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Abstract. The application of machine learning (ML) techniques for the control and
development of digital twins for a fluidized bed reactors represents a significant advancement
in process engineering. In this study, the integration of data-driven models trained using
computational fluid dynamics (CFD) simulations, is explored for developing and optimizing
the lab-scale fluidized bed reactor operations. By leveraging the collection of data generated
from CFD simulations, data-driven algorithms, based on the Singular Value Decomposition
(SVD) and Gaussian processes for regression, are trained to predict the gas-solid flow
patterns under different operating condition. The data-driven models presented, serve as
efficient reduced order model (ROM) surrogate for computationally expensive CFD
simulations, enabling real-time predictions and control strategies for fluidized bed reactors,
facilitating continuous monitoring, optimization, and predictive maintenance.Moreover, the
ROM can effectively capture the complex relationships within the reactor system, with an
overall error < 10% even without precise knowledge of the underlying physical phenomena.
The synergistic combination of ML techniques and CFD simulations offers valuable insights
into complex multiphase flow phenomena and reactor dynamics, leading to improved process
control, energy efficiency, and overall performance of fluidized bed reactors. This approach
holds great promise for accelerating innovation and sustainability in chemical and energy
industries.

1 Introduction
The recovery of energy, fuels, and chemicals from residual biomass and plastic waste plays a crucial role
in environmental sustainability and resource scarcity challenge [1, 2]. Pyrolysis is one of the most
studied technologies to transform waste into valuable resources [3, 4], due to its potential products
flexibility. Despite this potential capability, these system are often rigid and designed for specific waste
types [5]. However, flexible pyrolysis system, in terms of the feedstock and desired output, could solve
several problems related to the waste recycling. In particular, they could be adapted to handle a wider
range of feedstock, and even seasonal fluctuation in waste availability, maximizing their efficiency and
resource recovery potential [6, 7, 8]. This adaptability allows also to process different waste streams
that might otherwise be difficult or expensive to manage, increasing the economic viability of this
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waste-to-energy processes. From the point of view of the final output, pyrolysis reactors can be tailored
to produce a specific output depending on market demands and application requirements. To achieve
such flexibility, advanced real-time control devices are essential. These devices must posses a
comprehensive knowledge of the reactors’ response for different feedstock compositions and for different
operating conditions, and actuate, in real-time application, the appropriate actions at the right time. In
such engineering applications, accurate physical systems modeling is mandatory for designing reliable
control strategies. Complex physical system like pyrolysis reactors, can be effectively described only by
high-fidelity simulations (HFSs). HFSs are usually expensive and computationally demanding and, due
to the non linearities of these problems, a slightly changing in the operating condition can drastically
modified the state of the system. Therefore, a complete knowledge about the system’s behavior can be
reached by performing an intense numerical simulation campaign for all the possible combination of the
inputs parameters, until the desired number of observation is obtained.
In this work, we proposed a reduced order model (ROM) base on data, of a lab-scale fluidized bed
reactor for the pyrolysis, focusing on the fluid-mechanics point of view. In particular, our goal is to
propose a surrogate model able to accurately predict the behavior of the reactor, without the need of
performing computational fluid dynamics (CFD) simulations [9]. ROMs are a reliable way to develop
digital twins of real systems, enabling real-time control and monitoring applications [10, 11, 12].
Usually, ROM are mathematical model based on data that try to understand and approximate the
underlying relationship between input parameters and the resulting physical phenomena. Several
approach can be found in literature related to Machine Learning (ML) techniques applied in fluid
dynamics and in reacting flow prediction and control [13, 9, 14, 15]. In pyrolysis application,
data-driven approach are commonly used to predict the final product the reactor or in general to infer
the kinetics of chemical reactions [16, 17, 18, 19, 20]. In those applications, ROMs are generally
developed using techniques that directly connect the input parameters (e.g. feedstock flow rate,
pyrolysis temperature) to the output. These approaches usually required a very large amount of data
since no prior knowledge is considered and, moreover, the relationship between input and output might
be lost during the training. The number of training data could be reduced introducing some physical
constraints based on a some prior knowledge about the physics phenomena (physics informed approach)
[21, 22, 23]. In some cases, is possible that the original data-set could be reduced and represented by a
fewer set of variables reducing also the number of data needed and ROMs to train. This principle
summarized the basic idea of this work.
Here, we proposed the development of a ROM for fluidized-bed reactor through fluid dynamics
phenomena occurring within the reactor, based on problem dimensionality reduction [24, 25, 26, 27].
Singular Value Decomposition (SVD) is a mathematical techniques for decomposing matrices used to
find a set of orthogonal and low dimensional basis functions able to represent high-dimensional data.
These basis functions are used to project the original data matrix in a low-dimensional space
(compression), finding a new set of uncorrelated variable that are able to completely described the
original data set. In this study, the SVD approach is used to reduce the dimensionality of problem,
capturing the underlying relationship of the variable, and using the reduced representation of the data
together with Gaussian Processes (GP) to infer the behaviour of the fluidized bed reactor for
unexplored input parameters. [28, 24]. In particular, we focused on the prediction of three important
fluid field: the pressure drop inside the reactor, the velocity of the fluidising gas, and the volume
fraction of the bed material.
This paper is organized as follows: in the Section 2 the Methods are described in details; Section 3
presents the Results and Discussions; finally, in Section 4 the Conclusions are illustrated.

