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Abstract
In many fields of science, various types of models are available to describe phenomena, 
observations and the results of experiments. In the last decades, given the enormous 
advances of information gathering technologies, also machine learning techniques have 
been systematically deployed to extract models from the large available databases. How-
ever, regardless of their origins, no universal criterion has been found so far to select the 
most appropriate model given the data. A unique solution is probably a chimera, particu-
larly in applications involving complex systems. Consequently, in this work a utility-based 
approach is advocated. However, the solutions proposed are not purely subjective but all 
based on “objective” criteria, rooted in the properties of the data, to preserve generality 
and to allow comparative assessments of the results. Several methods have been developed 
and tested, to improve the discrimination capability of basic Bayesian and information the-
oretic criteria, with particular attention to the BIC (Bayesian Information Criterion) and 
AIC (Akaike Information Criterion) indicators. Both the quality of the fits and the evalua-
tion of model complexity are aspects addressed by the advances proposed. The competitive 
advantages of the individual alternatives, for both cross sectional data and time series, are 
clearly identified, together with their most appropriate fields of application. The proposed 
improvements of the criteria allow selecting the right models more reliably, more effi-
ciently in terms of data requirements and can be adjusted to very different circumstances 
and applications. Particular attention has been paid to ensure that the developed versions of 
the indicators are easy to implement in practice, in both confirmatory and exploratory set-
tings. Extensive numerical tests have been performed to support the conceptual and theo-
retical considerations.

Keywords Model selection criteria · Bayesian Information Criterion (BIC) · Akaike 
Information Criterion (AIC) · Shannon entropy · Goodness of fit tests · Mutual 
information · Feedback loops
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1  Introduction: a short overview of model selection criteria 
and machine learning to motivate a utility‑based approach

The summit of any scientific endeavour is the formulation of an appropriate theory to 
describe the phenomena under study (Bailly and Longo 2011; D’Espargnat 2002) A fun-
damental ingredient in any theory, at least in the so-called exact disciplines, is the avail-
ability of a satisfactory mathematical model. Therefore, the selection of the most appro-
priate model, to interpret the evidence and to make predictions, is a major task of modern 
research. In most of the history of science, the models to be validated with experimental 
data were hypothesis driven, i.e., derived from previous knowledge or theories. Nowa-
days, various aspects of most research projects are addressed with artificial intelligence 
tools. Consequently, the objectives of model selection have become more numerous and 
various, and they are not limited simply to choosing the analytic formula best fitting the 
data. Some examples of these new aspects of models selection are the identification of: the 
basis terms for polynomial or wavelet functions, the structure of machine learning tools 
(number of neurons in networks or kernel in SVM), the order of autoregressive models, 
the most appropriate parametric family, the number of components in a mixture model, to 
name just a few (Ding 2018; Stoica and Selen 2004). Moreover, modern sensor and storage 
technologies allow acquiring enormous amounts of data about the most diverse phenom-
ena. Machine learning tools are therefore often deployed to produce models themselves. 
Recently evolutionary computational methodologies, such as Genetic Programming based 
Symbolic Regression (GPSR) (Schmid and Lipson 2009; Murari et al. 2019, 2020), have 
been developed to extract mathematical models directly from data with a minimum of a 
priori hypotheses and constraints.

Whatever the source of the models, scientists and statisticians have naturally been 
devoting a lot of attention to their selection. Not surprisingly, many approaches have been 
proposed over the years, but no general consensus has emerged on a single technique or 
procedure (Ding 2018). Such an unsatisfactory position is certainly not the consequence 
of lack of efforts. In the last decades, the issue of model selection has been addressed with 
Bayesian methods (Key et al. 1999) (Mark 2018), frequentist techniques (Miller 2002) and 
even information theoretic indicators (Claeskens 2016; Kenneth and Anderson 2002). All 
these approaches have their strong points and weaknesses, which render them more suited 
to certain applications than others. The present work is motivated by the observation that 
the ultimate goal of devising a best technique for all possible situations and tasks is prob-
ably a chimera. The approach, which informs the present work, is based on the assumption 
that the lack of generality of model selection criteria (MSC) is not their intrinsic limita-
tion but a consequence of the fact that any optimal solution is contingent on the specific 
application.

The context dependence of model selection can be appreciated from the following con-
siderations. MSC need to be deployed in a great variety of situations and with completely 
different objectives. The measurements can have various nature, from time series to cross 
sectional data or probability distribution functions (pdfs). The goals of the analysis can 
range from purely observational science to direct deployment in real life, with potential 
vital consequences, for example in medicine and engineering. The interest of the research-
ers can be exploratory or confirmatory. It is therefore not unreasonable to expect that, 
given the context dependence of the input data and the objectives of the investigations, 
a single fit all solution is probably neither realistic nor desirable. It should also be con-
sidered that qualitative knowledge and many forms of prior information are impossible to 
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accommodate in too rigid universal criteria. On the other hand, completely subjective crite-
ria are not satisfactory either. Being typically too arbitrary they are prone to various errors, 
such as conscious or unconscious bias and data dredging. Moreover, too subjective criteria 
do not to allow for meaningful comparisons and the growth of knowledge, essential ele-
ments of any scientific endeavour.

In the present work the proposed approach is therefore utility based but “objective”; the 
mathematical framework is general and rooted in specific properties of the data and the 
models, but the user is granted the possibility to fine tune the developed tools in such a way 
to take into account the details and objectives of the specific application. Particular atten-
tion has been paid to formulate versions of the indicators easy to implement in practice. 
Indeed, often the MSC reported in the literature are well grounded theoretically but, to pre-
serve their mathematical properties, they can be very difficult if not impossible to deploy in 
real life situations.

The treatment followed is based on information theoretic and Bayesian approaches, 
according to which the MSC are cost functions depending on two terms, one quantifying 
the goodness of fit and the other penalising the complexity of the models (see Sect. 2). The 
frequentist types of solutions are not neglected, though, but used to improve some of the 
versions of the criteria (see Sect. 3).

As representative of the information theoretic family of metrics, the Akaike Informa-
tion Criterion (AIC) (Akaike 1974) (Cavanaugh 2019) is discussed in detail but the pro-
posed solutions can be easily applied to the other indicators of the same mathematical 
background such as the Deviance Information Criterion (DIC), the Takeuchi Information 
Criterion (TIC), the Focussed Information Criterion (FIC) and the Kashyap Information 
Criterion (KIC) (Claeskens 2016; Zhou and Herath 2016).

With regard to the Bayesian framework, the popular Bayesian Information Criterion 
(BIC) (Schwarz 1978), (Lofti 2022) is detailed as an example of this entire set of crite-
ria, which include the Extended Bayesian Information Criterion (EBIC) and the Extended 
Fisher Information Criterion (EFIC) (Ando 2010).

