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Abstract
The goal of this paper is to clarify the connection between certain structures from the theory of
totally nonnegative Grassmannians, quiver Grassmannians for cyclic quivers and the theory
of local models of Shimura varieties. More precisely, we generalize the construction from our
previous paper relating the combinatorics and geometry of quiver Grassmannians to that of
the totally nonnegativeGrassmannians. The varieties we are interested in serve as realizations
of local models of Shimura varieties. We exploit quiver representation techniques to study
the quiver Grassmannians of interest and, in particular, to describe explicitly embeddings
into affine flag varieties which allow us to realize our quiver Grassmannians as a union of
Schubert varieties therein.

Keywords Quiver Grassmannians · Totally nonnegative Grassmannians · Affine flag
varieties

1 Introduction

Quiver Grassmannians are natural generalizations of the classical Grassmannians and flag
varieties. In short, given a quiver Q, a Q-representation M and a dimension vector e one
considers the variety Gre(M) consisting of e-dimensional subrepresentations of M [2, 4, 39].
Quiver Grassmannians were extensively studied during the last two decades and proved to
be useful in various areas of mathematics [5, 8, 35]. In this paper we consider certain quiver
Grassmannians X(k, n, ω) for cyclic quivers, generalizing [12]. The varieties X(k, n, ω)

naturally show up in the theory of local models of Shimura varieties [14, 16, 28] and in
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the theory of totally nonnegative Grassmannians [12, 18, 24–26, 31]. We give some details
below.

Let �n be a cyclic quiver on n vertices. For a positive integer ω we consider a �n module
Unω defined as follows. Let A∞ be an infinite (in both directions) equioriented quiver of
type A. Let us consider a natural mod n projection from A∞ to �n . Let V (i, j), i ≤ j , be
the indecomposable representation of A∞ supported on vertices from i to j . Then the �n

moduleUnω is obtained as the projection of the direct sum of A∞ modules V (i + 1, i + nω)

for i = 0, . . . , n − 1. In particular, the dimension of Unω is equal to (nω, . . . , nω).
Now let us fix k = 1, . . . , n − 1. We define X(k, n, ω) to be the �n quiver Grassmannian

Gre(Unω), where e = (kω, . . . , kω). The ω = 1 case was considered in our previous paper
[12]. In particular, we showed that the topological and combinatorial properties of X(k, n, 1)
are closely related to that of the totally nonnegative Grassmannians. The following theorem
holds.

Theorem 1 The variety X(k, n, ω) is a projective equidimensional variety of dimension
ωk(n−k). The number of irreducible components is

(n
k

)
. Each component is normal, Cohen-

Macaulay, has rational singularities and admits a desingularization by a certain smooth
quiver Grassmannian.

Recall that in [12] a link between the varieties X(k, n, 1) and the totally nonnegative
Grassmannianswas described.More precisely,we proved that X(k, n, 1) admits aBialynicki-
Birula decomposition [1], which is also a cellular decomposition. The poset of cells was
identified with the (reversed) cell poset of the corresponding totally nonnegative Grassman-
nian. We prove the following generalization.

Theorem 2 The varieties X(k, n, ω) admit a Bialynicki-Birula decomposition with each stra-
tum being an affine cell. Each cell contains a unique fixed point under an appropriate
algebraic torus action and the cell is the orbit of this point under the action of the auto-
morphism group of the �n module Unω. The cells are labeled by a natural ω-generalization
of the bounded affine permutations.

The cellular decomposition is stable under the action of the above mentioned algebraic
torus. We describe the moment graph resulting from the torus action on X(k, n, ω), and
investigate the poset structure on the set of cells.

The last part of the paper is devoted to the realization of the quiver Grassmannians
X(k, n, ω) inside the affine Grassmannian of type A. The varieties X(k, n, ω) show up in the
literature as an explicit realization of the local models of Shimura varieties (see [14, 15, 27]).
Certain properties of these local models have been studied. In particular, the embeddings into
the affine Grassmannians were constructed. We use the techniques of quiver representations
in order to prove the following.

Theorem 3 The varieties X(k, n, ω) can be identified with the union of certain
(n
k

)
-many

Schubert subvarieties inside the type A affine flag variety. The Weyl group elements corre-
sponding to these Schubert varieties are explicitly described. The action of the automorphism
group Aut�n (Unω) is identified with the action of the Iwahori subgroup.

The statements from the theorem above are proved in Proposition 6.10, Corollary 6.12
and Theorem 6.14. The link between the quiver Grassmannians and affine Schubert varieties
is established via the formalism of semi-infinite wedge spaces and Sato Grassmannians.

Finally, let us formulate a natural question which remains open. For all ω ≥ 1 construct
spaces Gr(k, n, ω)≥0 which generalize the totally nonnegative Grassmannians Gr(k, n)≥0,
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in the sense that Gr(k, n, ω)≥0 admits a decomposition into cells of the form R
M
>0 such that

the cell poset is dual to that of X(k, n, ω). (recall that the latter is described in terms of the
generalized bounded affine permutations).

The paper is organized as follows. In Sect. 2we study the geometric properties of the quiver
Grassmannians X(k, n, ω); Theorem 1 is proved here. In Sect. 3 we describe the moment
graphs of X(k, n, ω) and discuss their cohomology; in particular, we construct a cyclic group
action on the equivariant cohomology. Theorem 2 is proved in Sect. 4. We introduce the
ω-generalized versions of the bounded affine permutations, juggling patterns and provide a
combinatorial model for the Poincaré polynomials. Theorem 3 is proved in Sect. 6 and the
preliminaries on the Sato Grassmannians and affine flag varieties can be found in Sect. 5. In
the appendix we provide a correction of a computation from [12].

2 Geometric properties

2.1 Quiver Grassmannians

In this section we recall the definition of quiver Grassmannians. For more detail on the
representation theory of quivers see [38]. A finite quiver Q consists of a finite set of vertices
Q0, a finite set of oriented edges Q1 between the vertices. A Q-representation M is a pair of
tuples, with a tuple (M (i))i∈Q0 of C-vector spaces over the vertices, and a tuple (Ma)a∈Q1

containing linear maps between the vector spaces, along the arrows in Q1.
A morphism ψ of Q-representations M and N is a collection of linear maps ψi : M (i) →

N (i) such that ψ j ◦ Ma = Na ◦ψi holds for all edges a : i → j . The set of all Q-morphisms
from M to N is denoted by HomQ(M, N ). The category of finite dimensional complex
Q-representations is repC(Q).

The entries of the dimensionvectordimM ∈ Z
Q0 of a quiver representationM ∈ repC(Q)

are given by dimC M (i) for all i ∈ Q0. A subrepresentation N ⊆ M is parameterized by
a tuple of vector subspaces N (i) ⊂ M (i), such that Ma(N (i)) ⊆ N ( j) holds for all arrows
a : i → j of Q.

Definition 2.1 For e ∈ Z
Q0 and M ∈ repC(Q), the quiver Grassmannian Gre(M) is the

variety of all e-dimensional subrepresentations of M .

For a point U ∈ Gre(M) the isomorphism class SU in the quiver Grassmannian is called
stratum and is irreducible (cf. [5, Lemma 2.4]). The automorphism group AutQ(M) ⊂
EndQ(M) = HomQ(M, M) acts on Gre(M) as

A.
(
U (i))

i∈Q0
:=
(
Ai
(
U (i))

)

i∈Q0
for A ∈ AutQ(M) and U ∈ Gre(M).

2.2 Cyclic quiver Grassmannians

The equioriented cycle�n is the quiver with vertex setZn := Z/nZ and arrows a : i → i+1
for all i ∈ Zn . For a �n-representation we write Mi instead of Ma for the map along the
arrow a : i → i + 1. Now we define the �n-representation Um , for m ≥ 2: Take the vector
spaces M (i) := C

m for all i ∈ Zn and let B(i) := {v(i)
j : j ∈ [m]} be the standard basis of

the i-th copy of C
m . Then each map Mi sends v

(i)
j to v

(i+1)
j+1 for j ∈ [m − 1] and v

(i)
m to zero.
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Definition 2.2 Let us fix numbers k, ω ≥ 1 with k ≤ n. Define the quiver Grassmannian

X(k, n, ω) := Gr(kω,...,kω)(Uωn).

In particular, X(k, n, 1) coincides with the quiver Grassmannian X(k, n) studied in our paper
[12].

Remark 2.3 We note that the varieties X(k, n, ω) show up in the theory of local models
of Shimura varieties (see [15, 16, 27–30]). More precisely, X(k, n, ω) appear as concrete
realizations of the local models of Shimura varieties forG = GLn and minuscule coweights,
as discussed, for example, in [28, §7.1].

Remark 2.4 One may vary the representation Uωn keeping its dimension unchanged. Then
one gets a family of quiver Grassmannians in the spirit of [7, 9]. It would be interesting to
study this family.

