribute to fill the
information gap [22] discussed before in relation to user behaviour.
Section 2 elaborates more in detail on why the TOWT regression-based
technique was selected over other possibilities.

2. Literature review

The acceleration of the decarbonisation process through electrifica-
tion of end-uses and greater penetration of renewable power generation
into the electric systems, as stated in the introduction, necessitates
innovative approaches to efficiency [6] and flexibility [7].

In this regard, data-driven load profile modelling methodologies
should be capable of handling increasingly detailed data, on the order of
hours and minutes, with an increased level of automation. Advanced
Measurement and Verification (M&V) or M&V 2.0 [32] typically refers
to applications of AI/ML techniques on granular measurements of en-
ergy use, which should deliver greater model precision, statistical reli-
ability, and real-time feedback on performance and operational issues
[33], ideally employing sophisticated visualization techniques. Among
regression-based techniques, the Time Of Week and Temperature
(TOWT) algorithm, proposed initially by Price [23] to analyse electric
load shape and its variability and then used for the quantification of
changes in electricity use due to demand response implementation [34]
and in the context of utility scale efficiency programs [35], has been
chosen as a starting point for this study. The reasons for the choice are as
follows. First, the ability to separate the energy consumption depen-
dence on operational characteristic (Time Of Week) and weather (out-
door air temperature). After that, intrisic interpretability due to its
regression-based formulation. In addition, its automated workflow,
necessitating minimal effort for model tuning (ust one
hyper-parameter, as will be explained later). Then, its availability as
open-source software in the R packages "RMV2.0" [36], "NMECR" [37],
and the Python package OpenEEmeter, which implements "Caltrack"
methods [38]. EVO’s Advanced M&V Testing Portal [39], provides
electricity consumption data from 367 buildings in various regions of
North America for the purpose of open and independent testing of M&V
algorithms and TOWT was successfully tested, showing a good level of
accuracy.

The model input is a time series of hourly or sub-hourly outdoor air
temperatures and energy data (load profile). The time stamp of the series
identifies the day of the week, and extra variables are automatically
added in the construction of the regression model (that is, differentiating
each day and hour of the week to capture specific recurring weekly
patterns of operation).

In addition, the temperature dependence of electric load is accounted
for by separating load data into temperature bins. It can handle both
Demand Response (DR) and Non Routine Events (NRE), i.e. unexpected
changes in occupancy and operation strategies, employing methods
established by Killick to deal with the automated detection of change-
points [40], implemented in the R package “Change-point” [41], as
well as in “RMV2.0” [36].

TOWT uses variable-base degree-days regression as part of its auto-
mated workflow, which makes it potentially comparable with variable-
base degree-days (VB-DD) regression algorithms, which are closely
relared to change-point methods, originally proposed by Kissock et al. in
the Inverse Modeling Tool (IMT) [42], which have been included in
ASHRAE 14:2014 [43] and have been steadily evolving over time with
the introduction of algorithmic techniques for the selection of base
temperature [44], up to the explicit solution for the three parameters
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case [45].

At a very basic level, as evidenced by recent research, variable-base
degree-days regression algorithms methods are versatile enough to be
used for a variety of purposes throughout the building life cycle [46] and
the analytics generated can be used for multiple applications in the built
environment [47], where spatial and temporal scalability of modelling
techniques is crucial to overcome practical problems. Further, VB-DD
have a “transversal” role that spans from long-term projections of
climate change impact [48], to climate classification in relation to
building energy performance [49] (where the choice of the base tem-
perature is important in relation to building characteristics [50] and can
be defined through additional parameters [51]), and to methods to
assess climate uncertainty in energy system models [52], including the
problem of heat demand electrification at scale [53]. While degree-days
definition is standardised [54], newer formulations are aimed at
adapting it to problems where building dynamic behaviour has to be
studied [55].

At the same time, as illustrated by Kim and Haberl, change-point
regression is part of the normalisation of measured energy perfor-
mance in both intermediate level [56] and advanced level applications
[57]. As explained before, the objective of the research is developing a
reformulation of TOWT algorithm, whose peculiar characteristics are
reported in Section 3. Among the novel features introduced there is an
alternative way to perform the segmentation of outdoor air temperature
data and a different way to identify the “occupied” and “unoccupied”
periods, based on piecewise linear regression instead of variable-base
degree-days. This alternative formulation enables the comparison of
the (piecewise linear) temperature response model fitted in the auto-
mated workflow with change-point models leveraging energy signature
[58] (i.e. energy divided by the number of operating hours in the time
interval of the analysis, corresponding to an average power [59]),
instead of energy, enhancing its interpretability, determined by the
possibility to compare data at different temporal intervals such as
monthly, daily, and hourly/sub-hourly (energy signature is an average
power, which can be compared at different temporal scales, as function
of outdoor air temperature). These new features can help overcome
some of the limitations mentioned in the introduction, such as sup-
porting the improvement of building management strategies, which is
not always possible due to limitations in the quantity and quality [60] of
available data, resulting in an information gap [22], as pointed out in
the introduction. Further, the reconstruction of missing parts of energy
time series to evaluate the dynamic performance of building assets when
data scarcity occurs [61] is a topic that has been explored by Lamagna
et al. [62] in relation to electric load profiles. The possibility to use both
short-term/high-frequency = measurements (i.e. daily, hourly,
sub-hourly) and long-term/low-frequency measurements (i.e. monthly,
over multiple years ideally) in an integrated way has been tested pre-
viously in a successful way in ASHRAE project RP-1404 [63]. Even when
the building is equipped with smart meters that measure aggregated
data (potentially enabling sophisticated data analysis workflows), there
is the need for data normalisation and disaggregation to understand the
impact of efficiency measures within a single building or across sets of
comparable buildings [64]. The simple comparison with existing data-
sets or similar building stock data is insufficient because of the need to
“normalise” performance with respect to weather and operational
characteristics (including user behaviour), which is one of the key
characteristics of M&V2.0 techniques.