In Section 3, attention is devoted to improving the first term of the model selection cri-
teria, the one qualifying the goodness of fit. The rationale for the proposed modifications 
derives from the consideration that the residuals (the differences between the data and the 
model predictions) contain much more information than the simple mean square error, the 
metric used in the traditional version of the indicators. Leveraging this additional infor-
mation with frequentist and information theoretic methods increases appreciably the dis-
criminatory powers of the criteria. Section 4 discusses the refinements of the second term, 
the quantification of complexity, which is too rudimentary in the original AIC and BIC 
since it is reduced to the simple number of parameters in the models. Again deploying 
more sophisticated quantifiers of the models’ complexity has a very good impact in many 
applications requiring analysis of complex systems. A different set of criteria, based on 
weighting the pdf of the data, is the subject of Sect. 5; the modifications suggested in this 
section are meant to obviate the simplistic assumption that the available data are perfect 
and not affected by any form of uncertainties or distortions. The techniques developed to 
refine the databases have always a very positive effect on the quality of the final classifi-
cations. The family of functions and the noise statistics, implemented to investigate the 
various refinements, are summarised in Sect. 6, whose main part is devoted to an overview 
of the results obtained with a series of systematic numerical tests, for both cross sectional 
data and time series. The application to exploratory techniques, such as GPSR, which are 
becoming increasingly important in this era of data overload, is covered in Sect. 7. Conclu-
sions are the subject of the last section of the paper.
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2  The main aspects of model selection and their representation 
in terms of negative utility

Learning from data has two main objectives. The first one, typically pursued in the sci-
ences, consists of understanding the data generation process, which means shedding light 
on the actual reality of the processes generating the data. The second approach is more 
concerned with prediction and therefore is mainly focussed on the accuracy of forecasting, 
independently from the fidelity to the mechanisms at play in the phenomena under study. 
In line with these two different, even if not necessarily incompatible goals, model selection 
can also have two diverse directions: model selection for inference and model selection 
for prediction. The aspiration of the first approach is to converge on models that reflect 
the underlying reality, providing insight for interpretation and eventually interventions. The 
studies belonging to the second framework are concerned with maximising performance 
in terms of predicative accuracy, without any additional requirement about the form of the 
models. To appreciate the distinctive specificities of the two priorities, one can consider 
the dependence on the number of examples. In the case of model selection for inference, 
the results should be independent from the size of the available databases. However, in the 
case of model selection for prediction, it would be perfectly legitimate to converge on dif-
ferent models depending on the amount of data to fit (typically in this context the larger the 
sample size the larger the dimensionality of the model).

The present work is mainly concerned with model selection for inference, even if the 
proposed improvements could be very useful also for model selection for prediction. In this 
perspective, the various criteria will be qualified in terms of their capability to identify the 
“best model” or the “right model”, the actual deterministic equation or probability distribu-
tion function generating the data.

More formally, a model is a deterministic equation or a probability distribution function 
(pdf) used to describe a set of n samples. Even in the deterministic context, very com-
mon in many fields of the exact sciences, the data are typically affected by not negligible 
uncertainties, requiring a probabilistic treatment. Indeed, the noise is typically considered 
randomly generated by a given pdf (see later).

In the framework of model selection for inference, one very important property of MSC 
is consistency or asymptotic convergence, which means that they select the best model in 
the limit of infinite samples according to the following definition.

Definition A model selection procedure is consistent or asymptotically convergent if it 
selects the best model with probability converging to one for n tending to ∞.

The goodness of fit and the rate of convergence of a model are typically determined 
in terms of a loss function, normally called cost function in utility-based treatments. In 
the field of model selection, the loss functions typically depend on the residuals, the dif-
ferences between the estimates and the true values of the data. It will be shown in more 
detail later that the most widely used cost functions are proportional to the logarithm of the 
Euclidian norm of this difference.

As mentioned in the introduction, many tools for identifying the “best model”, among a set 
of candidates, have been reported in the literature (Breiman 2001). The Akaike Information 
Criterion AIC is an information theoretic indicator, derived from the Kullback–Leibler diver-
gence, which is basically designed to quantify the information lost by a given model when 
representing the data (Kenneth and Anderson 2002). The basic principle underlying the AIC 
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criterion is indeed the consideration that the less information a model loses, the higher its 
quality. The theoretical derivation of the AIC provides the following unbiased form of the 
criterion:

where L is the likelihood of the model given the data and k the number of estimated param-
eters in the model.

Bayesian theory informs the Bayesian Information Criterion, which is designed to maxi-
mize the posterior probability of a model given the data (Ando 2010). The most general 
form of BIC is:

where again L is the likelihood of the model given the data, k the number of parameters in 
the model and n the number of entries in the database.

Both AIC and BIC metrics are negative utility indicators, which have to be minimized; 
the best models are the ones with the lowest values of the criteria. They also have the 
same conceptual structure. The first term favours models with a high likelihood, the sec-
ond implements a penalty for complexity (the term proportional to k). Therefore, these two 
MSC, and the many variations belonging to their families, try to find an optimal and uni-
versal compromise between goodness of fit and complexity, without leaving any margins of 
manoeuvring to the user.

In this work the potential of a more general interpretation of Eqs.  (1) and (2) (and of 
their respective families) is investigated. The main framework of AIC and BIC is retained; 
the solution is expected to be a trade-off between goodness of fit and complexity. On the 
other hand, the form of each of the two terms can be modified, depending on the nature 
of the problem to be solved and the objectives of the analysis. Therefore, in general the 
proposed enhancements of the model selection criteria (CRIT), discussed in the rest of the 
paper, can be cast in the context of utility-based indicators of the form:

where NUGoF is the negative utility to be associated to the goodness of fit and NUCompl the 
negative utility to be attributed to complexity. As for the traditional AIC and BIC, the utili-
ties are negative and therefore can be interpreted as cost functions. Consequently, also all 
the proposed criteria of the form (3) are indicators to be minimised, the better the model 
the lower their value.

To improve their potential for many applications in the sciences, the first consideration 
to be kept in mind is that the original formulation of the AIC and BIC criteria is not neces-
sarily easy to implement in practice. The most delicate part is the likelihood of the mod-
els, which can be virtually impossible to calculate. This difficulty can be due to various 
causes: the type of noise affecting the data, the nature of the models to be tested, lack of the 
“a priori “information about the properties of the systems under study etc. The traditional 
assumption, that the data are identically distributed and independently sampled from a nor-
mal distribution, is the most common step taken to bypass the practical difficulties of cal-
culating the likelihood. If this hypothesis is valid, it is possible to demonstrate that the AIC 
can be expressed (up to an additive constant, which depends only on the number of entries 
in the database and not on the model) as:

(1)AIC = −2 ln(L) + 2K

(2)BIC = −2 ln(L) + k ln(n)

(3)CRIT = NUGoF + NUCompl

(4)AIC = n ⋅ ln(MSE) + 2k
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where MSE is the mean-squared error of the residuals, the differences between the data 
and the predictions of the models.