2.3 Torus actions

The torus C
∗ acts on the vector spaces of Uωn with the weights wt(v(i)

j ) := j for all i ∈ Zn

and j ∈ [ωn]. This action extends to X(k, n, ω) by [3, Lemma 1.1].
The above C

∗ action coincides with a cocharacter of an n+1-dimensional algebraic torus
T := (C∗)n+1 which acts on the vector spaces of Uωn via

γ.v
(i)
j = γ

j−1
0 γi− j+1v

(i)
j for

(
γ0, (γi )i∈Zn

) ∈ T .

Remark 2.5 This coincides with the torus action on �n-representations as defined in [22].
Hence it extends to X(k, n, ω) by [22, Lemma 5.12].

Lemma 2.6 The fixed points of the C
∗ action and T action on X(k, n, ω) coincide, and the

number of fixed points is finite.

Proof The first part is a special case of [22, Theorem 5.14] and the second part follows from
[3, Theorem 1]. ��

Nowwe want to introduce an explicit parametrization of the T -fixed points of X(k, n, ω).
For k ≤ n we denote by

([n]
k

)
the set of all k-element subsets of [n]. The following definition

generalizes the standard definition of juggling patterns (see [21] or Sect. 4.1).

Definition 2.7 For k, n, ω ∈ N with k ≤ n, the set of (k, n, ω) juggling patterns is

J ug(k, n, ω) :=
{
(Ji )i∈Zn ∈

∏

i∈Zn

([ωn]
kω

)
: τ1(Ji\{ωn}) ⊂ Ji+1 for all i ∈ Zn

}
,

where τ1(x) = x + 1.

Lemma 2.8 The fixed points X(k, n, ω)T are in bijection with J ug(k, n, ω).

Proof It follows from [3, Theorem 1] that the vector spaces parameterizing the fixed points of
X(k, n, ω) are spanned by subsets P(i) ⊂ B(i) for i ∈ Zn , where each subset has cardinality
kω. This is encoded with the index sets from

([ωn]
kω

)
. Hence the condition

Mi

(〈
v : v ∈ P(i)〉

)
⊂ 〈

w : w ∈ P(i+1)〉

translates to τ1(Ji\{ωn}) ⊂ Ji+1 where P(i) = {v(i)
j : j ∈ Ji }. ��
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2.4 Geometric properties

In order to apply the desired results concerning the geometry of quiver Grassmannians for
�n-representations, we need an alternative realization of Um . By A∞ we denote the infinite
equioriented quiver of type A. Let V (i, j) be the indecomposable A∞-representation with
vector spacesV (i, j)(k) = C for any k ∈ [i, j] andmapsV (i, j)k = idC for any k ∈ [i, j−1].
All other maps and vector spaces are zero. Let F : A∞ → �n send k to k mod n, and
(a : k → k + 1) to (a : k mod n → k + 1 mod n). This induces the �n-representation
Ui (�), with vector spaces Ui (�)

( j) := ⊕
k∈F−1( j) V (i + 1, i + �)(k) for any j ∈ Zn and

obvious linear maps.

Proposition 2.9 There is an isomorphism of �n-representations:

Um ∼=
⊕

i∈Zn

Ui (m).

Proof The representationUm decomposes into the direct sumofn indecomposable summands
labeled by elements i ∈ Zn : the i-th summand contains the vector v

(i)
1 . Now one easily sees

that the i-th summand is isomorphic to Ui−1(m). ��
Proposition 2.10 The elements of the automorphism group Aut�n (Um) are exactly the matrix
tuples A = (Ai )i∈Zn with

Ai =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a(i)
1,1

a(i)
2,1 a(i−1)

1,1

...
...

. . .

a(i)
m−1,1 a(i−1)

m−2,1 . . . a(i−m+2)
1,1

a(i)
m,1 a(i−1)

m−1,1 . . . a(i−m−2)
2,1 a(i−m+1)

1,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where a(i)
k,1 ∈ C for all i ∈ Zn, k ∈ [2,m] and a(i)

1,1 ∈ C
∗ for all i ∈ Zn. In particular,

dimC Aut�n (Um) = mn.

Proof Webegin by computing the endomorphism algebra End�n (Um). By definitionwe have
that (Ei )i∈Zn ∈ End�n (Um) if and only if

Ei+1τ1 = τ1Ei for all i ∈ Zn .

This is the same as

Ei+1τ1(v
(i)
l ) = τ1Ei (v

(i)
l ) for all i ∈ Zn, l ∈ [m]. (2.1)

We write e(i)
k,l := (Ei )k,l for the matrix entries, so that

Ei (v
(i)
l ) =

m∑

k=1

e(i)
k,lv

(i)
k .

Then the equations (2.1) are equivalent to

e(i)
k,l = e(i+1)

k+1,l+1, e(i)
k,m = 0, e(i)

m,l = 0, for all k, l ∈ [m − 1].
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From the above equations, it follows by induction on m − l that e(i)
k,l = 0 for any l > k, and

by induction on l that e(i)
k,l = e(i+1)

k+1,l+1. This implies that the Ei ’s are of the claimed lower
triangle form. Now we obtain the automorphism group by imposing the additional condition
that all diagonal entries are invertible. ��

The C
∗ action on X := X(k, n, ω) induces the decomposition:

X =
⋃

p∈XC∗
Wp, with Wp :=

{
x ∈ X : lim

z→0
z.x = p

}
.

We call this a BB-decomposition since decompositions of this type were first studied by
Bialynicki-Birula in [1].

Theorem 2.11 For ω ≥ 1 and k ≤ n the variety X(k, n, ω) satisfies the following:

(i) it is a projective variety of dimension ωk(n − k);
(ii) its irreducible components are equidimensional;
(iii) the BB-decomposition is a cellular decomposition;
(iv) the irreducible components are normal, Cohen-Macaulay and have rational singular-

ities;
(v) the irreducible components X I (k, n, ω) are labeled by the k-element subsets I ⊂ [n].

Proof Part (i) is a special case of [33, Lemma 4.9]. Part (ii) and the labeling of the irreducible
components as in part (v), are obtained from [33, Lemma 4.10]. The defining weight function
of the C

∗ action introduced above coincides with the one in [33, Section 4.4]. Hence [33,
Theorem 4.13] implies that the parts of the BB-decomposition are cells and thus item (iii)
holds. [33, Lemma 4.12] implies item (iv). ��
Remark 2.12 Using the methods from [33], it is also possible to study Gr(q,...,q)(Um), where
the �n-representation Um is defined as above. But in this setting it is only possible to prove
part (i i i) and (iv) of the above theorem. For part (i), (i i) and (v) it is crucial that n dividesm
and thatm/n divides q . Otherwise, the irreducible components are not of the same dimension,
their parametrization is unknown and hence there is no dimension formula.

Theorem 2.13 Each cell C ⊂ X(k, n, ω) is T -stable and contains exactly one T -fixed point
PC . The Aut�n (Uωn)-orbit and stratum of PC coincide with C.

Proof The first part follows from [22, Theorem 5.7] in combination with [22, Theorem 5.14].
The bijection between strata and Aut�n (Uωn)-orbits follows from [32, Lemma 2.28]. It
follows from the explicit description of the T -fixed points in Lemma 2.8 that they are pairwise
not isomorphic. Hence they belong to different strata. ��
Remark 2.14 Observe that in general the AutQ(M)-orbits in a quiver Grassmannian Gre(M)

are not cells and contain more than one torus fixed point. This is very special to the
X(k, n, ω)’s. Otherwise it already fails in small examples:

Consider the �2-representation M with M (1) = M (2) = C
2, M1 = id and M2 = 0. For

e = (1, 1), let C
∗ act on the quiver Grassmannian Gre(M) induced by the weight function

wt(ei ) = i , where {e1, e2} is the standard basis of C
2. It follows from [3, Theorem 1] that

Gre(M) has two isomorphic C
∗-fixed points. Hence they live in the same Aut�2(M)-orbit.

Remark 2.15 Theorem 2.13 implies that every cell closure in X(k, n, ω) is the union of
smaller cells. The bijection between cells and generalized juggling patterns allows to make
this description explicit (Corollary 4.7). But first we have to describe the moment graph for
the T action on X(k, n, ω) (Lemma 3.4).
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2.5 Desingularization

In this subsectionwegive a desingularization of X(k, n, ω) following the general construction
in [34] (see also [6, 10, 17, 37]).

For I ∈ ([n]
k

)
, define the �n-representation

UI :=
⊕

i∈I
Ui (ωn).

Proposition 2.16 For all I ∈ ([n]
k

)
, the closed stratum SUI is an irreducible component of

X(k, n, ω) and all irreducible components are of this form.

Proof The parametrization for the representatives of the top dimensional strata is obtained
in the proof of [33, Lemma 4.10]. The second part follows from Theorem 2.11.(v). ��

Let �̂n be the quiver with vertex set
{
(i, k) i ∈ Zn and k ∈ [ωn]}

and arrows
{
ai,k : (i, k) → (i, k + 1) : i ∈ Zn and k ∈ [ωn − 1]}∪
{
bi,k : (i, k) → (i + 1, k − 1) : i ∈ Zn and k ∈ [ωn]\{1}}.