With respect to the evaluation of model performance (i.e. judging the
model’s ability to reproduce measured energy consumption), the sta-
tistical indicators commonly employed by state-of-the-art protocols for
Measurement and Verification (M&V), such as ASHRAE 14:2014 [43],
Efficiency Value Organization (EVO) IPMVP [65], and Federal Energy
Management Program (FEMP) [66] are Normalised Mean Bias Error,
NMBE and Coefficient of Variation of Root Mean Square Error, CV
(RMSE). In addition, standards such as ISO 50006:2014 [67] consider
the coefficient of determination R? as well. Being based on measured
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performance, these standard and protocols are empirically grounded
and represent the results of multiple years of field testing, with inter-
mediate [56] or advanced [57] levels of application, as explained
before.

In relation to the choice of data-driven modelling techniques, it is
important at present to reflect on concepts such as "interpretability" and
"explainability" as a result of the growing use of AI/ML techniques in the
energy sector and to be able to distinguish between “ante-hoc” or
“intrinsic” interpretability, and “post-hoc” interpretability [25]. The
ISO/IEC TR 29119-11:2020 standard [26] for Artificial Intelligence (AI)
software testing defines "interpretability" as the "level of understanding
how the underlying (AI) technology works”. The definition provided
does not apply to the extent to which the internal mechanics of the
machine learning algorithm can be explained in human terms (i.e the
“explainability” representing the “level of understanding how the
Al-based system came up with a given result” according to the above
mentioned standard) but rather to the possibility (for a human) to pre-
dict the model’s output given a change in input data or algorithmic
parameters. Interpretability is an important but problematic attribute
for ML techniques [68], necessitating particular methodologies when it
is used to identify causality [69], which is part of the “grand challenges”
related to interpretability in ML [70].

In simpler terms, the more "transparent" the model is to the user, the
more it can support a "human-in-the-loop approach" that "black-box"
solutions cannot. Techniques based on linear multivariate regression
and regression trees are classified as interpretable, whereas others, such
as random forests or neural networks (or other ML methods), are clas-
sified as "black-box” (non-interpretable), even if their computation is
explainable. While providing high performance, explainable techniques,
need the introduction of additional approaches such as SHAP (SHapley
Additive exPlanations) [71] or LIME (Local Interpretable
Model-agnostic Explanations) which makes them less intuitive,
compared to “intrinsic” (“ante-hoc”) interpretable techniques. For
example, SHAP technique is used by Zhang et al. [71] to provide insights
into building performance and identify variables influencing energy
consumption and greenhouse gas emissions. However, in a recent
state-of-the-art review on interpretability of ML methods used in
building energy management, Chen et al. [72] indicated (among other
challenges) that “the prevalent techniques such as SHAP and LIME can
only provide limited interpretability”. Therefore, the use of ML tech-
niques to address energy performance estimation [73] in buildings and
benchmarking needs to confront with the problem of lack of interpret-
ability [74], and to the need for feature engineering to make them
applicable to building assets in a scalable way [75].

In conclusion, the presence of multiple interpretable AI/ML models
that can work in synergy (being designed to be temporally and spatially
scalable [47], leveraging similar rules and standards, combined into
systems [76] and sharing crucial information [77]) can significantly
enhance the robustness of the energy performance assessment of
building at scale and create multiple feedback loops in a continuous
improvement logic [78], following a Deming cycle or PDCA (Plan-Do--
Check-Act reported in technical standardization of energy management
[791), which is crucial for the achievement of efficiency targets, as well
as the closely connected flexibility targets, within a market-enabled
mechanism [80], in which techno-economic optimization is essential
[81]. Section 3 describes the reformulation of the TOWT algorithmic
approach using RMV2.0 as a reference and the previous monitoring
activity conducted for the selected case study [24].

3. Methods

The methods used in this study are described hereafter in Sections
3.1 and 3.2. Section 3.1 describes the model formulation and workflow,
whereas Section 3.2 describes the criteria used to evaluate the model’s
acceptability as calibrated for the specific case.
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3.1. Model formulation and workflow

In this study, a novel formulation of the Time Of Week and Tem-
perature (TOWT) [23] algorithm, originally implemented in RMV2.0
software [36], is proposed. This modelling approach was selected due to
its potential interpretability, which is inherently related to its formula-
tion based on piecewise linear regression and this aspect is stressed in
the results and discussion section. An hourly or sub-hourly dataset with
a timestamp, outdoor air temperature, and energy is all that is required
as model input, and this make it simple to set-up. The timestamp of the
series determines the day of the week, and the temperature data is
binned based on the algorithm implementation. Only one
hyper-parameter is present in the novel formulation proposed, similarly
to its original implementation, but with a different meaning. The model
is formulated as follows:

n—1 m
Loe= Y tton;+ ¥ be(T(0),) + o a
=1 =1
-l m
Lunoce = Z Ajtowj + Z bi(T(i),) + co @
Jj=1 k=1

Two types of variables are considered in the model formulation.

e tyy,jis a time of the week binary (0-1) variable;
e T(i)i is temperature variable, representing a temperature segment
(binned data), identified algorithmically, as illustrated below.