Similar assumptions allow expressing the BIC criterion as:

where �(�)2 is the variance of the residuals.
Versions (4) and (5), formally derived in (Kenneth and Anderson 2002), constitute the 

most widely used expressions of AIC and BIC. As can be easily appreciated by inspec-
tion of these equations, the statistical information, originally provided by the likelihood, is 
reduced to the mere MSE and variance of the residuals (Wang and Bovik 2009). A natural 
question is whether additional statistical information, about the distribution of the residu-
als, could be taken into account and improve the performance of the two criteria. The prac-
tical importance of this question is not to be underestimated also because, in many appli-
cations, the assumptions behind Eqs. (4) and (5) are clearly violated. In real life, indeed, 
the statistics of the noise can be different from a Gaussian, memory effects can be impor-
tant, correlations between noise and measurements can be present etc. How to improve the 
model selection criteria in this respect, with objective indicators based on the properties of 
the data, is the subject of Sect. 3.

Another important line of investigation involves the second term in the AIC and BIC. 
Indeed, it is well known that the simple number of parameters is a very poor quantifier of 
the complexity of a model (Vapnik 2000). Very sound and quite sophisticated criteria to 
quantify the complexity of functions do exist; probably two of the most solid and advanced 
are the VC dimension (Vapnik 2000) and the Rademacher dimension (Bartlett and Mendel-
son 2002). In addition to the obvious difficulty that an exact estimate of their value is not 
available for the vast majority of functions, their practical and approximate evaluations are 
also very problematic and computationally intensive (McDonald, Shalizi, and Schervish, 
2011; Chen et  al. 2020). More importantly in the context of the present work, both cri-
teria, which by the way are related, are not really suited to the objectives of model selec-
tion, in which the complexity measure is meant at reducing overfitting. Indeed, the VC and 
the Rademacher dimensions have been conceived to determine the complexity of entire 
families of functions, for example the polynomials of order n. However, depending on their 
parameters, functions belonging to the same class can have completely different overfit-
ting capability (for example, a high order polynomial can be very smooth or very flex-
ible depending on the value of its coefficients). Consequently, the VC and the Rademacher 
dimensions have limited discriminatory power in this sense. In many applications, differ-
ent requirements could therefore be better satisfied by alternative estimates of complex-
ity, possibly less universal and theoretically sound but of more direct practical value. The 
improvements of model selection criteria, based on alternative but again “objective” defini-
tions of complexity, are discussed in Sect. 4.

A different approach to the definition of utility relates to the probability distribution 
function of the data. For a variety of reasons, the experience and knowledge of the experts 
can strongly suggest attributing more or less importance to various parts of the data prob-
ability distribution function (pdf). A typical example from economics is the relevance of 
rare events in influencing quantities, normally poorly correlated. These events should be 
assigned strong weights because they can have important consequences. In other appli-
cations, rare events have to be considered outliers and should therefore be eliminated or 
granted low importance. These issues can be addressed either by weighting differently var-
ious parts of the pdf or by implementing some form of robust statistics. These approaches 

(5)BIC = n ⋅ ln
(
�(�)

2
)
+ k ⋅ ln(n)
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again fall in the framework of utility-based techniques but involve both terms in Eq. (3) and 
are therefore discussed in detail in Sect. 5.

The three main families of improvements are summarised graphically in Fig. 1 and are 
presented in the text in order of increasing generality of application (from the bottom up in 
Fig. 1). The techniques dealing with the goodness of fit tests are mainly aimed at improving 
the MSC when the likelihood is not computable for whatever reason. The complexity term 
is a delicate issue that would benefit from refinements in practically all the existing criteria. 
The interventions on the pdf are absolutely general and can be a preliminary step to the 
calculation of any estimator, including frequentist indicators. Even if the likelihood can be 
calculated, the other proposed improvements (complexity estimate and weighting the pdf) 
remain valuable. The version to be preferred depends on the situation, on the objectives of 
the analysis and on the available a priori knowledge about the systems under investigation.

For all the families of developed modifications, careful attention has been paid to their 
practical implementation. The indicators proposed do not require excessive computational 
resources. Moreover, the assumptions they are based on are typically more realistic than 
the ones of the traditional criteria. In addition, the demands in terms of “a priori” knowl-
edge are more than reasonable for the typical applications in most fields. Excessive arbi-
trary and subjective solutions are avoided. For example, the improved tools proposed do 
not require estimating the prior probability of the various models, a very delicate issue, 
which will be discussed in more detail in Sect. 8.

3  Improved cost functions for the goodness of fit term

The main consideration, behind the improvements proposed in this section, is that the 
residuals of a perfect model should simply contain the noise affecting the measurements. 
Therefore, the better the model, the lower the structure of the residuals and the closer their 
pdf to the one of the noise. On this basis, various improvements of the  NUGoF cost function 

Task

Proposed 
improvement

Legend
Op�misa�on 

database

Weigh�ng of 
the pdf

Robust 
sta�s�cs

Model 
Selec�on 
Criteria

NU Goodness 
of fit

NU Complexity 
evalua�on

Entropy of 
the 

residuals Frequen�st
goodness of 

fit tests

Mutual 
informa�on

Model 
robustness Model 

flexibility

Informa�on 
theore�c

Fig. 1  Block diagram summarising the various improvements proposed in the paper. NU is the acronym for 
Negative Utility (see text)
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can be implemented to improve the discriminatory capability of the criteria. It should be 
emphasised one more time that all the proposed solutions are objective, in the sense that 
the indicators are all based on well-defined properties of the available data.

3.1  The entropy of the residuals

A quite general way to improve the practical implementation of AIC and BIC is based on 
the Shannon entropy of the residuals. Indeed, the main idea behind this way to ameliorate 
the treatment of the residuals is the observation that, if a model were perfect, the residuals 
should reflect the statistics of the noise contaminating the data. In many fields of science 
and engineering, it is reasonable to assume that the noise affecting the measurements is 
additive and random. Therefore, other things being equal, models, whose residuals present 
a more uniform pdf, should be considered of better quality. It is well known that the Shan-
non entropy H can be interpreted as an indicator of how uniform a distribution is. The 
entropy of the residuals can therefore be included in the AIC and BIC, to favour models 
with a more uniform pdf of the residuals and consequently a higher value of H. In this per-
spective, the following versions of the BIC and AIC criteria are proposed:

where H = −
∑

i pilnpi indicates the Shannon entropy of the residuals and pi is the prob-
ability of the i-th residual. A formal justification of the expressions (6) and (7) requires the 
demonstration that the new forms of the indicators are asymptotically unbiased:

Lemma 1 In the hypotheses used to derive the practical versions of the BIC and AIC, rela-
tions (6) and (7) possess the property of asymptotic convergence.

Indeed, under the assumptions that the residuals are normally distributed, homoscedas-
tic (constant variance σ) and with vanishing expectation value, the Shannon entropy can be 
written as:

where yi denote the measured values and ŷi are the predictions, which are specific of the 
adopted models. In the limit n → ∞ , the summation can be replaced by the integral across 
the entire probability distribution. The Shannon entropy can be then explicitly computed 
finding:

Equation  (9) does not contain the predictions ŷi and therefore it is independent from 
the chosen model. Consequently, asymptotically the Shannon entropy contributes the same 
numerical factor to all models, implying that the new  BICH and  AICH criteria coincide 

(6)AICH = n ⋅ ln
(
MSE

H

)
+ 2k

(7)BICH = n ⋅ ln

(
�(�)

2

H

)
+ k ⋅ ln(n)

(8)H =

n�
i=1

pi
�
−lnpi

�
=

n�
i=1

1√
2��

e
−
(yi−ŷi)

2

2�2

��
yi − ŷi

�2
2�2

+ ln
�√

2��
��

(9)H =
1

2
+ ln

�√
2��

�



S2833A practical utility‑based but objective approach to model…

1 3

with the standard ones in the limit n → ∞ . The new  BICH and  AICH indicators therefore 
inherit the asymptotic converge properties of their traditional counterparts (q.e.d.).