2 Methods
The aim of the study here proposed, is to provide a possible approach to develop a ROM of a
fluidized-bed reactors using ML approaches. To accomplish this objective, the first step was collecting
data about the pressure p, fluidising gas velocity uN2 and solid volume fraction fields v, from CFD
simulations varying the operating condition, namely the inlet velocity of the fluidising gas uin,N2 , of the
fluidized-bed system; the second phase was to develop a ROM of the fluid mechanics phenomena that
occur within the reactor, based on SVD and dimensionality reduction techniques. In this section, the
numerical simulation set-up, SVD method, and the data-driven approach for predicting quantities, are
explained.
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Figure 1: Simulation set-up and numerical validation of a fluidized-bed reactor. (a) The
fluidized-bed reactor is schematized as a 2D rectangular fluid domain with 5 cm width and 30 cm heigh.
The fluidising gas is nitrogen and enters in the system with a constant velocity uin,N2

. The reactor top
section is a pressure outlet at a fixed pressure p0 = 1 bar. Reactor walls, nitrogen and sand are a constant
temperature T0 = 500 ◦C. The orange area, represent the volume occupied by the bed material at t0 = 0.
The inset shows a zoom to highlight the geometry mesh. (b) Examples of physical field of interest in
this work. From left to right: nitrogen velocity field; pressure field; solid volume fraction field. Each
field is presented with a different colormap to allow for better distinction. (c,d) Numerical validation of
the CFD set-up. The numerical setting used in the present work is applied on a slightly different system
and compared with the work of Ranganathan et al. [29]. In panel (c), the mean of solid volume fraction
along the height of the reactor is reported. In panel (d), the mean axial sand velocity evaluated for two
different reactor heights (y = 6− 12 cm) is shown. The solid lines represent the results reported in [29],
while the empty circle are the results obtained from the validation of the numerical setting used in the
present work.
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2.1 Fluidized-bed reactor numerical simulations
In the numerical simulations, the lab-scale fluidized-bed reactor is modeled as a 2D rectangular fluid
domain of width 5 cm and height of 30 cm. The domain is then discretized with an uniform mesh,
where each element is 5× 10−4 m side square for a total of m = 60× 103 grid points, see Fig. 1(a). In
the reactor bottom section (velocity inlet), the fluidising gas, nitrogen (N2), flows with a constant
velocity uin,N2 and, at the time t0 = 0, encounters 5 cm2 volume (in 2D sense) of sand (inert bed
material) with a density of ρS = 2700 kg/m3 and a granular diameter dS = 5× 10−4 m. The volume
occupied by the sand at the beginning of the simulation is depicted as an orange area in Fig. 1(a). The
reactor top section is defined as a pressure outlet, hence a constant pressure is imposed for the entire
duration of the simulation. The reactor walls, the nitrogen inflow and the sand are at a constant
temperature of T0 = 500 ◦C. Under this operating conditions the system is allowed to evolve for 27
seconds, i.e. the simulation time, and each 0.001s a simulation snapshot is saved. In particular, during
each time-step the measures of the pressure drop p within the reactor, the N2 velocity field uN2 and
solid volume fraction v are saved, see Fig. 1(b). A simulation campaign is then conducted varying the
inlet nitrogen velocity uin,N2 from 0.06 m/s to 0.35 m/s.
From a numerical point of view, in the fluidised-bed reactor simulations here proposed, an
Eulerian-Eulerian model for the two phase flow is solved. In particular, one solid phase representing the
bed-material and one gaseous phase that models the fluidising gas. Since in this preliminary study the
chemical reaction are not taken into account, only the continuity, momentum and the energy equations
are solved for each phase separately. The coupling between the two phases, is achieved through the
exchanged forces. For the momentum transfer, the Symlal et al. drag coefficient is used [30]. For the
interphase heat transfer, the Gunn heat transfer coefficient between the solid and gaseous phase is
adopted [31]. Since the sand motion is also modeled through granular flow kinetics, the granular bulk
viscosity and the granular viscosity of sand are modeled using the Lun et al. and Symlal relationship,
respectively [32, 33]. The CFD simulations are performed using the commercial software ANSYS®