Let M ∈ repC(�n) be a nilpotent representation, i.e. there exists N > 0 such that Mi+N−2 ◦
Mi+k−3 ◦ · · · ◦ Mi+1 ◦ Mi = 0. We define the �̂n-representation

M̂ := (
(M̂ (i,k))i∈Zn ,k∈[N ], (M̂ai,k , M̂bi,k+1)i∈Zn ,k∈[N−1]

)

with

M̂ (i,1) := M (i) for k = 1

M̂ (i,k) := Mi+k−2 ◦ Mi+k−3 ◦ · · · ◦ Mi+1 ◦ Mi (M
(i)) for k ≥ 2

M̂ai,k := Mi+k−1 for k ≥ 1

M̂bi,k := ι : M̂ (i,k) ↪→ M̂ (i+1,k−1) for k ≥ 2

Here the inclusion maps along bi,k arise naturally from the definition of the vector spaces of
M̂ .

Every W ∈ repC(�̂n) restricts to a �n-representation

resW :=
((
W (i,1))

i∈Zn
,
(
Wbi,2 ◦ Wai,1

)
i∈Zn

)
.

For I ∈ ([n]
k

)
set X̂ I (k, n, ω) := Grdim ÛI

(
Ûωn

)
define the map

πI : X̂ I (k, n, ω) −→ X(k, n, ω)

by πI (V ) := resV for all V ∈ X̂ I (k, n, ω).

Remark 2.17 The vector spaces of Ûωn are spanned by subsets of the bases for the vector
spaces ofUωn . Hence the T action onUωn extends to the quiver Grassmannians X̂ I (k, n, ω)

for I ∈ ([n]
k

)
in the obvious way. The same holds for the C

∗ action.

The following result is a special case of [34, Theorem 3.18, Lemma 5.3].
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Theorem 2.18 The map

π :=
⊔

I∈([n]
k )

πI

⊔

I∈([n]
k )

X̂ I (k, n, ω) −→ X(k, n, ω)

is a T -equivariant desingularization of X(k, n, ω).

Theorem 2.19 For each I ∈ ([n]
k

)
the quiver Grassmannian X̂ I (k, n, ω) is isomorphic to a

tower of fibrations

X̂ I (k, n, ω) = X1 → X2 → · · · → Xωn = pt

where each map Xk → Xk+1 for k ∈ [ωn − 1] is a fibration with fiber isomorphic to a
product of Grassmannians of subspaces.

This result is a special case of [34, Theorem 3.21] and generalizes [12, Theorem 7.10].

2.6 Properties of the desingularization

Lemma 2.20 (c.f. [34, Theorem 5.5]) For I ∈ ([n]
k

)
the T -fixed points of X̂ I (k, n, ω) are

exactly the preimages of the T -fixed points of X I (k, n, ω) ⊂ X(k, n, ω) under πI (where
X I (k, n, ω) := SUI ). TheC

∗-attracting sets of these points provide a cellular decomposition
of X̂ I (k, n, ω).

Proposition 2.21 The automorphism group of Ûωn satisfies

Aut
�̂n

(
Ûωn

) ∼= Aut�n

(
Uωn

)
.

Proof From the compositions βi+1,2 ◦ αi,1 for all i ∈ Zn we obtain the same relations on
each matrix A(i,1) of A ∈ Aut

�̂n
(Ûωn) as for the matrix B(i) of B ∈ Aut�n (Uωn) (see

Proposition 2.10). Now it follows from the construction of Ûωn that all other components
A(i,r) are the lower diagonal blocks of size ωn − r + 1 in the matrices A(i,1). This implies
the desired isomorphism. ��
Lemma 2.22 The strata in the quiver Grassmannian X̂ I (k, n, ω) are exactly the Aut

�̂n

(
Ûωn

)

orbits of the T -fixed points and coincide with their C
∗-attracting sets.

Proof The representation Ûωn is an injective bounded �̂n representation. Hencewe can apply
[32, Lemma 2.28], to conclude that all strata are Aut

�̂n

(
Ûωn

)
orbits and vice versa. It follows

from the explicit description of the T -fixed points of X̂ I (k, n, ω) from Lemma 2.20 that
they are pairwise isomorphic. This implies that each Aut

�̂n

(
Ûωn

)
orbit contains exactly one

T -fixed point. Hence it has to coincide with the C
∗-attracting set of that fixed point. ��

3 Moment graph and cohomology

3.1 Moment graph

There is a combinatorial object called moment graph which captures the structure of fixed
points and one-dimensional orbits for suitable torus actions on complex projective varieties.
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The structure of this graph helps to understand the equivariant geometry of the variety. Before
we describe it for X(k, n, ω) we recall the definition and some required terminology.

Let X be complex projective algebraic variety X acted upon by a torus T with finitely
many fixed points and finitely many one-dimensional T orbits (i.e. the action is skeletal). The
definition below is specialized to the setting that X admits a T -stable cellular decomposition
(as in our case).

Definition 3.1 Let T be an algebraic torus and let X be a complex projective algebraic T -
variety. Assume that X admits a T -stable cellular decomposition where every cell has exactly
one fixed point. If the action of T on X is skeletal, then the corresponding moment graph
G(X , T ) is given by

• the vertex set is the fixed point set: V = XT ;
• there is an edge x → y if and only if x and y belong to the same one dimensional T orbit

closure Ox→y and y belongs to the closure of the cell containing x ;
• the label of the edge x → y is the character α ∈ Hom(T , C

∗) the torus acts by onOx→y .

The edge labels are only well defined up to a sign, but since this does not play any role in
the applications (e.g. computation of equivariant cohomology), we assume the labels to be
fixed once and for all, and forget about this ambiguity.

The following parametrization of the T -fixed points of X(k, n, ω) helps to describe the
structure of the one-dimensional T -orbits.

Proposition 3.2 For k, n, ω ∈ N with k ≤ n, there is a bijection between J ug(k, n, ω) and

Ck,n,ω :=
{
(� j ) j∈Zn ∈ [0, ωn]Zn : dim

⊕

j∈Zn

U j (� j ) = (kω, . . . , kω) ∈ N
Zn
}
.

Proof Let ϕ : J ug(k, n, ω) → Ck,n,ω send J• = (Ji )i∈Zn to �• = (� j ) j∈Zn with

� j := max
({r ∈ [ωn] : ωn − r + 1 ∈ J j−r+1} ∪ {0}).

It follows immediately from the definition of U�• := ⊕
j∈Zn

U j (� j ) that dimU�• =
(kω, . . . , kω) since each Ji contains kω-many elements.

The inverse map ϕ−1 : Ck,n,ω → J ug(k, n, ω) sends �• to J• where for each � j �= 0 and
s ∈ [� j ] the set J j−s+1 contains the element ωn − s + 1. Clearly, the � j ’s contribute to each
Ji exactly kω-many times since dimU�• = (kω, . . . , kω). ��
Example 3.3 For k = 1, n = ω = 2, X(k, n, ω) has five T = (C∗)2+1-fixed points labeled
by the tuples (2, 2), (3, 1), (1, 3), (4, 0), and (0, 4).

Now we describe certain cut and paste moves on the segments of the elements in Ck,n,ω. For
every element �• ∈ Ck,n,ω there are maps of the form fi, j,r : Ck,n,ω → Ck,n,ω with

(
fi, j,r

(
�•
))

s
:=

⎧
⎪⎨

⎪⎩

�s s /∈ {i, j}
�i − r s = i

� j + r s = j

.

whenever r ∈ [0,min{�i , ωn − � j }] and i − �i = j − � j − r mod n. It is straightforward
to check that fi, j,r

(
�•
)
is again an element of Ck,n,ω. These cut and paste moves describe all

one-dimensional T -orbits.
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Lemma 3.4 The vertices of the moment graph for the action of the torus T on X(k, n, ω) are
labelled by the elements of Ck,n,ω. There is an oriented edge in the moment graph from �• to
fi, j,r

(
�•
)
if and only if �i > � j +r . The label of the edge �• → fi, j,r

(
�•
)
is ε j −εi +δ ·(�i −

� j − r), where δ(γ ) := γ0 and εi (γ ) := γi for any i ∈ [n] and γ = (γ0, γ1, . . . , γn) ∈ T .

Proof This is a special case of the description of the edges in the moment graph and their
labels as given in [22, Theorem 6.15], translated to the description of the T -fixed points from
Proposition 3.2. ��

Example 3.5 The one-dimensional T -orbits between the T -fixed points from Example 3.3
are captured in the following graph:

with labels:

=̂ ε2 − ε1 + δ

=̂ ε1 − ε2 + δ

=̂ ε2 − ε1 + 3δ

=̂ ε1 − ε2 + 3δ(2, 2)

(3, 1)(1, 3)

(4, 0)(0, 4)

Observe that there is no edge between (4, 0) and (0, 4) because 1 �= 2 mod 2. For the same
reason there can’t be an edge between (3, 1) and (1, 3), and (4, 0) or (0, 4) and (2, 2). The
label of the edge (4, 0) → (1, 3) is ε2 − ε1 + δ, since (1, 3) = f1,2,3(4, 0). All other labels
are computed in the same way.