The time of the week (t,y,j) variable is a binary variable, n-1 reflects
the number of hours in a week (168-1 = 167), and the last term (168th)
is included in the intercept term cg, this is a typical strategy when
modelling with dummy variables [82]. The temperature variable T(i) is
a continuous variable with an arbitrary temperature scale, and m rep-
resents the number of segments employed while binning the tempera-
ture data. To ensure continuity in the (piecewise linear) temperature
response component of the function, the algorithm described in
Ref. [34] is used to generate temperature segments. The number of
temperature segments in the initial version was 6; however, more recent
implementations have the ability to automate the selection and to subset
temperature intervals with equal width or equal number of data points.
The user may also specify the change-points for the piecewise linear
function explicitly as an input to the method. However, a potential
advantage of TOWT over change-point approaches (i.e. VB-DD regres-
sion) is that the change-points of the piecewise linear function do not
need to be specified by the user, but can be computed in an automated
way. In the reformulation proposed the change-points can be chosen
based on quantiles of outdoor air temperature data, considering 1
change-point in the median of the outdoor air temperature distribution
and a symmetric subdivision into intervals. This subdivision can be
refined further by comparing the change-point initially selected with the
ones identified by change-point methods (ideally plotting energy
signature as a function of outdoor air temperature) and this makes it
more “flexible” with respect to the original implementation in RMV2.0
and, at the same time, it provides a sort of continuity between the two
modelling approaches.

As shown in formulas 1 and 2, the model is split into a part
computing the load profile for “occupied” hours and the other one for
“unoccupied” hours. The criterion for partitioning the model into
“occupied” and “unoccupied” hours is based on an occupancy threshold
factor, which distinguishes between hours with higher consumption,
which are considered as “occupied”, and hours with lower consumption,
which are considered as “unoccupied”. Therefore, the criterion is used to
discriminate between “high” and “low” energy consumption interval in
the series, not necessarily the actual occupancy value (i.e. number of
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people in the building), even though “high” or “low” consumption
conditions can be considered effectively a “proxy” of occupancy level, at
least in relation to the use of electric appliances. “High” and “low” de-
mand periods are classified based on a regression of load with respect to
outdoor air temperature, using VB-DD regression in the original
formulation and a piecewise linear function in the reformulation pro-
posed, whose details are reported later in Table 1. The time intervals of
the week when the regression usually underpredicts the load are labelled
as “high” demand, while the rest of the intervals are labelled as “low”
demand. The above mentioned threshold is used in this way, if the
regression underpredicts for a certain fraction (0-100%) of the time, the
corresponding interval is assumed to be in the “high” demand mode. In
its original implementation RMV2.0 uses a threshold of 65% (0.65
fraction), while other implementations such as R package NMECR [37]
give the possibility to set it arbitrarily, making the model more flexible.
This possibility is considered as well in the new implementation pro-
posed in this research, but the default parameter value (65%) is used as
it seems to work appropriately also in this istance.

Finally, in terms of model tuning, in RMV2.0 implementation there is
just one hyper-parameter, represented by the time scale of the weighting
function (multiple regressions are trained and weighted), i.e. the num-
ber of days nearby the predicted day that are used for weighting. In the
novel formulation proposed one hyper-parameter is used as well, but
representing the temporal segmentation (expressed in months or frac-
tion of months) needed to model residuals as a Time Of Week (TOW)
function without temperature dependence, which is eliminated in the
initial part of the modelling workflow, using the regression against
temperature. Another alternative formulation of the hyper-parameter
for TOWT is the one implemented in Caltrack [38], where the number
of nearby months used for weighting is considered. For the sake of
simplicity, the weighting approach, which intrinsically depends on the
choice of hyper-parameter, is omitted from formulas 1 and 2. The
characteristics of the novel algorithmic implementation proposed and its
workflow are summarized in Table 1.

3.2. Model calibration criteria

As previously discussed in Section 2, the use statistical indicators
such as the Normalised Mean Bias Error (NMBE) and Coefficient of
Variation of Root Mean Square Error (CV(RMSE)) to establish accept-
able thresholds for models is common to standards and protocols such as
ASHRAE 14:2014 [43], Efficiency Value Organization (EVO) IPMVP
[65] and Federal Energy Management Program (FEMP) [66]. Table 2
provides a summary of the acceptability thresholds used in this research
(for hourly interval data, due to the nature of the technique employed)
and taken from ASHRAE 14:2014. As per ISO 50006:2014 [67], the
coefficient of determination R? (which spans from 0 to 100%, or O to 1)
is also considered, but its limitations must be understood. These limi-
tations arise from the strong relationship between R? and the model’s
slope (i.e. its dependence on input variables). Even when the variance of
the predicted variable is the same, models with higher slope values will
have higher R? values. Nonetheless, the IPMVP Guidelines for Assessing
Uncertainty [83] consider an R? value of 75% as a reference. Below are
the formulas for calculating the statistical indicators.