Fluent [34, 35].
Finally, a numerical validation of the CFD simulation set-up used in the present work is summarized in
Fig. 1(c,d). The validation of the numerical setting is performed on a slightly different fluidized-bed
system (solved using the same numerical set-up here suggested) proposed by Ranganathan et al. [29].
The validation results are presented by comparing the mean of the solid volume fraction v̄ along the
reactor axis and the mean axial velocity of the bed evaluated at two different heights (y = 6− 12 cm).
As observed, the proposed numerical model is in excellent agreement with the results shown in [29].

2.2 Singular value decomposition and dimensionality reduction
The strategy used in the present study to build a ROM of a fluidized-bed reactor, is depicted in Fig. 2.
Let’s consider a high-fidelity simulation (HFS, sometimes called Full Order Model) as described in
section 2.1 and suppose to collect the data (spatially and temporally) related to some fields (e.g pressure
field, velocity field, ...) in a matrix D ∈ Rm×s in which each column dk ∈ Rm, with k ∈ [1, ..., s],
represent those fields evaluated in all the mesh grid points at certain time (snapshot). A complementary
interpretation of the data matrix can be obtained by observing the rows rather than the columns. In
fact, each row represents the measure of a particular quantity of interest (field) at a fixed point in space
as time varies. In essence, given a physical system simulated with a uniform temporal discretization
[tk = k∆t]sk=0, given the number m of Cartesian grid points xi where the field is evaluated, and after
reshaping each snapshot in a column vector, the data matrix D can be written as follow:

D =

d1(x0, t0) . . . dk(x0, tk) . . . ds(x0, ts)
...

...
...

...
...

d1(xm, t0) . . . dk(xm, tk) . . . ds(xm, ts)

 ,
where the column dk ∈ Rm, represents the field measurements in the reshaped mesh. It is important to
highlight that the method used to reshape each snapshot into a vector is no relevant, what matters is
using the same criteria to reshape the results back.
Usually, a physical system could depend on many parameters (e.g. inlet velocity u, pressure p, ...), but
unless an extensive experimental/numerical campaign is conducted, it is not possible to explore the
entire parameter space to fully understand the system’s response. Moreover, could be computationally
demanding to simulate the physical system for a long period of time. As a consequences, several
techniques based on linear algebra methods (and later inherited by machine learning approaches) have
been developed to reduce the complexity of physical systems and extrapolating the minimum number of
important informations to recreate (and predict) the time/space evolution and/or the system behaviour
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Figure 2: Data matrix decomposition. (a) Simple representation of the SVD method. The generic
field f(x, t) (solid phase volume fraction in the figure) is measured at each mesh points for all the s
simulated timestep (left part). Each measurements (snapshot on the left part) is used to populate a
column of the data matrix D. Subsequently, the data are projected (E(D)) into a reduced-dimensional
space Z and reconstructed through a decoding process D(E) that achieves an approximation D of the
original data (snapshot in the right part of the panel). Note that, in panel (a), reactor height is truncated
for figure clarity and compactness. (b) Decomposition of a solid fraction snapshot written as a linear
combination of the truncated spatial uk and temporal ψk basis.