It is worth mentioning that very similar lemmas, which are not reported for brevity’s 
sake (the interested reader is referred to the literature), are valid also for the other improve-
ments proposed in SubSect.s 3.2 and 3.3.

3.2  Frequentist goodness of fit tests

As already reported in (Murari 2019), the versions of the criteria including the entropy of 
the residuals, Eqs.  (6) and (7), clearly outperform the traditional version of the AIC and 
BIC. They also possess nice properties of convergence. On the other hand, the entropy is 
not a completely satisfactory metric. First, in many cases the simple assumption of zero-
sum Gaussian noise is not valid. Moreover, entropy is a quite blunt indicator of the residual 
distributions. It is therefore not unreasonable to question the general applicability of  AICH 
and  BICH. If the statistics of the uncertainties is known, more refined cost functions can 
further improve the discriminatory power of the criteria and provide more flexibility to the 
user, in agreement with the adopted philosophy of utility-based criteria.

In this perspective, it has proved useful to make recourse to frequentist techniques and in 
particular to various goodness of fit tests (for example Chi-squared, Anderson Darling and 
Kolmogorov–Smirnov) (Corder and Foreman 2014). For the null hypothesis, it is assumed 
that the residuals present the same pdf as the noise or uncertainties in the data. The outputs 
of the goodness of fit tests can be expressed in terms of their Z score; the lower its value, 
the closer the residuals to the pdf of the null hypothesis. Since the AIC and BIC criteria are 
cost functions, i.e., they are indicators to be minimised, the Z scores of the goodness of fit 
tests can be naturally included in their mathematical expressions as follows:

where the subscript GF stands for Goodness of Fit. This new version of the AIC and BIC 
criteria is quite intuitive to interpret. The better the model, the closer the residuals to the 
pdf of the noise and therefore the lower the Zscore of the residuals, which tends to reduce the 
numerical value of the criteria. Equations (10) and (11) also grant the asymptotic conver-
gence of  AICGF and  BICGF; if the model is perfect, the Zscore will tend to zero with increas-
ing the number of points and the  AICGF and  BICGF will converge to  AICH and  BICH (Rossi 
2020). This formulation gives the practitioner the opportunity to exploit any prior knowl-
edge about the nature of the uncertainties affecting the data, a fact that can have a major 
impact on the quality of the results in many real-life applications.

3.3  Information theoretic estimate of the goodness of fit

A complementary analysis of the goodness of fit can be performed using the Mutual Infor-
mation (MI) (Arndt 2004) (Baudot 2019). This alternative is particularly useful when the 
statistics of the uncertainties cannot be determined and therefore the null hypothesis can-
not be formalised. In such a situation, the approach described in the previous subsection is 

(10)AICGF = n ⋅ ln
(
MSE

H

(
1 + Z2

score

))
+ 2k

(11)BICGF = n ⋅ ln

(
�2
�

H

(
1 + Z2

score

))
+ kln(n)
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not viable. In any case, again, the basic observation is that, in the hypothesis of a perfect 
model, the residuals should contain only noise. Under the additional assumption, verified 
in many applications, that the sources of noise are not correlated with the useful signal, the 
mutual information between the perfect model predictions and the residuals should be zero. 
Moreover, the better the model the lower the MI between the model predictions and the 
residuals. These considerations suggest rewriting the AIC and BIC in the form:

where MIMR indicates the mutual information between the model predictions and the 
residuals and is defined as MI(X;Y) = H(X) − H(X|Y), with again H indicating the Shan-
non entropy. The interest of this formulation of the MSC is manifold. In addition to good 
performance, it provides a completely alternative approach to the evaluation to the good-
ness of fit compared to the traditional frequentist criteria. Consequently, the versions of the 
model selection criteria given by Eqs. (12) and (13) are good complement to the formula-
tions provided in the previous subsection.

4  Improving the measures of complexity

The subject of Sect. 3 are the improvements of the model selection criteria terms, which 
quantify the goodness of fit, thanks to a more sophisticated analysis of the residuals. In 
this section, the inadequacies of the addends addressing model complexity are tackled. 
The most widely used versions of AIC and BIC enforce parsimony by penalising the mod-
els with a higher number of parameters. This form of penalty, equating complexity with 
the number of parameters, does not have any sound theoretical justification. Indeed, the 
number of parameters k in an equation is a rudimentary indicator of its complexity and 
therefore cannot serve as a very satisfactory measure to avoid overfitting (Vapnik 2000). 
Two much more conceptually sound quantifiers of complexity have been developed: the 
Rademacher dimension and the VC dimension. Unfortunately, despite their theoretical ped-
igree, exact formulas have not been found for most types of equations; moreover approxi-
mate estimates are quite complicated to implement and are very heavy computationally 
(Bousquet 2016; Karpinsky 1997). These are the main reasons why the Rademacher and 
VC dimensions have not been adopted in many practical applications. A second subject of 
criticism relates to the implicit assumption that always simpler models are preferable, even 
when modelling complex systems. There is indeed no general theoretical justification why 
a complex model, with more parameters, should always be “a priori” less adequate to inter-
pret the data generated by a complex system. A better conceptualisation of model complex-
ity would be very advantageous.

The nature of the first issue, that the number of parameters can be a misleading quanti-
fier of complexity, can be appreciated by the following example, in which synthetic data 
has been generated with a polynomial of order five, as shown in Fig. 2 (Vapnik 2000):

The important observation is that it is possible to fit the same data with a high frequency 
sinusoid, as illustrate graphically in the second and third plots in Fig.  2. In presence of 

(12)AICMI = nln
(
MSE

(
1 +MIMR

))
+ 2k

(13)BICMI = n ln
(
�2
res

(
1 +MIMR

))
+ k ln(n)

(14)y = −10 + x + 0.03x2 − 810−3x3 + 110−6x5
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even a very small amount of additive noise, by tuning the three parameters of the sinusoid 
(amplitude, frequency and phase) it is possible to achieve a better fit to the data, even if it is 
generated by Eq. (14). Since the sinusoid can be fine-tuned by acting on only half the num-
ber of parameters required to adjust the polynomial, the original versions of AIC and BIC 
would always wrongly select the sinusoid; indeed both terms of the criteria would be lower 
for the sinusoidal model.