The first indicator is the Normalised Mean Bias Error (NMBE), re-
ported in Equation (4). It is calculated by taking the sum of the error
terms E; in each time interval (difference between the measured and
predicted value), and dividing it by the average energy consumption A
and by the difference between number of data points and degrees of
freedom of the model (n-p), and expressed as a percentage.

iMi
A= 3)

n
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Table 1
TOWT modelling approach reformulation proposed.
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Workflow step Component

TOWT - reformulation

Data preparation Temporal segmentation

Temperature segmentation

Model training Detection of occupied/unoccupied

hours (high/low demand)

Overall model

Hyper-parameters

Visualization and
interpretation of results

Temperature dependence plot

Time series plot
Load profiles
Other potential visualizations

Time of week variable (t,y,;) is a binary variable (or dummy variable), n-1 is the number of hours of the
week (i.e. 168-1 = 167), the last term (168th) is included in the intercept term c,. Time of week variables
for Holidays are modelled as Sundays.

Temperature variable T(i)x is a continuous variables with arbitrary temperature scale (Celsius or
Fahrenheit), m is the number of segments chosen when binning the temperature data (i.e. m-1 change
points for the piecewise linear function used to represent the temperature response component).
Default change points in RMV2.0 implementation are present (40, 55, 65, 80, 90 F/4.4, 12.8, 18.3, 26.7,
32.2°C), while in the reformulation the change points are derived from the analysis of the distribution of
outdoor air temperature, creating an even number of segments, with the central change-point
corresponding to the median of data (50 percentile). Temperature segmentation is performed as described
in Ref. [34].

Depending on the distribution of outdoor air temperature data, segments may have different widths
below/above the median value. At least 6 segments are suggested. The same temperature segments are
used for occupied/unoccupied modes (high, low demand).

Differently from the original implementation (using Heating Degree-Days (HDD) and Cooling Degree-
Days (CDD) and an intercept term regression) the occupied/unoccupied periods (high/low demand) are
detected by running a regression model with respect to temperature using the temperature segmentation
criterion proposed above. The threshold considered is equal to 0.65 as the default in the original
implementation.

The overall model is created as the sum of one regression model for occupied periods, one model for
unoccupied periods and a model for residuals, considering only Time-Of-Week (TOW) dependence, using
only 1 hyper-parameter.

One hyper-parameter is present, expressed in months or fractions of months, to determine the additional
temporal segmentation needed to model residuals as a TOW function, without temperature response.
Energy signature is plotted with respect to outdoor air temperature. The energy signature interpretation is
used to derive additional insights and to compare the piecewise linear temperature response obtained by
TOWT reformulation with the ones obtained using other regression-based approaches (change-point
methods) at different time intervals (monthly, daily, hourly).

Time series of measured data are plotted with respect to predicted ones.

Typical load profile for working days and weekend conditions.

Weekly patterns of operations are shown with a 2D heatmap (as in RMV2.0), residuals are plotted in time
and with respect to outdoor air temperature (as in RMV2.0). A scatterplot of measured vs predicted data is
used to highlight possible deviations (as in RMV2.0).

Table 2

Thresholds of acceptability for M&V models as calibrated with hourly data.

operations before COVID-19 pandemic (period 1), followed by (ii) a
significant decrease in energy demand during the COVID-19 pandemic
lockdown (period 2), (iii) a new pattern of energy usage influenced by

the implementation of smart working procedures and reduced occu-
pancy (period 3), and (iv) a structural implementation of smart-working

involving at least 1 day per week remotely and a (period 4), representing
the "new normal" condition.

Interval Metric ASHRAE Guidelines 14
%
Hourly NMBE +10
Cv(RMSE) 30
>E > Ei*xn
NMBE = d 1 * 100 = . m * 100
(n=p)s (1=p) = 3 M,

The electricity consumption data gathered for this study has a 15-
min resolution, which is then aggregated to provide an hourly profile
that corresponds to the time series of outdoor air temperature mea-
4 surements. The features of the building and equipment were surveyed
initially to quantify their rated power and typical operational schedules.
Two types of schedules for weekdays have been identified; working

The second indicator is the Coefficient of Variation of Root Mean
Squared Error (CV(RMSE)), as shown in Equation (6). It is calculated as
the ratio of the Root Mean Squared Error (RMSE) computed in Equation
(5), which represents the sample deviation of the differences between
measured and predicted values, divided by the average measured elec-
tricity consumption (A) computed in Equation (3), and expressed in
percentage. The lower the CV(RMSE) value, the better the model fit.