for different input parameters. One of the most used techniques, is the dimensionality reduction based
on SVD method, here briefly summarized and simplified for the reader convenience.
The central point (among others) of SVD is to reduce and compress a large number of interdependent
variables into a smaller of independent variables while preserving as much information and variance
from the original variables as possible. Consider the data-set D described above, populated with s
observation of m variables, the SVD provides an approximation of the original data-set using
q ≤min(s,m) variables. This means that, the measurements dk ∈ Rm is projected (or encoded) into a
lower dimensional vector ψ ∈ Rq.
With the SVD method, we decompose a matrix D in a product of three matrices

D = UΣVT , (1)

where U ∈ Rm×m and V ∈ Rs×s are unitary matrices (UTU = UUT = I = VVT = VTV, where I is
the identity matrix) and Σ = [Σ̂,0]

T
∈ Rm×s with non-negative elements on the main diagonal Σ̂ and

zeros elsewhere. The U, V and Σ are called left singular matrix, right singular matrix and singular
value matrix, respectively. The decomposition matrices are computed solving the following eigenvalue
problems:

DDT = U

[
Σ̂2 0
0 0

]
UT , (2)

DTD = VΣ̂2V
T
, (3)

where DDT and DTD are called spatial and temporal correlation matrices, respectively. Eqs.[2-3]
provide a practical and very important interpretation of those matrices: if elements in the Σ diagonal
are arranged in descendent order and, at the same time, the columns of U and rows of V are moved
coherently, the latter describe how much correlation in columns and rows of D is captured, respectively.
Since in our settings the column elements of D are the spatial measurements of the generic field f(x, t),
the column of U represent the spatial structure and, similarly, the rows of VT are the temporal
structure basis. In order to have a reduced representation (or approximation) D̃ of the data matrix, we
retained only q column of U and rows of VT , obtaining the truncated representation of D

D̃ ≈ UqΣqV
T
q , (4)
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where the subscript q indicates the number of retained vectors. In our numerical set-up, the number m
of mesh grid points is larger than the simulated timestep s, hence q ≤ s.
Expanding the Eq. (4) for the ith column dk, we obtain that

dk ≈
q∑

k=1

ujσjvj,k =

q∑
j=1

ujψj,k, (5)

where uk is the kth column of Uq, σk is the kth singular value of Σq, vj,k is the kth elements of the jth
right singular vector and ψj,k = σjvj,k that are collected in a matrix Ψ ∈ Rq×s. Eq.(5), provide a very
simple way to decompose the data matrix (and thus the generic field f(x, t)) as a linear combination of
the spatial structures in which the coefficient contain temporal information, see Fig.2(b).
In the following, and in particular in Results and Discussions section, the data matrix is centered before
applying the SVD, this means that the mean of all the columns is subtracted from each column:

Do = D−D, (6)

dk,j =
1

s

s∑
i=0

dk,i, (7)

where Do is the centered data matrix, D ∈ Rm×s is matrix of centers and dk,j is the generic entries of
the center matrix. With this transformation, the Eq.(5) becomes

do,k ≈ dk +

q∑
j=1

ujψj,k, (8)

where dk is the kth column vector of D (note that all the dk are equals).
From here on, the subscript o will be omitted for brevity, and the matrix D will always refer to its
centered counterpart unless otherwise indicated.
As a final comment, the SVD method can be seen as a linear autoencoder, see Fig.2(a). The linear
encoder function E(D) : Rm → Rq is a projection of the data matrix in a lower dimensional space
described by q vectors such that Z = UT

q D ∈ Rq×q, where the column of Uq are the orthogonal basis
vectors of that space and, since they contain the most important information in the data matrix, they
are usually called principal components (PC) in the machine learning fields. Z is the compressed form
of the original data matrix. The decoder function, is also a linear combination of these basis such that
D ≈ D(E) = D̃ = UqZ = UqU