3.2 T-equivariant cohomology

By [22, Theorem 6.6], we can use the structure of the moment graph G as described in
Lemma 3.4 to compute the (T -equivariant) cohomology ring of X := X(k, n, ω). Let R :=
Q[ε1, . . . , εn, δ] and consider it as a Z-graded ring with grading induced by deg(εi ) =
deg(δ) = 2 for all i ∈ [n]. By α(�•, �′•) we denote the label of the edge �• → �′•. [13,
Theorem 1.2.2] gives the following result.

Corollary 3.6 There is an isomorphism of (Z-graded) rings

H•
T

(
X , Q

) �
⎧
⎨

⎩
(
z�•
)
�•∈C(k,n,ω)

∈
⊕

�•∈C(k,n,ω)

R

∣∣∣∣
z�• ≡ z�′• mod α(�•, �′•)
for every edge �• → �′•

⎫
⎬

⎭
.

Remark 3.7 By [23, Theorem 3.22], H•
T (X(k, n, ω), Q) admits a very nice basis as a free

module over R, namely a so-called Knutson–Tao (KT) basis. We briefly recall the definition
(see [40, Definition 2.12]). A Knutson–Tao class for a torus fixed point x ∈ XT is an
equivariant class px = (pxy )y∈XT ∈ H•

T (X) such that: first, pxx = ∏
α(x, y) for all edges

x → y from the moment graph; second, each pyx is a homogeneous polynomial inQ[T ] such
that the degrees of pxx and of pyx coincide; third, pyx = 0 for y ∈ XT such that x cannot be
reached from y via an oriented path on the graph.

Example 3.8 For instance, in the case the moment graph is the one from Example 3.5, if we
denote by α = ε1 − ε2, the KT classes are the following:
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ξ(0,4) =

0

0 0

0(α + δ)(α + 3δ)

ξ(4,0) =

0

0 0

0 (−α + δ)(−α + 3δ)

ξ(1,3) =

0

0α + δ

−α + 3δα + δ

ξ(3,1) =

0

0 −α + δ

α + 3δ −α + δ

ξ(2,2) =

1

11

11

Above the equivariant cohomology class (z�•)�•∈C(k,n,ω) is represented by a collection of
polynomials arranged on the corresponding vertices of the moment graph (with z�• on the
vertex �•).

3.3 Cyclic group action on equivariant cohomology

Consider the Zn action on T given by

m · (γ0, γ1, . . . , γn) = (γ0, γ1+m, . . . , γn+m), (m ∈ Zn, γ ∈ T ).

Such an action induces aZn action on the character latticeX∗(T ) viam ·α(γ ) = α((−m) ·γ )

for any m ∈ Zn, α ∈ X∗(T ), γ ∈ T . In this way we also get a Zn action on R, uniquely
determined by m(εi ) = εi−m and m(δ) = δ for any m, i ∈ Zn .

Clearly, the set Ck,n,ω is also equipped with a Zn action given bym · (� j ) j∈Zn = (�′
j ) j∈Zn ,

where �′
j = � j−m .

Proposition 3.9 There is an action of Zn on H•
T (X(k, n, ω), Q) given by

m · (z�•
)
�•∈C(k,n,ω)

= (
z′�•
)
�•∈C(k,n,ω)

,

where m ∈ Zn, (z�•) ∈ H•
T (X(k, n, ω), Q), and z′�• = m(zm·�•).

Proof Let (z�•) ∈ H•
T (X(k, n, ω), Q) and m ∈ Zn . We have to check that for any �• ∈

C(k, n, ω) and any triple i, j, r such that fi, j,r (�•) is well defined, the following holds

mzm·�• ≡ mzm· fi, j,r �• mod α�•, fi, j,r �• = ε j − εi + (�i − � j − r)δ.

Observe that

m · fi, j,r (�•)s =

⎧
⎪⎨

⎪⎩

�s−m s /∈ {i + m, j + m}
�s−m − r s = i + m

�s−m + r s = j + m

= fi+m, j+m,r (m · �•)s .

Thus, since (z�•) ∈ H•
T (X(k, n, ω), Q), we have

zm·�• ≡ zm· fi, j,r �• mod ε j+m − εi+m + (�i − � j − r)δ.
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We conclude that

mzm·�• ≡ mzm· fi, j,r �• mod m(ε j+m − εi+m+(�i − � j − r)δ)=ε j − εi+(�i−� j − r)δ.

��
Example 3.10 In terms of the KT classes from Example 3.8, the Z2 action is uniquely deter-
mined by

σ · ξ(2,2) = ξ(2,2), σ · ξ(3,1) = ξ(1,3), σ · ξ(4,0) = ξ(0,4),

where σ is the generator of Z2.
Let P denote Z2 representation given by the space R equipped with the action introduced

above. As a Z2 representation, the equivariant cohomology decomposes as

H•
T (X(1, 2, 2)) � Pξ(2,2) ⊕ P(ξ(3,1) + ξ(1,3)) ⊕ P(ξ(4,0) + ξ(0,4))

⊕ P(ξ(3,1) − ξ(1,3)) ⊕ P(ξ(4,0) − ξ(0,4))

� 10 ⊗ P ⊕ 12 ⊗ P ⊕ 14 ⊗ P ⊕ ε2 ⊗ P ⊕ ε4 ⊗ P,

where 1 j and ε j represent the one dimensional representation concentrated in degree j , on
which 1 ∈ Z2 acts via multiplication by 1 and -1, respectively (we recall that the cohomo-
logical degree of a cocharacter is 2).

Remark 3.11 It would be interesting to investigate the structure of Zn representation on
H•
T (X(k, n, ω), Q) in general.

4 Poset structures on the set of fixed points

4.1 Affine permutations, Grassmann necklaces and juggling patterns

In this subsection we briefly recall several combinatorial objects playing an important role
in the theory of tnn Grassmannians. The details can be found in [19, 21, 36, 41].

Let Sk,n be the set of (k, n) affine permutations, i.e. Sk,n consists of bijections f : Z → Z

such that f (i + n) = f (i) + n for all i ∈ Z and
∑n

i=1( f (i) − i) = kn. We denote by
idk ∈ Sk,n the permutation given by idk( j) = j + k for all j ∈ Z. In particular, (0, n)

affine permutations form a group Wn isomorphic to the Weyl group of the affine type A(1)
n−1.

The group Wn acts on Sk,n by left multiplication. In particular, the map w �→ widk gives a
bijection Wn → Sk,n . Hence the Bruhat order on Wn induces an order on the set of affine
permutations.

A (k, n) affine permutation is called bounded if i ≤ f (i) ≤ i + n for all i ∈ Z. The set of
bounded (k, n) affine permutations is denoted by Bk,n . The following fact will be important
for us:

Bk,n is a lower order ideal in Sk,n � Wn . (4.1)

A collection I = (Ia)a∈[n] of subsets of the set [n] is called a (k, n) Grassmann necklace
if |Ia | = k for all a and Ia ⊂ Ia+1 ∪ {a} for all a ∈ [n] (for a = n we put Ia+1 = I1). We
denote the set of (k, n) Grassmann necklaces by GN k,n . The bijection between GN k,n and
Bk,n is given by the following rule. For I ∈ GN k,n the corresponding f ∈ Bk,n fixes all a
such that a /∈ Ia . If a ∈ Ia , then Ia+1 = Ia\{a}∪{b}; we put f (a) = c, where a < c ≤ a+n
and b = c modulo n.
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Example 4.1 For a subset I ⊂ [n], |I | = k we have a Grassmann necklace I = (I , . . . , I ).
The bounded (k, n) affine permutation f I corresponding to I is determined by f I (a) ={
a, a /∈ I ,

a + n, a ∈ I
.

We denote by wI ∈ Wn the Weyl group element corresponding to f I under the identifi-
cation Wn � Sk,n .

Juggling patterns are close cousins of the Grassmann necklaces. By definition, a collection
J = (J1, . . . , Jn) of k-element subsets of [n] is a (k, n) juggling pattern if τ1(Ja\{n}) ⊂ Ja+1

for all a ∈ [n], where τ1(x) = x + 1. Let J ug(k, n) be the set of (k, n) juggling patterns.
Then there is a bijection between J ug(k, n) and Bk,n given by the following rule. For a
juggling pattern J = (Ja)na=1 the corresponding element fJ ∈ B(k, n) is defined by

fJ (a) =
{
a, n /∈ Ja,

n + a + 1 − x, n ∈ Ja, Ja+1 = τ1(Ja\{n}) ∪ {x}. (4.2)

4.2 Generalized bounded affine permutations

As shown in [12, Section 1], there is a bijection between cells of X(k, n, 1), juggling patterns
and bounded affine permutations. Now, we introduce generalized bounded affine permuta-
tionswhich are in bijectionwith generalized juggling patterns. This gives rise to an alternative
way to parameterize the T -fixed points of X(k, n, ω).

Definition 4.2 For k, n, ω ∈ N with k ≤ n, a (k, n, ω) bounded affine permutation is a
bijection f : Z → Z satisfying the following properties:

(1) f (i + n) = f (i) + n for all i ∈ Z,
(2)

∑n
i=1( f (i) − i) = knω,

(3) i ≤ f (i) ≤ i + ωn for all i ∈ Z.

The set of (k, n, ω) bounded affine permutations is denoted by Bk,n,ω.