The second comment is motivated by a critical appraisal of the Occam Razor. Indeed, 
a dogmatic acceptance of the principle that simpler models are always to be selected 
becomes doubtful when dealing with systems of high complexity. Of course, there are 
perfectly valid reasons, to be careful with adopting models with an excessive number of 
parameters. However also oversimplification can become a significant issue, as expressed 
elegantly by the quote attribute to Einstein that everything should be made as simple as 
possible, but not simpler. A quite striking example of oversimplification is the modelling 
of all scaling laws with power law monomials, based on the uncritical assumption of scale 
invariance of the underlying phenomena. Even if power laws have proved to be very useful 
in many fields, the inadequacies of models relying on this type of equations when not justi-
fied, have been extensively documented (Murari 2012). Moreover, it is worth remembering 
that simplicity and its dual concept of complexity are subjective to a large extent, to the 
point that it has proved impossible to converge on a fully general definition of either. In 
agreement with the line of reasoning informing this work, this lack of consensus is consid-
ered a consequence of the fact that these concepts are so vague and universal that must be 
adjusted to the specific application and its objectives.

The previous considerations are qualitative and to a certain extent debatable but should 
be sufficient to substantiate the stance that a unique fit-all definition of complexity is not 
realistic, and that different interpretations of the complexity are fully legitimate and should 
take into account the nature and the objectives of the specific data analysis task. In the fol-
lowing subsections, three alternative approaches to interpreting and quantifying complex-
ity are proposed, which attempt to address the issues just discussed. First a falsification 
criterion, which in a certain sense equates simplicity with stability, is introduced; it favours 
models, whose predictions are less affected by errors in their parameters. The second cri-
terion is explicitly designed to reduce the probability of overfitting, by penalising models’ 
flexibility. The third one is a purely information theoretic concept, which renders the AIC 
criterion more coherent. Again, these improvements are all objective, in the sense that they 
are rooted in unique properties of the models to be assessed.

Fig. 2  Left: data generated by a 5-order polynomial, namely Eq.  (14). Centre: fit with a high frequency 
sinusoidal function. Right: zoom of the plot in the centre to show the quality of the fit of the sinusoid
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4.1  A falsification approach to model selection

The improvements introduced in this section are motivated by the consideration that 
model robustness is an important aspect to favour. According to this position, other things 
being equal, a model is to be preferred when small unavoidable errors in its parameters 
have limited consequences on its estimates. Consequently, the desideratum of parsimony 
should translate into criteria, which penalise the repercussions on a model’s final estimates 
of small errors in its parameters. This approach is particularly suited to a very important 
application of model selection criteria: the design of new plants and experiments. In that 
perspective, an essential property of the candidate models is their out of sample validity. 
They are indeed developed to understand the scaling properties of systems and phenomena 
(Murari 2015; Murari et al. 2019; Murari et al. 2020). Robust criteria, whose predictions 
do not change substantially as a consequence of small errors in their parameters, are par-
ticularly desirable for this task.

The proposed approach can be implemented by exploiting the available knowledge 
about the uncertainties in the candidate models’ parameters. The procedure can be sum-
marised as follows:

• Generate a sufficiently large number of parameter combinations for each model, sam-
pling randomly the probability distribution function of their uncertainties.

• Calculate the model predictions for all these parameter combinations.
• Devise and compute a suitable estimator quantifying how much the model predictions 

vary with the uncertainties in its parameters.

To estimate the crucial aspect of each model, its prediction stability, several indicators 
are equally valid: mean, standard deviation, max value etc. The analyst is free to choose the 
most suited to the application. For example, if the worst-case scenario can have particularly 
negative consequences, an appropriate choice could be the maximum variation in the pre-
dictions. With regard to the uncertainties in the model parameters and their pdf, the choice 
must of course be guided by the objectives of the application and by the knowledge of the 
type of errors affecting the model estimates. In any case, indicating the estimator of the 
model’s parameter stability with the acronym PS, the proposed version of the criteria can 
be written as:

For the delicate case of the sinusoid discussed in Sect. 4, assuming that the parameters 
are affected by zero mean Gaussian noise, an appropriate metric is certainly the MSE. In 
these hypotheses, the proposed improved versions of the indicators (15) and (16) achieve 
noticeable better performances, as can be seen by simple inspection of Table1.

4.2  Quantifying model flexibility (MF)

This subsection is based on an interpretation of complexity, which is meant to address 
a major objective in machine learning and model building: avoiding overfitting. To 
his end, a simple practical solution, to counteract the tendency of a model to overfit-
ting, consists of quantifying its flexibility in the region covered by the independent 

(15)AICPS = nln(MSE) + 2k + nln(PS)

(16)BICPS = nln(MSE) + kln(n) + nln(PS)
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variables in the available database. A suitable indicator of a function flexibility is the 
moving average of its standard deviation (Murari 2021). Such an indicator, which is 
called Model Flexibility (MF) in the following, can be easily estimated by calculating 
the moving average of the model and then summing the squares, therefore implementing 
the equations:

where N is a set of synthetic points, to be chosen as discussed later. In the interpretation of 
complexity, quantified by Eqs. (17) and (18), model A is to be considered more complex 
than model B if its derivatives present a higher variation in the interval covered by the 
independent variables X. A quite straightforward and effective version of the AIC and BIC, 
to take into account the metric expressed by the MF, is:

The interpretation of the last two equations becomes even more intuitive if they are 
rewritten as:

An important point to appreciate is that the MF indicator cannot be computed for the 
n entries of the database, otherwise it would simply reinforce the classification of the 
first term of the criteria, instead of counterbalancing it. Consequently, it must be calcu-
lated for synthetic points, albeit in the interval of the independent variables covered in 
the database. The algorithm for evaluating the new version of the indicators  AICMF and 
 BICMF can therefore be summarised as follows:

(17)
MovSTDy,x

�
xi
�
=

������
∑i+Δ

j=i−Δ

�
df

dx
−

df

dx

�2

2Δ

(18)MF =

∑N

i=1
MovSTD2

y,x

�
xi
�

N

(19)AICMF = ln(MSE) + 2k + ln(1 +MF)

(20)BICMF = ln
(
�(�)

2
)
+ kln(n) + ln(1 +MF)

(21)AICMF = ln(MSE) + 2k + ln(1 +MF) = ln(MSE(1 +MF)) + 2k

(22)BICMF = ln
(
�(�)

2
)
+ kln(n) + ln(1 +MF) = ln

(
�(�)

2(1 +MF)
)
+ kln(n)

Table 1  Estimates of the various versions of the indicator for the problematic example of the comparison 
between a polynomial and a sinusoid introduced in Sect. 4

Model 1 is the polynomial, model 2 the sinusoid

BIC AIC BICPS AICPS BICMF AICMF

Model 1 − 925 − 945 − 1132 − 1164 − 925 − 945
Model 2 − 939 − 949 − 913 − 949 − 721 − 730
Model selected 2 2 1 1 1 1
Result Wrong Wrong Correct Correct Correct Correct
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• Generate a suitably high number N of independent variable points in the domain cov-
ered by the independent variables (different from those in the original DB),

• Calculate the predictions of the models for these additional points
• Compute the MF indicator to be included in the  AICMF and  BICMF

The routine contains only two free parameters: the number N of generated synthetic 
points and the interval ∆ over which to calculate the moving average. A simple approach 
to determine N consists of progressively increasing its value, until the indicators stabilise 
to a constant output. To achieve sound convergence, typically a multiple of the entries in 
the database (between 3 and 10 depending on the problem) must be generated. Also the 
parameter ∆ has to be optimised empirically depending on the application. In the authors’ 
experience, a quite safe value is Δ =

3
√
N . In any case, typically the results of  AICMF and 

 BICMF do not vary substantially with the choice of ∆ and they provide the same classifica-
tion for a quite wide range of this parameter value. Again a direct application to the deli-
cate example of the sinusoid reported in Sect. 4 shows that the new proposed versions of 
the indicators have not negligible better performances than the traditional AIC and BIC, as 
can be deduced again by inspecting Table 1.