T
q D and replacing Eq.(1) in the last equation we obtain that Z = ΣqV

T
q ,

and the rows of Z (i.e. ψk) are called PC scores. It is worth noting that while UT
q Uq = I, it is no longer

true that UqU
T
q = I, this means that, to achieve a good approximation of the data matrix, the latter

relation must be as close as possible to the identity. For further details regarding the SVD and principal
component analysis, the interested reader is referred to [24, 25, 27, 36].
In principle, in the data matrix different fields can be stacked to compose a column dk. In our work, we
used the SVD for each fields separately to obtain a better representation for each physical quantities
namely, velocity of the gas carrier, pressure,and solid volume fraction of the bed. Moreover, in order to
obtain a good approximation of the data-set, the number of the retained principal directions (column of
Uq), was chosen looking at the singular values. In particular, we retained those principal directions
whose the corresponding singular values capture at least the 95% of the variance. Therefore, the
number of PCs differ for each quantity of interest.

2.3 Gaussian Processes
The accurate prediction of the quantity of interest for unexplored points of the parameter space (i.e
nitrogen velocity uin,N2

), requires an accurate estimation of the PC and PC score for those points.
Gaussian Processes are a powerful tools for regression problems, based on a probabilistic description.
GP regression models assume that the function (distribution) relating the inputs to the outputs is
drawn from a Gaussian distribution with specified mean and covariance functions. Usually, the prior
mean of the target distribution is supposed to be zero and the covariance function are also called kernel
function. The kernel functions are typically chosen in order to increase the correlation for nearby points
compared to dissimilar points. In this work the squared exponential kernel function is used [37].
Finally, the matrices are interpolated using the nitrogen velocity as parameter and interpolation weight.
A detailed discussion of GP and in general for kernel methods for regression, can be found in [24, 38].
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3 Results and Discussions
In this section the results of this study are presented. First, a discussion about the SVD application and
results is presented, followed by the results on the regression processes on the compressed representation
of the data matrix.

3.1 SVD e dimensionality reduction
The SVD method and the dimensionality reduction was conducted on a data matrix with s = 270
observation (columns), that correspond to an observation every 0.1 s for 27 s, for each quantity of
interest, namely uN2

, p and v. To find the number of modes to retain, the so called explained variance
of the singular values is used. Given the ordered singular values, elements on the Σ diagonal, from the
data matrix D decomposition, they are normalized with respect to the sum over the singular values

σj =
σ̂j∑s
k=1 σk

, (9)

where σ̂k is a singular value and σk is the normalized one. In the Methods section, we have defined the
retained number of modes as the minimum number of modes such that the captured variance is
=> 95%, i.e. the cumulative variance, also called explained variance. In Fig. 3(a-c), three examples of
the number of the retained singular values and the explained variance are reported. In particular, in the
Fig. 3 some illustrative results of the fluidized-bed dimensionality reduction for uin,N2

= 0.20m/s and
t = 1.5 s are reported. As can be observed, for the pressure field five modes are enough to reconstruct
the field for all the time considered while maintaining the error low, see bottom part of Fig. 3(a). For
more complex field, such as velocity and volume solid fraction, more modes are required to recover the
fields from the reduced representation of the data matrix. In fact, for the nitrogen velocity and solid
volume fraction 20 and 33 modes are needed, respectively, but despite the increased complexity, the
recovery error remains low. Note that the number of preserved modes q is the dimension of the
compressed space where D is projected. In our settings, we started with a data matrix
(m, s) = (60× 103, 280), subsequently transformed into a matrix of shape (q, q). For completeness in
Fig. 3(d-f) a comparison between the observed fields and the recovered ones is reported. Finally, in
Fig. 3(g-i), the R2 values of the reconstruction for different values of the nitrogen inlet velocity
evaluated for each time step are shown. The R2 value, is grater than 0.94 for every predicted field,
confirming the good recovery from the chosen modes. Moreover, as a general trend, can be observed
that the error increases as the uin,N2

increases.