>SE
RMSE = 4| 2 )]
n—p
RMSE
CV(RMSE) =—— % 100 (6)

4. Case study description

The building chosen for this study is the Procida City Hall, a
completely electrified building. It was monitored for nearly 5 years,
from February 2018 to December 2022. This period, as shown in
Table 3, includes (i) the building’s typical energy demand during normal

hours are from 8:00 to 14:35 on all weekdays, except on Thursday, when
the working hours are from 8:00 to 17:30. Moreover, during the week-
end (Saturday and Sunday) the office is running from 8:00 to 18:00,
because of tourism related services. Lift and electric water heaters are
activated on request (i.e. they don’t have a precise operational schedule)
while appliances such as lighting, computers and printers are continu-
ously operating for the whole office working time (clearly not neces-
sarily simultaneously). In terms of heating and cooling services, the
building is equipped with individual electric heaters for the winter
season, which are activated by each employee in their room as needed,
and a few reversible split air-conditioners for the summer season, with
the same control strategy (i.e. no centralised control). The climate in the
area is Mediterranean, with mild winters and hot summers. However,
due to the holiday season and the building’s location in front of the bay,
which allows an effective natural ventilation, the impact of high tem-
peratures on building energy consumption is mitigated. The key char-
acteristics of the electricity use in the building are summarized in
Table 4. As previously mentioned, the schedules reported indicate the
period when appliances are typically on, not necessarily simultaneously
at the rated power, as it depends on the coincidence factor in their use,
which is not reported here.
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Table 3
Monitoring period subdivision.
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Period Dates Notes

1 Before COVID-19 lockdown From February 01, 2018 to March
07, 2020

From March 08, 2020 to October
07, 2020

From October 08, 2020 to
November 10, 2021

From November 11, 2021 to
December 31, 2022

2 During COVID-19 lockdown
3 After COVID-19 lockdown

4 Back to normality with structural
smart working option

All employees work in presence according to the usual schedule

No presence in the first 6 weeks of the period due to hard lock-down while few officers were
allowed to enter to the building after that.

General rule of remote working applies to this period with an average ratio of 50% of the
employees, reduced to 25% in the last 10 weeks.

Most sectors and usage of space are back to normality pre-pandemic plus the structural
implementation for Public Administration of 1-day remote work.

5. Results and discussion

In this Section, the results of numerical and visual data analysis are
provided and discussed in order to evaluate the performance of the novel
TOWT algorithm formulation proposed, highlighting limitations and
showing the possibility for additional research inherent in the usage of
this technique. First, the outcomes of the process of model fitting are
presented in Section 5.1, which compares measured and estimated en-
ergy consumption for the various monitoring periods listed in Tables 3
and in Section 4. The impact of the hyper-parameter selection (time
interval of the segmentation of the time series, as described in Section
4.1) on model goodness of fit is explored in the same section, employing
the indications mentioned in Table 2 to determine if the model may be
considered as calibrated or not. The outcomes of model fitting are given
in the same section as a graphical interpretation of the results that could
aid comprehension of the case study’s key characteristics. The calibrated
energy models are then deployed in Section 5.2 to compare the perfor-
mance of the building in different time periods using a counterfactual
method. This enables the comparison of building operating performance
under same conditions, in this example a typical meteorological year,
which would otherwise be impossible due to the necessity to normalise
data in relation to weather and occupancy (measured data are highly
dependent on the specific weather and operational conditions of the
monitored period). Again, numerical and graphical analysis tools are

well, within the model calibration limits established by ASHRAE
14:2014 [43] in most of the cases. There is a negligible difference be-
tween the predicted and measured electric energy consumption in each
period, and the NMBE is practically equal to zero. Indeed, this is a
consequence of the proposed TOWT model reformulation, which is
based on regression (which minimises the distance between model
prediction and measurement data) and includes a model for the re-
siduals as a function of the time of week dependence. In addition, R?
decreases significantly in period 2 compared to period 1; after the
lockdown, in periods 3 and 4, R?is still lower than in period 1, indicating
a lower predictability of electricity demand as a result of less regular
operation of the building. The most pertinent statistical indicator to
evaluate model performance is CV(RMSE), which is greater than 20% in
all cases and greater than 30% (threshold for acceptability of the model
as calibrated as shown in Section 3.2) in two cases, period 2 and 3 with a
hyper-parameter of 1 month. The impact of the hyper-parameter, rep-
resenting the period of the temporal segmentation of the time series for
the time-of-week model of residuals, is relevant in the proposed refor-
mulation, although less pronounced compared to the previous research
conducted on this case study [24], which used TOWT in the RMV2.0

Table 5
Results of TOWT model training in the different monitoring periods (1-4).