4.3  An information theoretic quantifier of complexity for AIC

Information theoretic estimates of complexity have been developed and are covered quite 
well in the literature (Meyers 2009; Mitchell 2009). In the context of the present work, they 
are particularly relevant because they can be formulated as described in the present subsec-
tion and then deployed, to obtain a version of the AIC criterion expressed completely in 
terms of information theoretic quantities. The proposed fully information theoretic version 
of AIC relies on considering complexity a sort of middle ground between randomness and 
determinism. This interpretation of complexity is not new. It has a long pedigree and can 
be traced back to the founding concept of information theory, i.e. the understanding of 
information as reduction of uncertainty (Piqueira 2018). The complexity measure C[X], 
discussed in the following, is a natural translation of this idea in mathematical terms:

Where H is the usual Shannon entropy [31] and D the distance from a uniform 
distribution:

The implicit assumption behind the last two relations is that not only a pure determin-
istic system but also a uniform distribution is indicative of a lack of complexity. Indeed, in 
Eq. (23) the increases of entropy H for more uniform distributions is compensated by the D 
term, which tends to zero when the probability of all the elements becomes more similar. 
The models can be evaluated over a suitable interval and with enough resolution to pro-
duce a sufficient number of points, to reliably calculate probability distribution functions. 
The pdf of the models is all that is required to compute (23) and to obtain a simple indi-
cator of complexity, according to the aforementioned information theoretic interpretation. 
Plugged into Eq. (12), this formulation of the complexity term provides a coherent version 

(23)C[X] = H[X]D[X]

(24)D[X] =

n∑
1

(
pi −

1

n

)
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of AIC, in the sense that the criterion depends only on information theoretic quantities 
(except the MSE of course).

It is possible to generalise the expression of complexity implemented by Eq.  (23) 
(Piqueira 2018):

where

where again H is the Shannon entropy and Hmax[X] its maximum value log n. With this 
more flexible formulation, the analyst has much more freedom to give different weights to 
the two terms in the definition of complexity. However, the main drawback of Eqs. (25) and 
(26) resides in the fact that there is no principled procedure to select the α and β exponents 
in an objective way. This version of the criterion is therefore excessively subjective and 
therefore, unless very sound prior information is available to inform the choice of α and β, 
the use of Eq. (25) is not recommended.

5  The utility‑based approach applied to the probability distribution 
of the data

The ameliorations of the MSC discussed so far have concentrated on two main aspects; 
on a better quantification of the residuals’ statistical properties and on alternative views of 
the complexity term. This section is devoted to a different series of techniques, which act 
directly on the pdf of the data. The motivation behind an objective utility-based approach 
at this level is at least twofold. On the one hand, certain parts of the pdf could be inher-
ently of more relevance than others for the investigation of the problem to be studied (see 
Sect. 5.1); on the other hand, the data could be affected by outliers, which should be elimi-
nated even if no detailed information is available about their characteristics (see Sect. 5.2). 
The solutions proposed in this section are not in contrast with the ones described previ-
ously; on the contrary, they can be deployed preliminary to the application of the versions 
of the criteria presented in the Sect.s 3 and 4. They can help cleaning and optimising the 
databases, to which the MSC criteria can then be more profitably applied. Indeed, no mat-
ter the power of the criteria, the results of the analysis cannot exceed the quality of the 
input data and refining the databases can have a strong impact on the final selection.

5.1  Weighting the various parts of the pdf

All the enhancements of MSC, described in the previous sections, take the pdf of the data 
as given. The underlying assumption behind this position is that the user attributes equal 
value to all the parts of the data distribution function. This is another piece of conventional 
wisdom, which makes calculations convenient but is not realistic in most real-life tasks. In 
many branches of the physical sciences, for example, the noise sources affecting different 
measurements are assumed to be completely independent from the system under investiga-
tion (and from one another), which can be clearly unfounded. A paradigmatic example is 
constituted by thermonuclear fusion plasmas, whose diagnostics are affected by enormous 

(25)COMP �, � = Δ�(1 − Δ)�

(26)Δ =
H[X]

Hmax[X]
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electromagnetic compatibility issues, since instruments measuring mT are all immersed in 
huge fields of the order of several Teslas (Wesson 2004). Therefore, assuming that the vari-
ous measurements are affected by independent sources of noise is clearly a bit of a stretch. 
Another example, this time from economics, relates to the subprime financial crisis, not 
predicted by models, which did not take into account the important systemic effects of rare 
but highly correlated events. In the first case, thermonuclear fusion, it would be appropri-
ate to get rid of the additional correlation between signals due to the noise; in the second, 
macroeconomics, the mutual correlation introduced by rare events should be strengthened.

The previous short discussion emphasises one more time the context specific nature of 
model selection and therefore the important of utility-based techniques. In reality, a context 
dependent but objective approach can be easily applied to the probability distribution of 
the original data, by weighting different parts according to the needs of the analysis and the 
characteristics of the problem. Consequently, the MSE and standard deviation in the origi-
nal versions of the AIC and BIC criteria should be appropriately modified.

All the information theoretic elements, of the previously proposed versions of the crite-
ria, can be easily adapted to take into account the different relevance of various parts of the 
pdfs. The entropy, for example, can easily be rewritten introducing utility-based weights wi:

The weighted entropy  Hw just defined preserves most of the useful properties of the 
original entropy. Particularly interesting and reassuring are the ones summarised in the fol-
lowing Lemma (Guiasu).

Lemma 2 Let X be a stochastic random variable of n possible states with probability mass 
function p = (p1,….pn). For a vector of weights w = (w1,….wn) to be associated with these 
states and the condition wi ≥ 0, i = 1….n, the weighted entropy Hw defined by (27) presents 
the following properties:

1. H.w(X) ≥ 0
2. If w1 = w2 …. = wn then H.w(X) = w H(X)
3. If pi = 1 for any i = 1,….n then H.w(X) = 0
4. For any non-negative real number l, Hw(l w) = l H.w(w)
5. Hw(w1,….wn, wn+1; p1,….pn, 0) = Hw(w1,….wn, wn+1; p1,….pn) = H.w(X) for any wn+1

The properties of the weighted entropy apply only to the discrete case. In the continu-
ous case there are difficulties discussed in (Kelbert, Stuhl, and Suhov, 2017). On the other 
hand, the continuous or differential version can also be implemented quite easily, provided 
adequate precautions are taken to double-check the consistency of the results.