3.2 Field prediction and regression
In fluidized-bed reactors, the inlet velocity of the carrier gas could be divided in two categories: when it
is greater than or when it is less than the minimum fluidization velocity umf . At low gas velocities the
bed particles remain packed, while as the gas velocity increases, the particles start to move, the bed
expands and the reactor enters in the fluidized region. To ensure good performance of the reactors, the
inlet gas velocity must be greater than the um,f . Based on this working principle of fluidized-beds, in
this study we focused the effort to predict the quantities of interest (pressure p, nitrogen velocity uN2

and solid volume fraction v) for inlet nitrogen velocity uin,N2
> umf = 0.06 m/s for the considered

reactor set-up. In particular, a set of simulations are performed to train the ROM considering eight
values of the N2 inlet velocity (observations) uin,N2

= 0.06, 0.08, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 m/s. In
order to test the model for different uin,N2

, the training set was populated removing alternatively one of
the observation, and testing the ROM with the removed velocity. Therefore, the training phase of the
GP is repeated each time an observation is removed, for a total of 8 training-testing phases.
In this section, hereinafter, the term reconstruction is used to indicate the data matrix reconstruction
through its compressed form achieved by SVD, while the term prediction refers to the field
reconstruction for uin,N2

not used during the training phase.
As mentioned above in the Methods section, the regression process is applied, for each observation, on
the PC matrix Uq and on PC scores matrix Z. The predicted field is then obtained reconstructing it
from its decomposition matrices approximation. In Fig. 4, the results obtained from the prediction of
the reactor behaviour at t = 27 s for uin,N2

= 0.2 m/s and therefore not using this velocity during the
training, for the three fields of interest are reported. In each panels the observation against the
prediction results (colored dots) are presented together with three red solid-lines: the external lines
represent a prediction error of 10%, while the middle one corresponds to a perfect prediction. For the
pressure field, Fig. 4(a), can be observed how the Uq and Z are well estimated generally maintaining
the error below the 10% limit. This low error propagates during the reconstruction leading to a greater
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Figure 3: SVD and reconstruction results. Results on SVD decomposition and reconstruction for a
fluidized-bed reactors for uin,N2 = 0.2 m/s and t = 1.5s are reported. (a-c) In the top part the explained
variance and the retained singular values σ for the pressure, volume solid fraction and N2 velocity fields
are reported. The violet solid line and grey bars represent the normalized singular values according
Eq. (9). The orange line described the evolution of the explained (cumulative) variance. While in bottom
part, the quality of the recovered field are presented using parity plots. (d-f) Graphical comparison
between the recovered and observed fields. (g-i) Error of the reconstruction for all the inlet velocity and
time-step.
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Figure 4: Comparison between prediction and observation. Parity plots for quantification of the
quality of the prediction of the regression. In particular, results for uin,N2

and t = 27 s are reported. The
colored dots describe the comparison between prediction and observation. The red solid lines represent
the perfect prediction (central line), and ±10% error bounds of the prediction (external lines).
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Figure 5: Overall prediction error. Total prediction error evaluated according the Eq. (10), for the
pressure p (green circles), N2 velocity uN2

(red circles) and solid volume fraction v (blue circles).