Here,Condition (1) is the same as for the (k, n)bounded affine permutations fromSect. 4.1.
For ω = 1 Condition (2) and (3) are the same as in Sect. 4.1. Without condition (3) we say
f is a (k · ω, n) affine permutation. This definition is valid for all q ∈ Z, not only q = ωk.
Recall the notation Sq,n for the set of all (q, n) affine permutations.

There is a special (q, n) affine permutation idq given by idk(i) = i + q . In the setting
q = kω this is a (k, n, ω) bounded affine permutation. Without dependence on ω, the length
of an affine permutation is defined as

l( f ) = |{(i, j) ∈ [n] × Z : i < j and f (i) > f ( j)}|.
We note that the set of (0, n) affine permutations is a group isomorphic to the affine Weyl
group Wn of type A(1)

n−1. For general q the group Wn acts freely and transitively on Sq,n ,
because we can write q = rn + k with 0 ≤ k < n and use the same arguments as for Sk,n .
The action of the permutation si = (i, i +1) ∈ Wn , for i = 0, . . . , n−1 permutes the values
f (i + rn) and f (i + rn + 1) for all r ∈ Z. This allows to identify the set of Sq,n with Wn

by sending w ∈ Wn to w.idq . Hence we obtain an induced order ≤ on the set Sq,n coming
from the Bruhat order on Wn . Thus, the unique minimal element is idq .

It is shown in [19, Lemma 3.6] that Bk,n,1 is a lower order ideal in Sk,n . With the same
arguments it follows that Bk,n,ω is a lower order ideal in Sk·ω,n ∼= Wn . For f , g ∈ Bk,n,ω we
write f ≤B g for the order induced by the Bruhat order on Wn .
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By [21, Theorem 6.2], there is an order preserving bijection between the set Bk,n,1 and
the set J ug(k, n, 1). Before generalizing this to arbitrary ω, we introduce an alternative
parametrization of theT -fixedpoints of X(k, n, ω)which is closer to the definition of bounded
affine permutations.

Proposition 4.3 For k, n, ω ∈ N with k ≤ n, there is a bijection between J ug(k, n, ω) and
{
(� j ) j∈Zn ∈ [0, ωn]Zn

∑

j∈Zn

� j = knω,
{
j + � j mod n : j ∈ Zn

} = Zn

}
.

Proof By Proposition 3.2 we have to show that for �• ∈ [0, ωn]Zn the following are equiva-
lent:

(1) dimU�• = (kω, . . . , kω) ∈ N
Zn ,

(2)
∑

j∈Zn

� j = knω and
{
j + � j mod n : j ∈ Zn

} = Zn .

The length tuple z• with z j = kω for all j ∈ Zn satisfies (1) and (2). It represents the
unique zero-dimensional cell C0 of X(k, n, ω) (since the corresponding point is the span of
the last kω basis vectors at each vertex) and C0 is contained in the closure of every other
cell of X(k, n, ω). Hence, by [22, Theorem 6.15] every other �• ∈ Ck,n,ω is obtained from
z• by a sequence of cut and paste moves fi, j,r : Ck,n,ω → Ck,n,ω. These moves preserve the
properties (1) and (2). Hence (1) implies (2).

The second part of (2) implies that dimU�• = (L/n, . . . , L/n) where L = ∑
j∈Zn

� j .
Together with the first part of (2) this implies (1). ��
Lemma 4.4 For k, n, ω ∈ N with k ≤ n, there are bijections between J ug(k, n, ω),
C(k, n, ω) and Bk,n,ω.

Proof Proposition 3.2 gives the first bijection. We define the map ψ : C(k, n, ω) → Bk,n,ω

sending �• to the map f : Z → Zwith f ( j ′) := j ′ +� j for all j ′ ∈ Zwith j ′ = j mod n. It
follows from the second parametrization of cells from Proposition 4.3 that this f is bijective
and satisfies part (2) of Definition 4.2. � j ∈ [0, ωn] implies part (3) of that definition. The
inverse map ψ−1 sends f to ( f ( j) − j) j∈Zn . ��

4.3 Partial orders on the set of cells

In this section we introduce partial orders on the sets J ug(k, n, ω), C(k, n, ω) and Bk,n,ω

and examine how they are related under the bijections from Lemma 4.4.
ForJ•,J ′• ∈ J ug(k, n, ω)wewriteJ• ≥J J ′• iff j

(i)
r ≤ j ′(i)r for all i ∈ Zn and r ∈ [kω]

where we order each Ji ∈ ([nω]
kω

)
as

(
j (i)1 < j (i)2 < . . . < j (i)kω

)
.

Given two elements �•, �′• ∈ C(k, n, ω) we write �• ≥C �′• if there exists an oriented path
from �• to �′• in the moment graph for the T -action on X(k, n, ω). For p, p′ ∈ X(k, n, ω)T

we write p′ � p if Cp contains p′. By Theorem 2.13 we obtain the same partial order �
if we consider closures of Aut�n (Uωn)-orbits or strata. Recall that the partial order ≥B on
Bk,n,ω is induced by the Bruhat order on Wn .
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Example 4.5 For the T -fixed points from Example 3.3, the bijections from Lemma 4.4 are as
follows:

(2, 2) ←→ ({3, 4}, {3, 4}) ←→ f with f (1) := 1 + 2, f (2) := 2 + 2,

(3, 1) ←→ ({2, 4}, {3, 4}) ←→ f with f (1) := 1 + 3, f (2) := 2 + 1,

(1, 3) ←→ ({3, 4}, {2, 4}) ←→ f with f (1) := 1 + 1, f (2) := 2 + 3,

(4, 0) ←→ ({2, 4}, {1, 3}) ←→ f with f (1) := 1 + 4, f (2) := 2 + 0,

(0, 4) ←→ ({1, 3}, {2, 4}) ←→ f with f (1) := 1 + 0, f (2) := 2 + 4.

and all poset structures are the same as the one induced by Example 3.5.

The next theorem shows that this identification of poset structures was no coincidence.

Theorem 4.6 For k, n, ω ∈ N with k ≤ n, there are order preserving poset isomorphisms
between J ug(k, n, ω), C(k, n, ω), X(k, n, ω)T and Bk,n,ω.

Corollary 4.7 The closure of every cell in X(k, n, ω) is obtained as

CJ =
⋃

J ′∈J ug(k,n,ω) s.t.: J ′≤JJ
CJ ′ .

Moreover the moment graph of CJ is the full subgraph of the graph described in Lemma 3.4
on the vertices corresponding to J ′ ≤J J . The dimension of CJ is the number of edges in
the moment graph starting at J . This equals the length of the corresponding bounded affine
permutation.

Proof The description of the closure is obtained from Theorem 4.6 in combination with
Remark 2.15. Hence the moment graph of the cell closure is the full subgraph on the vertices
which are smaller with respect to any of the partial orders. Finally the dimension formula is
obtained from the embedding into the affine flag variety as described in Sect. 6. ��

Below, we relate the poset structures of the cells and generalized juggling patterns. The
relation to affine permutations is examined in Sect. 6.

Proof of Theorem 4.6 (≤J ⇐⇒ ≤C ⇐⇒ �) The isomorphisms on the level of sets were
introduced in Lemma 4.4 and Lemma 2.8. It remains to show that they preserve the poset
structures. The partial order≤C on C(k, n, ω) is obtained from the edges in the moment graph
as described in Lemma 3.4. The property �i > � j + r of the cut and paste moves implies
that ϕ−1(�•) ≥J ϕ−1( fi, j,k(�•)) where ϕ is the map from Proposition 3.2. Hence �• ≥C �′•
implies ϕ−1(�•) ≥J ϕ−1(�′•) for all �•, �′• ∈ C(k, n, ω).

Starting with J•,J ′• ∈ J ug(k, n, ω) such that J• ≥J J ′• we construct a path from
�• := ϕ(J•) to �′• := ϕ(J ′•) in the moment graph inductively: Let d := #{i ∈ Zn : Ji �= J ′

i }.
For d = 0 both juggling patterns are equal and there is nothing to show. If d > 0 there exists
an s ∈ Zn such that Js �= J ′

s and an r ∈ [ωk] such that j (s)p = j ′(s)p for all p ∈ [r + 1, ωk]
and j (s)r < j ′(s)r . Here we assume that the sets belonging to the juggling patterns are ordered
increasingly as introduced in the beginning of Sect. 4.3. Now, we determine a path �• → �′′•
in the moment graph with ϕ−1(�′′•) =: J ′′• ≥J J ′• and d > #{i ∈ Zn : J ′′

i �= J ′
i }.

The points j (s)r and j ′(s)r live on two different indecomposable summands of the rep-
resentation Uωn indexed by a, b ∈ Zn which are obtained from J•,J ′• by the map ϕ as
described in the proof of Proposition 3.2. This gives rise to the cut and paste map fa,b,r

123



53 Page 16 of 26 E. Feigin et al.

where r := b − a + �a − �b. By construction it follows that �• >C fa,b,r (�•) and
ϕ−1( fa,b,r (�•)) ≥J J ′•. We can apply this construction of an edge in the moment graph
recursively until we reach a point �′′• with ϕ−1(�′′•) =: J ′′• ≥J J ′• and J ′′

s = J ′
s . This implies

d > #{i ∈ Zn : J ′′
i �= J ′

i } and finishes the inductive step. Hence the partial orders ≤J and
≤C are equivalent.