The weighting can be extended also to other indicators, derived from the entropy. In the 
present context, the mutual information is a particularly useful quantity to refine taking 
into account the considerations of SubSect. 3.3. The weighted version of the mutual infor-
mation MIw can be written as:

(27)Hw(X) = Hw(w, p) =
∑n

i=1
w(i)pi log

(
1

p

)

(28)MIw =
∑∑

wijPxy

Pxy

PxPy
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where Pxy is the joint probability distribution function of the two stochastic variables x and 
y. The main mathematical properties of the mutual information are preserved, rendering 
evident the benefits of implementing MIw, provided of course an appropriate choice of the 
weights can be devised.

The just described weighting is intuitive and clear. The properties of the resulting infor-
mation theoretic quantities are well understood in mathematical terms (Guiasu) but this is 
not always the most immediate nor even the most appropriate solution to adopt in practice. 
Indeed, in most applications, what is known is the quality of the individual measurements; 
how this information translates into the quality of the residuals pdf is not necessarily pos-
sible or simple to determine. Moreover, in practice it is not uncommon for data in the same 
parts of the pdf to present completely different quality. Applying the same weight to all of 
them would therefore not be justified and could lead to important distortions of the results. 
In this quite common situation, a more reliable alternative, also easier to implement, would 
therefore consist of weighting individual residuals not their pdf. Such as solution requires 
calculating the necessary pdfs on the basis of the weighted residuals; this can be achieved 
with the following relations:

In Eqs. (29), the subscript b is the index of the various bins; therefore the points within a 
bin are attributed weights wi depending on their quality and those outside have weight zero. 
With this approach, the pdfs can be calculated on the basis of the knowledge about the 
quality of the individual entries in the DB, which is sometimes the only realistic alterna-
tive, as shown in Sect. 6. The versions of AIC and BIC, in which the individual entries have 
been weighted, are indicated by the subscript w. To exemplify the importance of weighting 
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the individual points, let us suppose that the phenomenon under study is investigated with 
measurement systems producing data according to the function:

Let us suppose that the model alternative to (30) is a nine order polynomial obtained by 
fitting the DB entries with the MATLAB function polyfit. It is also assumed that the data, 
as not unusual in practice, have been collected in different experiments of different quality, 
as illustrated graphically in Fig. 3. Determining where the residuals of each experiments 
affect the various parts of the pdf is tricky; the results are too dependent on the choice of 
the weights and therefore the confidence in the conclusions would be very weak. The best 
way is to weight the individual points proportionally to the inverse of the noise standard 
deviation. The MI after weighting the points is a factor of two better than the one without 
weights. Consequently, the  AICw and  BICw manage to identify the right model, whereas 
the traditional versions fail and the ones using the MI without weights provide poorly dis-
criminatory results, as shown in Table 2.

5.2  Robust statistics

In some applications, a fundamental objective of acting on the pdfs would consist of 
eliminating outliers and spurious cases, in order to increase the realism of the results. 
This is the realm of robust statistics (Huber 1981; Hettmansperger. and McKean 
1998). Indeed, classic summary statistics and significance tests are based on certain 

(30)y = 1 − e−0.1x

Fig. 3  Hypothetical example of 
data collected in different experi-
ments and therefore of different 
quality

Table 2  The values of the indicator for the case of data generated with Eq. (29)

BIC AIC BICMI AICMI BICMI,W AICMI,W

Correct model − 5.35e6 − 5.34e6 − 5.14e6 − 5.14e6 − 5.21e6 − 5.21e6
Alternative model − 5.52e6 − 5.53e6 − 5.12e6 − 5.12e6 − 5.08e6 − 5.08e6
Decision Wrong Wrong Correct but marginal Correct but marginal Correct Correct
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specific assumptions, which have to be reasonably satisfied. On the contrary, the 
probability density functions sampled in experiments are not necessarily Gaussians 
and can present heavy tails or be skewed. Homoscedasticity is even less frequently 
verified. If these hypotheses are violated, even slightly, the accuracy of the results 
can be seriously compromised. In the last decades, a lot of evidence has emerged, 
showing that a blind reliance on the previously mentioned assumptions of Gaussian-
ity and homoscedasticity can produce rather inaccurate results (Wilcox 2012). Con-
sequently, significant efforts have been recently devoted to developing robust tools, 
with a dual objective. On the one hand, they seek to provide methods that compare 
well with popular statistical techniques, when the classic hypotheses are satisfied. On 
the other hand, they are designed not to be unduly affected by departures from the 
model assumptions (Huber 1981) (Farcomeni 2013). These techniques can be very 
useful in improving the goodness of fit tests, when the general and typically unreal-
istic assumptions of equal mean and homoscedasticity are violated. Specific metrics 
can also be introduced to counteract the effects of outliers and noise of various sta-
tistics (Wilcox 2012). To provide a flavour of how to deal with outliers, in the rest of 
this subsection robust criteria are briefly discussed for both the measures of location 
and scale, the two most relevant for the present subject (since they are the two meas-
ures entering in the model selection criteria) (Rouseeuw 2011).

The most common robust statistical measures of central tendency are the trimmed 
mean and the winsorised mean. A trimmed mean or truncated mean is obtained by cal-
culating the mean of the available data, once the high- and low-end parts of the samples 
have been discarded. The number of discarded entries is usually given as a percent-
age of the total number of samples and is applied symmetrically to the two ends of 
the range. For most statistical applications, 5 to 25 percent of the ends are discarded; 
the 25% trimmed mean (when the lowest 25% and the highest 25% of the data are dis-
carded) is known as the interquartile mean. The winsorized mean is calculated replacing 
given parts of a probability distribution, at the high and low end, with the most extreme 
remaining values. In detail, the traditional mean, the trimmed and winsorized means are 
calculated according to the following formulas, in which f(xi) indicate the values sam-
pled from the data pdfs.

The traditional mean is defined as:

where n is the number of available samples. The trimmed mean is defined as:

where g corresponds to the number of trimmed points. The winsorized mean is defined as:

where
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The robust statistical methods developed in the last decades allow improving not only the 
estimates of location but also those of scale (see [37]). As a reference, the classic standard 
deviation is defined as:

In the case the location is calculated with the trimmed mean, the appropriate version of the 
standard deviation σt to implement is:

where n, γ, ft (xi) and μt are the number of points sampled from the pdf, the percentage of 
trimming, the trimmed data and the trimmed mean respectively.

A similar definition applies to the standard deviation of the winsorized mean:

Obviously, the robust versions of the location and scale measures are more resilient 
against the presence of outliers. Their adoption in the calculation of the model selection cri-
teria can improve their discriminatory capability and reliability, if outliers are even a quite 
limited fraction of the data. The robust versions of AIC and BIC are indicated by  AICRob 
and  BICRob.