error during the field reconstruction. Even with the uncertainty propagation, the prediction error
remains low, although it does increase slightly as pressure increases. Another important results is
related to the pressure values. In fact, as highlighted in the Methods section, the pressure here reported
is not an absolute pressure, but is a relative pressure with respect to the outlet one. Therefore, since
the gas carrier must flow from the bottom to the top of the reactor, this pressure must be positive.
During the SVD (or PCA/POD) decomposition and reconstruction, the positivity of the pressure is not
guaranteed. In fact, usually, in steady state problems to ensure that some physics properties are
respected, some constraints can be added during the SVD/PCA approach [13]. In fact, as shown in the
right side of Fig. 4(b), the problem of unfeasible values of v are predicted. For low values of the
observed v, the predicted counterpart assumes negative value and this is obviously not possible in the
real world, since a volume fraction can not be negative by definition. Moreover, in this work, this issue
arises from the fact that the prediction (of an highly unsteady flow) is obtained from the regression over
the decomposition matrices and not directly over the volume fraction field [39, 40]. In the light of this
considerations, it is less straightforward to define constraints on the elements of the matrices Uq and Z.
While the mathematical interpretation of the matrices can be established, it is less clear how such
constraints can be reflected in the actual quantitative values of these elements. Despite the negative
values predicted for small values of v, the global error is generally contained within the limit of 10%.
For uN2

, similar trends can be observed, where a good satisfactory level of accuracy is also achieved as
depicted by the parity plots in Fig. 4(c).
In Fig. 5, the time averaged prediction error for each predicted field and for all the velocity is reported.
The error e is evaluated bthrough the following equation

e =
1

(max
i,j

{D} −min
i,j

{D})t

t∑
j=1

m∑
i=1

|di,j − d̂i,j |, (10)

where D is the data matrix, t is the number of snapshots in the data matrix, m is the number of grid

points, d and d̂ are the column data matrix D and its prediction D̂, respectively. As shown in Fig. 5,
the error increases as the velocity increases, a trend observed for all fields with some exceptions
regarding the solid fraction v. This behaviour can be attributed to the chaotic motion of the bed
material inside the reactor. In fact, as the inlet velocity increases, the bed becomes more fluidized
leading to less accurate prediction, although the averaged error remain smaller than 10%.
Predicting the time evolution of solid volume fraction and pressure drop within the reactor, allows for
controlling mass transport, mass transfer, and heat transfer between the involved species. Such control,
acting on the nitrogen inlet velocity, can alter the behaviour of the fluidized bed, steering the process
towards the production of specific outputs (e.g gas or oil) [41]. Moreover, knowing the solid fraction
distribution helps optimizing the mixing of particles and gasses, which is essential for achieving uniform
temperature. In perspective, the knowledge of physical behaviours allows also the evaluation of the
fluidization quality, to quantify the efficiency of the heat transfer and, consequently, of chemical
reaction control.
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4 Conclusions
Pyrolysis is a reliable thermochemical process for energy and chemicals recovery. Pyrolytic reactor are
usually designed to process limited classes of feedstock or to obtain a certain output. Development of
advanced control systems could help to improve these limitation, but a comprehensive knowledge of the
physical phenomena that occurs within the reactors varying the operating conditions, is needed. The
present work, is intended to be a preliminary study aiming to demonstrate the capability of data-driven
ROM to predict the responses of very complex systems (like fluidized-bed reactor), even for operating
condition not explored during the training. Having an accurate ROM that can reliably and
instantaneously predict the behaviour of these systems, enables the possibility to develop real-time
controller to increase the pyrolysis flexibility.
Here, we proposed a data-driven approach based on dimensionality reduction (SVD) and data
regressions through GP to predict the behavior of a fluidized-bed reactor for pyrolysis. In particular,
pressure, nitrogen velocity (fluidising gas) and solid volume fraction fields are predicted for different
nitrogen inlet velocity. The prediction and control of these quantities through the inlet velocity of the
fluidising gas, could help to improve the mixing and therefore maximizing the mass and heat transfer
efficiency. The developed ROM is able to predict these fields with an error <10% for all the simulated
time, demonstrating the applicability of this approach in real-time control applications. In future works,
we will extend and improve the methodology increasing the number of input parameters and
introducing chemical reactions for prediction of products for different operating conditions.
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