With the explicit description of the cells as attracting sets of the fixed points, it is straight-
forward to check that for p, p′ ∈ X(k, n, ω)T the moment graph contains a path from p
to p′ if and only if Cp contains p′. This implies the equivalence of the partial orders ≤C
and �. ��

4.4 Poincaré polynomials

The Poincaré polynomial of the quiver Grassmannian X(k, n, ω) is obtained as

Pk,n,ω(q) =
∑

p∈X(k,n,ω)T

qdimC Cp .

From the computations in the previous section we obtain the following formula

Lemma 4.8 For k, n, ω ∈ N with k ≤ n, the Poincaré polynomial of X(k, n, ω) is

Pk,n,ω(q) =
∑

f ∈Bk,n,ω

ql( f ).

Here l( f ) denotes the length of the bounded affine permutation f as defined in Sect.4.2.

Proof This follows immediately from Corollary 4.7. ��

5 Affine flag varieties

In this section we recall some basics from the theory of affine flag varieties in type A and
Sato Grassmannians [11, 20, 33]. We use this material in the next section for the explicit
construction of the embeddings of the quiver Grassmannians X(k, n, ω) into the affine flag
varieties.

5.1 Notation

Let ŝln denote the affine Kac–Moody Lie algebra of type A(1)
n−1. Explicitly, ŝln = sln ⊗

C[t, t−1] ⊕ CK ⊕ Cd , where K is central and d is the derivation. Let us fix a Cartan
decomposition sln = n ⊕ h ⊕ n− and the Borel subalgebra b = n ⊕ h. Then the Iwahori
subalgebra of ŝln is given by b ⊗ 1 ⊕ sln ⊗ tC[t].

We denote the Weyl group of ŝln byWn . For n = 2 the Weyl group is generated by s0 and
s1 subject to the relations s20 = s21 = e. For n > 2 the group Wn is generated by reflections
s0, s1, . . . , sn−1 subject to the defining relations

s2i = e, i = 0, . . . , n − 1, si s j = s j si , |i − j | > 1,

si si+1si = si+1si si+1, i = 0, . . . , n − 1
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(here and below we set sn = s0). The group Wn can be also realized as the group of (0, n)

affine permutations, i.e. bijections f : Z → Z subject to the conditions f (i + n) = f (i)+ n
for all i and

∑n
i=1( f (i) − i) = 0.

Let ŜLn be the affine group with the Lie algebra ŝln . This group contains the finite torus
exp(h) and the two-dimensional torus (C∗)2 = exp(CK ⊕ Cd). We denote by Pi ⊂ ŜLn ,
i = 0, . . . , n − 1 the maximal parabolic subgroups. Then the affine Grassmannians are
defined as the quotients ŜLn/Pi .

Let B ⊂ ŜLn be the Iwahori subgroup. More precisely, B consists of matrices A(t) ∈
SLn(C[t]) ⊂ ŜLn such that A(0) is upper triangular. In particular, the Lie algebra of B is
b ⊗ 1 ⊕ sln ⊗ tC[t]

LetAFn � ŜLn/B be the affineflag variety for the group ŜLn . One has the natural embed-
ding of the affine flag variety into the product of affineGrassmanniansAFn ⊂ ∏n−1

i=0 ŜLn/Pi .

We note that the fixed points of AFn with respect to the torus of ŜLn are labeled by the ele-
ments of the group Wn . For w ∈ Wn let pw ∈ AFn be the corresponding torus fixed point.

The affine flag variety is an ind-variety, i.e. the inductive limit of finite-dimensional pro-
jective algebraic varieties. Namely, for an element w ∈ Wn we denote the corresponding
(finite-dimensional) affine Schubert varietyB.pw by Xw . Then AFn = ⋃

w∈Wn
Xw .

5.2 Sato Grassmannians

The affine Grassmannians enjoy explicit embeddings to the Sato Grassmannians. Hence the
affine flag variety can be realized inside the product of Sato Grassmannians. We provide
some details below.

The Sato Grassmannian SGr(i), i ∈ Z consists of subspaces V ⊂ C[t, t−1] such that

• t NC[t−1] ⊃ V ⊃ t−N
C[t−1] for some N ∈ Z>0,

• dim V /t−N
C[t−1] = i + N .

For example, the subspace
◦
V (i) = span{t j : j ≤ i} belongs to SGr(i).

Remark 5.1 We opt to use C[t−1] instead of C[t] to make notation compatible with our
notation for the affine groups and Lie algebras.

Sato Grassmannians are ind varieties (in particular, they can be realized as inductive
limits of finite-dimensional Grassmann varieties). They enjoy a Plücker embedding into the
projective space F = �∞/2(C[t, t−1]) of semi-infinite forms. The space F is spanned by
infinite wedge products

t L = t l1 ∧ t l2 ∧ . . . , L = (l1, l2, . . . ),

where l1 > l2 > . . . and ls+1 = ls −1 for s large enough. One has the charge decomposition
F = ⊕

i∈Z F (i), where F (i) is spanned by wedges t L such that ls = i − s + 1 for s large
enough. Then one has the Plücker embedding SGr(i) ↪→ P(F (i)).

Remark 5.2 Let |i〉 ∈ F (i) be the charge i vacuum vector, explicitly given by |i〉 = t i ∧
t i−1 ∧ . . . . Then the image of the space

◦
V (i) ∈ SGr(i) inside P(F (i)) coincides with the

line containing |i〉. We also note that each space F (i) is endowed with the action of the
infinite-dimensional Heisenberg algebra. As a module over the Heisenberg algebra F (i) is
isomorphic to a Fock module.
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The affine flag variety AFn is realized inside the product
∏

i∈Z SGr(i) as the set of col-
lections (Vi )i∈Z such that

• Vi ⊂ Vi+1,
• Vi+n = tnVi .

In particular, the collection (
◦
V (i))i corresponds to the coset of the identity inAFn � ŜLn/B.

Remark 5.3 Given an element w ∈ Wn the corresponding torus fixed point pw ∈ AFn is
given by

∏

i∈Z
span(tw( j), j ≤ i) ∈

∏

i∈Z
SGr(i).

6 Quiver Grassmannians inside affine flags

The goal of this section is to construct explicitly the embedding of the quiver Grassmannians
X(k, n, ω) into the affine flag varieties. The image is described as a union of certain Schubert
varieties. We note that due to the identification of our quiver Grassmannians with the local
models of Shimura varieties (c.f. Remark 2.3) such an embedding can be found e.g. in [16,
28]. Our goal in this section is to construct the embedding explicitly in the language of quiver
Grassmannians and Sato Grassmannians and to label the Schubert varieties showing up in
the image via generalized juggling patterns and bounded affine permutations.

6.1 The construction

By definition, the quiver Grassmannian X(k, n, ω) sits inside the product
∏n−1

i=0 Grkω(M (i)),

where M (i) are nω-dimensional vector spaces with bases v
(i)
j , j ∈ [nω] (here we identify

Z/nZ with the set 0, . . . , n − 1). Using the Plücker embeddings for Grkω(M (i)) we obtain
the embedding

X(k, n, ω) ⊂
n−1∏

i=0

P(�kω(M (i))) (6.1)

Now let us construct the embeddings �(i) : Grkω(M (i)) ↪→ SGr(i). We define the map
ψ(i) : M (i) → C[t, t−1] by the formula

ψ(i)v
(i)
nω+1− j = t i−kω+ j , j ∈ [nω]. (6.2)

In particular, the image of ψ(i) is spanned by t i−kω+1, . . . , t i−kω+nω.

Remark 6.1 Let us briefly explain the shifts of indices showing up in (6.2) (the details are
given in the proofs below). Recall the map τ1 defined by v

(i)
j �→ v

(i+1)
j+1 . The subscript

nω + 1− j in the left hand side and the power i − kω + j are chosen in such a way that the
map τ1 induces the identity map when translated toC[t, t−1]. We also note that the term−kω
in the power of t in the right hand side guaranties that the induced map �kω(M (i)) → F ,
defined by

span{w1, . . . , wkω} �→ w1 ∧ · · · ∧ wkω ∧ |i − kω〉,
lands in the subspace F (i) of the charge i forms.
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Now the maps �(i) are defined as follows:

�(i)(U (i)) = ψ(i)U (i) ⊕ span{t j : j ≤ i − kω}. (6.3)

The following lemma is obvious.

Lemma 6.2 The image �(i)Grkω(M (i)) belongs to SGr(i).

Using the maps �(i) one obtains the embedding

� : X(k, n, ω) →
∏

i∈Z
SGr(i). (6.4)

Tobeprecise,�(X(k, n, ω)) sits inside the product
∏n−1

i=0 SGr(i).Weconsider a larger product∏
i∈Z SGr(i) for all integers i via the obvious extension rule M (i+n) = M (i), Grkω(M (i)) =

Grkω(M (i+n)). This gives the desired realization (6.4).