combined in this instance. Then, in Section 5.3, the expected daily load Hyper- Energy indicators Statistical indicators
profiles for typical workday and weekend conditions for the winter/ parameter
summer (January and July) and intermediate (April and October) sea- Monitoring ~ Months Energy Energy R? NMBE CV
sons are compared to emphasise seasonal variability and the impact of Period (entire/ measured  predicted (RMSE)
building operation choices. Finally, Section 5.4 outlines limitations and fraction)
prospects for future research. kWh kWh % % %
1 1 126,882 127,516 87.6 0.0 25.2
0.5 126,882 126,374 91.7 0.0 20.8
5.1. Results of models’ fitting in the four monitoring periods 2 1 23,363 23,550 65.4 0.0 33.5
0.5 23,363 23,527 76.8 0.0 28.4
. . . 3 1 53,587 53,212 82.5 0.0 31.5
.In th1s. Sectlon. Table 5 p.rese.nts the resul.ts o.f model testing for the 05 53,587 53,900 886 00 26.0
various time periods, considering energy indicators (measured and 4 1 74,002 74,520 66.9 0.0 32.6
predicted energy consumption) and statistical indicators (RZ, NMBE, and 0.5 74,002 73,632 76.4 0.0 28.5
CV(RMSE), introduced in Section 3.2). The models fit the measured data
Table 4
Building electricity end-uses and operational schedules.
End-use Type of appliance ~ Power  Period of Monday Tuesday Wednesday Thursday Friday Saturday Sunday
operation
kW - - - - - - - -
Office work Printers 12.3 Year 08:00-14:35 08:00-14:35 08:00-14:35 08:00-17:30 08:00-14:35 08:00-18:00 08:00-18:00
Computers 14.7 Year 08:00-14:35 08:00-14:35 08:00-14:35 08:00-17:30 08:00-14:35 08:00-18:00 08:00-18:00
Lighting Lighting 6.8 Year 08:00-14:35  08:00-14:35  08:00-14:35  08:00-17:30  08:00-14:35  08:00-18:00  08:00-18:00
Heating/ Electric heaters 49.5 Winter 08:00-14:35 08:00-14:35 08:00-14:35 08:00-17:30 08:00-14:35 08:00-18:00 08:00-18:00
cooling Split air- 8.8 Year 08:00-14:35  08:00-14:35  08:00-14:35  08:00-17:30  08:00-14:35  08:00-18:00  08:00-18:00
conditioners
Fans 0.7 Summer 08:00-14:35 08:00-14:35 08:00-14:35 08:00-17:30 08:00-14:35 08:00-18:00 08:00-18:00
Water Electric water 3.6 Year On request On request On request On request On request On request On request
heating heaters
Other uses Lift 13 Year On request On request On request On request On request On request On request
Others 2.5 Year On request On request On request On request On request On request On request
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implementation, where the hyper-parameter was the time scale of the
weighting function, i.e. the number of days nearby the day of the week
predicted. In the paper presenting the initial implementation of the
TOWT algorithm, Mathieau et al. [34] highlighted the potential problem
of model overfitting, stating that the model can easily overfit the data,
reducing its ability to generalise. This aspect will be discussed in the
context of the interpretation of model results later on in this section.

Following the analysis of energy and statistical indicators reported in
Table 5 for the various monitoring periods and fitted models, the visual
interpretation of results is discussed below, taking into account two
peculiar aspects: the temperature-dependent model component and the
time-of- week-dependent model component. For all monitoring periods,
a scatterplot identifying the temperature dependence of load is pre-
sented alongside a time series of measured electric load profiles plotted
against predicted data. The visualization of data for the first monitoring
period (from February 01, 2018 to March 07, 2020) is limited to one
year (from February 2018 to February 2019) to keep the amount of data
in the visualization comparable to periods 2, 3 and 4. It can be clearly
seen in Fig. 1 on the left, how the temperature regression in high demand
hours, determined using the approach described in Section 3.1, clearly
depends on outdoor air temperature (practically a straight line below
16 °C and with a moderate slope also above 22 °C), while the regression
in low demand hours remains substantially horizontal (i.e. non depen-
dent on temperature). As described in Section 2 regarding change-point
models, when a significant portion of electric load is related to heating
and/or cooling services, outdoor air temperature is frequently the most
influential variable. On the right hand side of Fig. 1 it is possible to see
that the model fits the electricity demand time series (in this case using
0.5 months hyper-parameter) well, with the exception of some peak
conditions, which are more difficult to predict compared to the typical
weekly behaviour.

Moving to period 2 corresponding to the COVID-19 pandemic lock-
down (from March 08, 2020 to October 07, 2020), it can be seen in Fig. 2
that the range of electric load is much smaller (as expected due to the
end-use of the building). As a result, the scale of the y-axis on the left side
of Fig. 2 has been reduced from 60 to 30 kW. The data distribution
appears less predictable and uniform. The regression with respect to
temperature demonstrates that the hours with low demand differ
significantly from the overall temperature regression and from the hours
with high demand. Lastly, the model is able to fit the electricity demand
time series shown in Fig. 2 on the right within the calibration ranges
when using 0.5 months as hyper-parameter, but it cannot reproduce
correctly the irregular spikes in the series.

Figs. 3 and 4 depict the monitoring periods 3 (from October 08, 2020
to November 10, 2021) and 4 (from November 11, 2021 to December
31, 2022) described in Table 5, following the COVID-19 lockdown.
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Period 4 exhibits a more pronounced temperature dependence above
22 °C but the temperature response component in periods 3 and 4 re-
mains relatively similar. The temperature dependence of load in winter
appears to be very different from period 1; while in periods 3 and 4 it is
possible to observe an increase in the slope of the regression for hours of
high demand below 16 °C, the slope is close to 0 or even negative at
lower temperatures, whereas it was positive in Fig. 1, for period 1. This
indicates a significant change in the operational regime of the building
between periods 3 and 4 compared to period 1, whereas between periods
1 and 4 the summer behaviour appears to be quite similar. Also in this
instance, the model fits the time series data slightly better than in period
2, but the inability to reproduce spikes that are irregular with regard to
the time of week component of the regression remains.

The TOWT algorithm reformulation was able to successfully fit
models in challenging conditions (as indicated also by the results of
previous work on this case study) creating calibrated models before
(period 1), during (period 2), and after covid (periods 3 and 4), with the
post-covid situation being more dynamic than the pre-covid situation,
even for the period 4 ("back to normality"). Interestingly, the examina-
tion of the temperature response highlighted operational changes that
would have been difficult to uncover otherwise and this aspects is
particularly relevant for the research which is aimed at integrating the
use of TOWT algorithm with piecewise linear change-point models, for
the reasons discussed in Section 2, weather normalisation in particular.
Nonetheless, the monitored data correspond to distinct dsltime periods
with distinct meteorological and operational conditions. For this reason,
the trained and calibrated models are used to generate forecasts using a
typical meteorological year (TMY) weather data file as input, enabling
as such a comparison of the pre-covid and post-covid situations under
idealised typical conditions, using a conterfactual approach. This is
illustrated in Section 5.2.

5.2. Model predictions comparison for a typical meteorological year

The models fitted for periods 1, 3, and 4 are compared using a
counterfactual method in this section. Period 2, during the COVID-19
lockdown, is excluded since its behaviour is not reflective of the build-
ing’s operations, but rather an outlier. The use of a counterfactual aims
to predict what the building operation would have been, based on the
characteristics of the periods during which the models are trained, but
applied to a typical meteorological year (TMY), in order to enable
comparability in reference weather conditions, which would otherwise
be impossible due to the specificity of the monitored weather conditions
and operating schedules of every single period. The electrical demand
signature shown in Fig. 5 indicates that the period 1 (pre-COVID-19)
behaviour has higher load peaks throughout the winter, whereas these
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Fig. 1. Electricity demand signature (left) and time series (right) with hourly data, TOWT model — Period 1.
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Fig. 4. Electricity demand signature (left) and time series (right) with hourly data, TOWT model - Period 4.

peaks are reduced in periods 3 and 4 (post-COVID-19) due to smart
working. While the peaks vary significantly between times, the regres-
sion with respect to outdoor air temperature, which captures the
"average" temperature response and is used to distinguish between high
and low demand conditions as explained in Section 3.1, remains rela-
tively stable. In other words, the weekday component of the model,
which reflects the dynamic operation schedule of the building, is

considerably more variable than the building’s predominant energy
signature as a function of outdoor air temperature. Indeed, the energy
signature regression is the part of the TOWT modelling workflow which
makes it comparable with piecewise-linear change-points method
recalled in Section 3 and makes the results more easily “interpretable”.

The predictions for the different monitoring time periods, reported in
Table 6, suggest that the pre-COVID-19 operational strategy consumed
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more energy than the post-COVID-19 strategy (- 26.7% in period 3 and -
10.07% in period 4) compared to period 1. However, in period 4, energy
consumption is 21.8% more than in period 3. Overall, this emphasises
the significance of gaining an accurate understanding of building
operation strategies and behaviour (i.e. overcoming the “information
gap” described in Section 2), which could aid in energy conservation
(together with other more pervasive efficiency measures, of course).

The predicted load profiles for a typical meteorological year are then
sorted to create load duration curves, which are useful for understanding
peak conditions (occurring only a few hours per year) and prevailing
operational conditions, for the reasons outlined in Section 2. Fig. 6
demonstrates that the peak load for period 1 is greater than for periods 3
and 4, and that post-COVID-19 conditions tend to flatten the load
duration curve. Despite the fact that the curve for period 4 is higher than
the one for period 3, they have a comparable behaviour.

5.3. Load profiles comparison for a typical meteorological year

Following the counterfactual approach described in Section 5.2, the
models fitted for periods 1, 3, and 4 are compared based on the typical
daily profiles for an average working day (weekday) and weekend day
(weekend) during specific months. The month’s temperature conditions
are those of a typical meteorological year (TMY) weather data file, to
enable a meaningful comparison. The months of January and July
(winter/summer conditions) and April and October (spring/autumn
conditions) are considered to model both extreme and intermediate
cases, with the purpose of demonstrating both the impact of seasonal
variability (typical workday and weekend conditions for the winter/
summer seasons) and the impact of building operation choices. Imme-
diately evident from Fig. 7 is that the use of electric heaters in the winter
results in a higher average demand for January compared to the sum-
mer, despite the behaviour appearing to be quite different in the
different periods, with a flat demand during the average working day for
the pre-COVID-19 conditions, while a more pronounced peak for post-
COVID-9 conditions when it is concentrated in the morning in period
3 and during midday in period 4. There are variations in demand
throughout the year, but weekend demand is relatively stable. Specif-
ically, the summer weekday behaviour of period 4 appears remarkably
comparable to that of period 1.

Moving on to the analysis of intermediate seasons, Fig. 8 reveals that
the difference between working days and weekends is present but far
less pronounced than in Fig. 7. This provides a basis for discussion
regarding the amount of energy that could be saved by better scheduling
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year using the model trained in period 1, 3 and 4.
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Table 6
Energy demand prediction for a typical meteorological year using the model
trained in period 1, 3 and 4.