Remark 6.3 Let us consider the point
◦
U = (

◦
U (i))i∈Z defined by

◦
U (i) = span{v(i)

j , (n −
k)ω + 1 ≤ j ≤ nω}. Then clearly

◦
U ∈ X(k, n, ω) and �

◦
U is the line passing through the

product of highest weight vectors |i〉.
Recall the embeddingsAFn ⊂ ∏

i∈Z SGr(i) ⊂ ∏
i∈Z P(F (i)) fromSect. 5. Inwhat follows

we identify the affine flag variety with its image inside the product of Sato Grassmannians.

Lemma 6.4 The image of � belongs to AFn.

Proof Let U = (U (i))i∈Z be a point in X(k, n, ω) (recall that we use the extension U (i) =
U (i+n) inside M (i) = M (i+n)). We have to show that

• �(i)U (i) ⊂ �(i+1)U (i+1),
• �(i+n)U (i+n) = tn�(i)U (i).

By definition,

ψ(i+n) = tnψ(i) and span{t j : j ≤ i + n − kω} = tnspan{t j : j ≤ i − kω}.
Hence the second property �(i+n)U (i+n) = tn�(i)U (i) holds.

To prove the first property we need to show that

ψ(i)U (i) ⊕ span{t j : j ≤ i − kω} ⊂ ψ(i+1)U (i+1) ⊕ span{t j : j ≤ i + 1 − kω}.
Clearly it suffices to show that

ψ(i)U (i) ⊂ ψ(i+1)U (i+1) ⊕ span{t j : j ≤ i + 1 − kω}. (6.5)

Recall that τ1U (i) ⊂ U (i+1), where τ1v
(i)
j = v

(i+1)
j+1 unless j = nω and τ1v

(i)
nω = 0. For a

vector u = ∑nω
j=1 r jv

(i)
nω+1− j ∈ U (i) one has:

ψ(i)u =
nω∑

j=1

r j t
i−kω+ j , ψ(i+1)(τ1u) =

nω∑

j=2

r j t
i−kω+ j .

Since τ1u ∈ U (i+1) we obtain (6.5). ��

123



53 Page 20 of 26 E. Feigin et al.

6.2 Description of the image

Now our goal is to identify the image �X(k, n, ω) inside the affine flag variety. Recall (see
Theorems 2.11 and 2.13) that X(k, n, ω) has

(n
k

)
irreducible components XI (k, n, ω) labeled

by the cardinality k subsets I ⊂ [n]. Each irreducible component is a closure of a cell CI

containing a unique torus fixed point pI . The cellCI is equal to the Aut�n (Unω) orbit passing
through pI . Our goal here is two-fold. First, we show that after the embedding of X(k, n, ω)

into the affine flag variety the action of the automorphism group translates into the action
of the Iwahori subgroup B. Second, we compute the images � pI of the torus fixed points,
i.e. we find the affine Weyl group elements w(I ) such that � pI = pw(I ). As a corollary we
conclude that the embedding � realizes the quiver Grassmannian X(k, n, ω) as the union of
the Schubert varieties Xw(I ) inside the affine flag variety AFn .

Lemma 6.5 The point pI is determined by the condition v
(i)
1 ∈ p(i)

I for all i ∈ I .

Proof Wenote that, since τ1U (i) ⊂ U (i+1) for any pointU ∈ X(k, n, ω)withU = (U (i))i∈Z,
the condition v

(i)
1 ∈ p(i)

I for i ∈ I says that

p(i0)
I � v

(i0)
1+(i0−i)+nr for all i ∈ I , i ≤ i0 and r = 0, . . . , ω − 1,

p(i0)
I � v

(i0)
1+(i−i0)+n(r+1) for all i ∈ I , i > i0 and r = 0, . . . , ω − 1.

Hence for each pair i ∈ I , r = 0, . . . , ω − 1 we obtain a basis vector in U (i0). Since |I | = k
and dimU (i0) = kω we obtain the desired claim. ��
Remark 6.6 One easily sees that a point pI as above does not belong to the closure of the
Aut�n (Unω) orbit of any other torus fixed point. In fact, the explicit form of the automorphism
group elements from Proposition 2.10 shows that if pI ∈ Aut�n (Unω).p for a torus fixed

point p, then p(i) � v
(i)
1 , which implies p = pI . We conclude that the closure of the the orbit

Aut�n (Unω)pI is an irreducible component for any I .

Remark 6.7 The (ω-generalized) juggling pattern (J1, . . . , Jn) corresponding to the point pI
is given by

Ji0 ={1 + (i0 − i) + n(r − 1), i ∈ I , i ≤ i0, r ∈ [ω]}
∪ {1 + (i − i0) + nr , i ∈ I , i > i0, r ∈ [ω]}

for all i0 ∈ [n].
For I ∈ ([n]

k

)
we denote by w(I ) ∈ Wn the Weyl group element such that � pI = pw(I ).

Corollary 6.8 The element w(I ) ∈ Wn is defined by

w(I ) : i �→
{
i − kω, i /∈ I ,

i − kω + nω, i ∈ I

for all i = 1, . . . , n.

Proof Let pI = (U (i))i∈[n]. Then one has U (i) = span{v(i)
j : j ∈ Ri } for certain subsets

Ri ⊂ [ωn]. We note that the following holds true:

Ri =
{

{a + 1, a ∈ Ri−1}, i /∈ I ,

{a + 1, a ∈ Ri−1, a �= ωn} ∪ {1}, i ∈ I .
(6.6)
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Now let � pI = (� pI )i (i ∈ Z). Then each space (� pI )i is a vector space spanned by
the elements ta , a ∈ Si for a subset Si ⊂ Z. By definition w(I )(i) = Si\Si−1 (see Remarks
5.3). Formulas (6.2) and (6.3) say that

Si = {i − kω + nω + 1 − r , r ∈ Ri } ∪ Z≤i−kω.

Taking into account equality (6.6) we obtain

Si\Si−1 =
{
i − kω, i /∈ I ,

i − kω + nω, i ∈ I
.

��
Remark 6.9 Since |I | = k, one has

∑
i∈[n](w(I )(i) − i) = 0.

Let B̃ ⊂ GLn(C[z]) be the Iwahori subgroup consisting of such matrices g̃(z) that g̃(0)
is lower triangular.

Proposition 6.10 The map � translates the action of Aut�n (Unω) on X(k, n, ω) to the B̃

action on its image.

Proof Let us recall the explicit action of the Iwahori group on the affine flag variety sitting
inside the product of Sato Grassmannians. Let us fix an n-dimensional space W with a basis
w1, . . . , wn . We identify the space C[t, t−1] with W ⊗ C[z, z−1] via the map

ϕ : t (n−k)ω−rn−s+1 �→ ws ⊗ zr , r ∈ Z, s = 0, . . . , n − 1.

Let us comment on the choice of the map ϕ. Recall (see (6.2)) the mappings ψ(i) : M (i) →
C[t, t−1], sending v

(i)
nω+1− j to t i−kω+ j . The map ϕ is chosen in such a way that the compo-

sition map ϕψ(0) : M (0) → W ⊗ C[z, z−1] (see (6.2)) is given by

ϕψ(0) : v
(0)
rn+s �→ ws ⊗ zr .

The general composition map ϕψ(i) : M (i) → W ⊗ C[z, z−1] reads as
ϕψ(i) : v

(i)
rn+s+i �→ ws ⊗ zr .

The natural action of GLn(C[z]) (and thus of the Iwahori subgroup B̃) on the space
W ⊗ C[z, z−1] induces the action on C[t, t−1] via the identification above. Each Iwahori
group element g̃(z) induces the linear endomorphism of F (i) and a map on AFn embedded
into the product of the projective spaces P(F (i)).

Recall (see Proposition 2.10) that the elements of the automorphism group Aut�n (Unω)

are the collections of maps Ai ∈ End(M (i)) with

Ai =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a(i)
1,1

a(i)
2,1 a(i−1)

1,1

...
...

. . .

a(i)
nω−1,1 a(i−1)

nω−2,1 . . . a(i−nω+2)
1,1

a(i)
nω,1 a(i−1)

nω−1,1 . . . a(i−nω−2)
2,1 a(i−nω+1)

1,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

written in the basis v
(i)
j .
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Given a collection of maps A = (Ai ) ∈ Aut�n (Unω) we construct the Iwahori group
element g̃(z) ∈ GLn(C[z]) such that �A = g̃(z). Recall that the map � : X(k, n, ω) →
AFn is induced by the maps (6.2). Then one shows that the following g̃(z) does the job:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

∑ω−1
l=0 zla(0)

1+nl,1 z
∑ω−1

l=0 zla(−1)
n+nl,1 . . . z

∑ω−1
l=0 zla(−n+1)

2+nl,1
∑ω−1

l=0 zla(0)
2+nl,1

∑ω−1
l=0 zla(−1)

1+nl,1 . . . z
∑ω−1

l=0 zla(−n+1)
3+nl,1

...
...

. . .

∑ω−1
l=0 zla(0)

n−1+nl,1

∑ω−1
l=0 zla(−1)

n−2+nl,1 . . . z
∑ω−1

l=0 zla(−n+1)
n+nl,1

∑ω−1
l=0 zla(0)

n+nl,1

∑ω−1
l=0 zla(−1)

n−1+nl,1 . . .
∑ω−1

l=0 zla(−n+1)
1+nl,1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

In fact, let us examine the image g̃(z)w1. By definition, one gets

g̃(z)w1 = a(0)
1,1w1 + a(0)

2,1w2 + · · · + a(0)
n,1wn + a(0)

n+1,1w1 ⊗ z + · · · + a(0)
2n,1wn ⊗ z

+ · · · + a(0)
n(ω−1)+1,1wn ⊗ zω−1 + · · · + a(0)

nω,1wn ⊗ zω−1,

which agrees with the image �Aw1. The same argument works for w2, . . . , wn . ��
Example 6.11 Let n = ω = 2. Then

A0 =

⎛

⎜⎜⎜⎜⎜
⎝

a(0)
1,1 0 0 0

a(0)
2,1 a(1)

1,1 0 0

a(0)
3,1 a(1)

2,1 a(0)
1,1 0

a(0)
4,1 a(1)

3,1 a(0)
2,1 a(1)

1,1

⎞

⎟⎟⎟⎟⎟
⎠

, A1 =

⎛

⎜⎜⎜⎜⎜
⎝

a(1)
1,1 0 0 0

a(1)
2,1 a(0)

1,1 0 0

a(1)
3,1 a(0)

2,1 a(1)
1,1 0

a(1)
4,1 a(0)

3,1 a(1)
2,1 a(0)

1,1

⎞

⎟⎟⎟⎟⎟
⎠

and

g̃(z) =
(
a(0)
1,1 + za(0)

3,1 za(1)
2,1 + z2a(1)

4,1

a(0)
2,1 + za(0)

4,1 a(1)
1,1 + za(1)

3,1

)

.

Corollary 6.12 For every I ∈ ([n]
k

)
one has an equality

�Aut�n (Unω)pI = Bpw(I ).

Proof Thanks to Proposition 6.10 the desired equality holds if we use the GLn version of
the Iwahori group instead of B. However, Bpw(I ) coincides with the GLn Iwahori group
orbit of the point pw(I ). ��
Remark 6.13 Corollary above claims that for any A ∈ Aut�n (Unω) and any I ∈ ([n]

k

)
there

exists an element g(z) ∈ B such that ApI = g(z)pw(I ). We note that g(z) does depend on
I , but if we extendB to the Iwahori subgroup for GLn (as we do in Proposition 6.10), then
g(z) depends only on A.

We summarize the discussion above as follows.

Theorem 6.14 The quiver Grassmannian X(k, n, ω) is isomorphic to the union of Schubert
varieties Xw(I ) ⊂ AFn for all I ∈ ([n]

k

)
.

The embedded varieties X(k, n, ω) exhaust the affine flags. More precisely, the following
proposition holds.

123



Generalized juggling patterns, quiver Grassmannians... Page 23 of 26 53

Proposition 6.15 For all k and n one has � (X(k, n, ω)) ⊂ � (X(k, n, ω + 1)). The union⋃
ω≥1 � (X(k, n, ω)) is equal to AFn.

Proof By definition, X(k, n, ω) = Gr(kω,...,kω)(Uωn). The embedding of�n-modulesUωn ⊂
U(ω+1)n , defined by sending v

(i)
j to v

(i)
j+n , induces the embedding of quiver Grassmannians

X(k, n, ω) ⊂ X(k, n, ω + 1). Formula (6.2) shows that this embedding is compatible with
the embeddings into the affine flag variety. Hence � (X(k, n, ω)) ⊂ � (X(k, n, ω + 1)).

To prove the second claim it suffices to show that for any f ∈ Wn the Schubert variety
X f sits inside Xw(I ) for some I ∈ ([n]

k

)
for large enough ω. We rephrase the condition in the

following way: let p f = (p f ,i )
n
i=1, pw(I ) = (pw(I ),i )

n
i=1 and let

p f ,i = C.ta1 ∧ ta2 ∧ . . . , a1 > a2 > . . . ,

pw(I ),i = C.tb1 ∧ tb2 ∧ . . . , b1 > b2 > . . . .

Then

X f ⊂ Xw(I ) if and only if b1 ≥ a1, b2 ≥ a2, . . . . (6.7)

First, let k = 1. Let M1, M2 be positive integers such that

• as ≤ i + M2n for all s,
• for any j ≤ i − M1 there exists s such that as = j .

In particular, since p f ,i = C.ta1 ∧ ta2 ∧· · · ∈ SGr(i) the number of a• in between i −M1 +1
and i + M2n is equal to M1. Now assume that ω satisfies (n − 1)ω > (M1 + M2)n. Then
formula (6.2) guaranties that for any i one has ψ(v

(i)
1 ) = t L with L > i + M2n + M1n.

Therefore the number of elements b• which are larger than i + M2n is at least M1. Hence the
condition in (6.7) holds true. Now let us consider the case of arbitrary k. Then for any ω and
any cardinality one subset I ⊂ [n] one finds an ω′ and J ⊂ ([n]

k

)
such that Xw(I ) ⊂ Xw(J ).

Hence for any k the union of the � images of X(k, n, ω) is equal to AFn . ��
Remark 6.16 We note that in general � (X(k, n, ω)) is not contained in � (X(k + 1, n, ω)).
The simplest example is n = 3, k = 1, ω = 1. Then X(1, 3, 1) and X(2, 3, 1) are unions of
three two-dimensional Schubert varieties inside AF3 and all these six Schubert varieties are
different.

Example 6.17 We close this section with an example for n = 2. The quiver Grassmannians
we are interested in are of the form X(1, 2, ω). The Weyl group W2 is generated by s0
and s1; the elements of W2 are of the form s1s0s1 . . . and s0s1s0 . . . . In particular, for each
ω > 0 there exist exactly two elements σ1(ω), σ2(ω) ∈ W2 of length ω. The image of the
quiver Grassmannian X(1, 2, ω) inside the affine flag variety AF2 is equal to the union of
the Schubert varieties Xσ1(ω) ∪ Xσ2(ω).

Appendix A Flatness: an example

Let us consider the degeneration of P
2 = Gr(1, 3) to the quiver Grassmannian X(1, 3) =

X(1, 3, 1). It was claimed in [12] that this degeneration is not flat. More precisely, it was
claimed in loc.cit. that the dimension of the degree (1, 1, 1) component of the homogeneous
coordinate ring of X(1, 3) is larger than 10 (which is the dimension of the degree three
component of the homogeneous coordinate ring ofGr(1, 3)). However, the argument contains

123



53 Page 24 of 26 E. Feigin et al.

a mistake (we note that according to [14] the degeneration of any Gr(k, n) to X(k, n) is flat).
Below we correct this mistake.

The variety X(1, 3) sits inside P
2×P

2×P
2. The corresponding homogeneous coordinate

ring is triply-graded. We denote the homogeneous coordinates in the i-th P
2 by xi , yi , zi

(i = 1, 2, 3). In particular, the degree (1, 1, 1) homogeneous component of the coordinate
ring sits inside the polynomial ring in variables x•, y•, z•; it consists of polynomials which
are linear in each group of variables xi , yi , zi (i = 1, 2, 3).

Recall that X(1, 3) has three irreducible components; the open cells in these irreducible
components are of the form

⎛

⎝
1 0 0
a1 1 0
b1 a1 1

⎞

⎠ ,

⎛

⎝
0 1 0
0 a2 1
1 b2 a2

⎞

⎠ ,

⎛

⎝
0 0 1
1 0 a3
a3 1 b3

⎞

⎠ .

Here the j-th matrix corresponds to the j-th irreducible component ( j = 1, 2, 3); for i =
1, 2, 3 the i-th column of the j-th matrix produces the homogeneous coordinates xi , yi , zi
of the points in the open cell of the j-th irreducible component (we note that a• and b• are
free parameters).

The dimension of the degree three homogeneous component of the coordinate ring of the
Grassmannian Gr(1, 3) = P

2 is equal to ten. Hence we have to show that the dimension of
the degree (1, 1, 1) homogeneous component of the coordinate ring of X(1, 3) is also equal
to 10. We claim that the following ten monomials produce a basis of the degree (1, 1, 1)
component:

y1y2z3 = (a1, 0, 0), y1z2y3 = (0, 0, a3), y1z2z3 = (a21 , 0, b3),

z1y2y3 = (0, a2, 0), z1y2z3 = (b1, a2a3, 0), z1z2y3 = (0, b2, a1a3),

z1z2z3 = (b1a2, b2a3, b3a1),

x1y2z3 = (1, 0, 0), x1y3z3 = (0, 1, 0), y1z2x3 = (0, 0, 1).

Here the right hand side of each equality computes the value of the corresponding monomial
on the three open cells. The monomials above are clearly linearly independent. The values
of all other degree (1, 1, 1) monomials are either zero or coincide with one of the above. For
example, x1x2z3 = 0 and x1z2z3 = (a1, 0, 0) = y1y2z3.
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