Model Description Overall Relative
training reduction reduction/
period increase
1 Before COVID-19 lockdown 0 (baseline) -
3 After COVID-19 lockdown - 26.7% 0 (baseline)
(initial period)
4 Back to normality with -10.7% +21.8%
structural smart working
option
Load duration curves
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Fig. 6. Load duration curves for a typical meteorological year using the model
trained in period 1, 3 and 4.

of appliances, i.e. making them operate only when needed, during peak
demand periods in winter and summer. In general, however, the normal
operational profiles, both throughout the week and on weekends, are
lower after COVID-19 than they were before, coherently with the
calculated savings which were reported in Table 5.

5.4. Limitations and further research

Due to variable operational regimes, the pre-COVID-19 (period 1)
load profiles were more predictable than the post-COVID-19 (periods 3
and 4) ones, as indicated by the results of the numerical and visual
analysis of electricity demand time series on which TWOT models were
fitted, separating the different time periods. The COVID-19 lockdown
(period 2) was an exception in itself, and less predictable conditions
were expected in combination with a decrease in energy demand as a
result of remote working and reduced operation hours. Regarding the
data-driven technique chosen, the Time Of Week and Temperature
(TOWT) algorithm, chosen for its simplicity and ease of use in the initial
phase of experimentation [24], has been reformulated so that, for the
temperature response component, it is comparable to the consolidated
piecewise linear modelling approaches employed for M&V. The thermal
response can be viewed via the lens of the approximated physical
interpretation of coefficients, which improves its ability to be under-
stood in human terms and to create insights. Considering then the issues
of hyper-parameter tuning (e.g., indicating range and step of
hyper-parameters) and subsetting of the original time series, the pro-
cedure can be automated further in the event of changes to the build-
ing’s operating schedules (e.g. using contextual information, in this case
the periods before, during and after COVID, characterised by different
operational regimes). As illustrated in Section 5.1, the outputs of an
automated model fitting process can be ranked according to their
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Fig. 7. Load profiles comparison for typical weekday and weekend conditions in January and July for period 1, 3 and 4.

goodness of fit with respect to statistical indicators (RZ, NMBE, and CV
(RMSE) presented in Section 3.2) while simultaneously being presented
graphically. This would enable the method’s interpretability to be pre-
served even in a highly automated process whose primary objective is
extracting the two main components of building behaviour: the time of
week (schedule of operation) and the temperature response (piecewise
linear function, with approximated physical interpretation).

This research indicates that the operational regime of the building (i.
e. time of week component) is far more variable than the temperature
response, which represents the "average" operating conditions at
different times as a function of outdoor air temperature. Retaining the
same formulation, the temperature response can be developed further
with respect to hours with high demand and low demand. In fact, the
algorithmic reformulation proposed to enable the seamless integration
of TOWT with piecewise linear change-point methods opens up the
possibility to include additional variables (other than the time series
stamp and temperature, as in its original formulation), which will be the
focus of future research. Additionally, automated cross-validation could
be applied to test the robustness of model estimates. Lastly, the use of
these regression-based approaches in conjunction with statistical pro-
cess control techniques (SPC) may enable real-time identification of
operational issues or drifting of building performance relative to ex-
pected behaviour (i.e. anomaly detection), leveraging numerical and
graphical techniques once more. In other words, these methods are
potentially capable of operating as "digital twins" that work as virtual
representations of energy-related processes within buildings.
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6. Conclusions

The need to accelerate the decarbonisation of the building stock
environment necessitates a substantial switch in consumption from
fossil fuels to electricity and the electrification process poses the prob-
lem of rethinking energy efficiency while addressing the inherent flex-
ibility concerns. This, in turn, requires a better understanding of the
electricity load profiles and, for this reason, this study proposed a
reformulation of the Time Of Week and Temperature (TOWT) algorithm,
which has been tested on a case study, the Procida Town Hall that is
completely electrified and has been monitored for nearly five years,
from February 2018 to December 2022. The novel model formulation is
calibrated using hourly interval data with a Coefficient of Variation of
Root Mean Square Error in the range of 20.0-28.5% throughout the 4
monitoring periods considered. The counterfactual analysis of electricity
consumption, conducted using a Typical Meteorological Year weather
data file, indicates a 10.7-26.7% decrease in electricity consumption
due to operational adjustments following COVID-19 lockdown, showing
the potential impact of behavioural change. Overall, the goal of the
research was to attain a performance comparable to the original
implementation of TOWT algorithm (described in Section 5.1) while
enhancing its interpretability and automation potential (both discussed
in Section 5.4). Particularly, interpretability is determined by the ability
to represent the electric load based on a weekly schedule (i.e., differ-
entiating each day and hour of the week to capture specific recurring
weekly patterns of operation) and on outdoor air temperature response,
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Fig. 8. Load profiles comparison for typical weekday and weekend conditions in April and October for period 1, 3 and 4.

which accounts for electric loads determined by heating and cooling
services (i.e. temperature dependent component of energy consump-
tion). Thus, the (relatively) more stable component of building perfor-
mance (i.e. the temperature response component) is separated from the
most dynamic component (i.e. the time of week schedule of operation).

Finally, the use of statistical process control (SPC) is a potential
further development for the proposed technique, which may enable real-
time identification of operational anomalies by combining numerical
and graphical techniques to obtain an interpretable “digital twin”, i.e. a
dynamic virtual representation of energy-related processes within the
building, easily understandable in human terms.
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