6  Results of numerical tests

To investigate and quantify the performance of the alternative formulations of the model 
selection criteria, a series of systematic tests has been performed. Some didactic cases 
have already been shown. In this section, representative results of more general sets of 
examples are reported. As mentioned in Sect. 2, since the focus of the present work is 
model selection for inference, the analysis has been framed in the parametric context, in 
which the equation generating the data is included in the set of candidate models. Sec-
tion 6.1 summarises the main classes of functions and noise statistics considered. Sec-
tion  6.2 provides some of the most representative results obtained for cross sectional 
data. In Sect. 6.3, applications to time series, including systems with feedback loops, are 
exemplified.
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6.1  The main model classes and noise statistics of relevance for scientific 
and engineering applications

Regarding cross sectional data, the analysis has been focused mainly on three classes of 
models. They are the exponential functions, polynomials and power laws. For clarity of 
exposition, in the following only the results for bidimensional functions (z = f(x, y)) are 
discussed, because they can be easily visualized. The extension to higher dimensionality is 
obvious even if in practice of course the requirements, in terms of quantity and quality of 
the data, can become severe.

The exponential functions investigated in this paper have the form:

Polynomials are mathematical expressions that contain two or more algebraic terms, 
which can be added, subtracted, or multiplied (no division allowed!). In general, polyno-
mial expressions include at least one variable and typically also constants and positive 
exponents. Polynomial functions have the following form:

The power laws considered in this paper are monomials of the form:

where the exponents can be either positive or negative. With regard to the noise statistics, 
four of the most relevant distribution functions have been tested: Gaussian, uniform, Pois-
son and gamma distributed noise.

From a mathematical point of view, time series are sequences of data indexed (or listed) 
in time order. Also in the case of time series, the most widespread used types of functions 
have been considered, such as combinations of sines and cosines. A very important a deli-
cate class of equations is the one of autoregressive models. A generalized auto-regressive 
model of order n can be represented as:

where x1, ..., xn are the independent time series that are thought to influence y , t is time and 
xk(t − m) is the kth independent time series time-shifted of m temporal lags.

6.2  Overview of the main results of the numerical tests for cross sectional data

With regard to the improvement proposed to the first term of the AIC and BIC, the 
positive effects of introducing the entropy (SubSect. 3.1) have already been extensively 
documented (Murari 2019). As mentioned, the introduction of the  Zscore (SubSect. 3.2) 
becomes very useful if the statistics of the noise is known and is not Gaussian. Vari-
ous examples of the very relevant improvements, which can be achieved implement-
ing this version of the indicators, are reported in Table  3 for a variety of functional 
dependencies and noise statistics. The models, used to generate the synthetic data, are 
reported in the second column. The alternative models have been obtained by fitting 
the data with the same type of function using the MATLAB routine nlinfit. This is typi-
cally an extremely severe type of test and the systematic improvements obtained with 

(37)z(x, y) = axe(bx+cy) + dxe(ex+fy) + g

(38)z(x, y) = p00 + p10x + p20x
2 + p01y + p02y

2 + p03y
3 + p11x + p21x

2y + p12xy
2

(39)z(x, y) = cxayb

(40)
ŷ(t) = f (y(t − 1), y(t − 2),…… , x1(t − 1), x1(t − 2)

,… , x2(t − 1), x2(t − 2)… ..., xn(t − 1), xn(t − 2), ...)
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the proposed refinements of the criteria are therefore very encouraging. To interpret the 
entries of Table  3, one should consider that for the functions analysed the dominant 
term in the criteria is the goodness of fit, which is the same in both AIC ad BIC. This is 
the reason why the indicators give the same numerical results. The improved  AICGF and 
 BICGF outperform the traditional versions of the indicators except for the case of Gauss-
ian noise. Such a result is to be expected since for this type of noise also the alternative 
models converge on the right ones; this case has been indeed reported to show that the 
modified version of the criteria provide the same results as the AIC and BIC, when the 
hypotheses, under which the original versions have been derived, are satisfied.

In the case the statistics of the noise is unknown, the traditional versions of the AIC 
and BIC can in any case be improved by considering the mutual information between 
the model estimates and the residuals, as described in SubSect. 3.3. Table 4 reports a 
representative and quite challenging example to show the improvements, which can be 
achieved with this approach. The results, reported graphically in Fig.  4, show clearly 
how the discriminatory capability of the new version of the indicators is remarkably 
better than the one of the original AIC and BIC over the entire range of entries. Indeed, 

Table 3  Results of introducing the score in the indicators as proposed in subSect. 3.2. The cells in light blue 
indicate the cases, in which the BICGF and AICGF outperform the traditional versions of the indicators

Table 4  Examples to test the 
effects of introducing the MI 
in the indicators as proposed in 
SubSect. 3.3. Ref is the model 
used to generate the data

# Model k

1 0.204x2

sin

(
x1

(
0.46

x8.72
1

+
0.61

x2

)) 8

2 0.258
(
x3.08
3

− x3
)
− 0.03sin

(
x−12.62
3

)
6

3 31.23
(
x2.21
1

− sin
(
x2
))

5
4 50 + 10.45x1x3sin

(
1.07x3

)
6

Reference 2.x2.5
1
x−0.75
2

x2.5
3

4
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the gap between the right model and the others is much larger for  AICMI and  BICMI than 
for the traditional AIC and BIC.

Referring to the improvements of the complexity term in the AIC and BIC, the results 
reported in Table 1 for a very challenging case illustrate the potential of the proposed indi-
cators. It is typically quite difficult to find a case, for which the alternatives described in 
Sect.  4 do not provide a very noticeable improvement in the discriminatory capability 
of the original criteria. The same can be said even more strongly for the methods acting 
directly on the pdfs of the data, which are very powerful and produce practically always an 
appreciable improvement in the results, when the traditional versions of the indicators are 
in difficulty for reasons due to issues related to the data distributions. It has not possible to 
devise situations, in which reducing the relevance of bad parts of the pdfs decreased the 
quality of the final classification. Of course, the weights have to be properly chosen, in an 
objective and sound way.

The advantage of weighting the individual points, and not parts of the pdf, is not only 
implementation convenience but can be substantial as in the case reported in SubSect. 5.1. 
With regard to the robust statistics versions, even if somehow less powerful than weighting 
the entries of the DB, they are much less delicate to apply, since they tend to reproduce the 
results of the AIC and BIC in absence of outliers. It is therefore good practice, if appropri-
ate, to always implement the techniques suggested in Sect. 5 preliminary to the application 
of the other versions of the criteria. An important example, involving a system of equations 
with feedback, is reported in Sect. 7. To conclude, it should be mentioned that the results 
detailed for the AIC and BIC criteria are valid also for the other members of their families. 
It has indeed been checked that the modifications proposed in this work have the same 
effects also on the other information theoretic and Bayesian criteria derived from the origi-
nal AIC and BIC, such as those mentioned in Sect. 1.

Fig. 4  Results for the case shown in Table 4. Left column: the tested functions, in black the one generating 
the data plus 10% of additive Gaussian noise. Central column: comparison between AIC and  AICMI vs the 
number of entries. Right column: comparison between BIC and  BICMI vs the number of entries
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6.3  Overview of the main results of the numerical tests for time series 
including feedback loops

Time series are a very important class of signals. Indeed, they are often the natural out-
put of experiments in physic and engineering. Nowadays, time indexed data have become 
available also in many other disciplines, ranging from economics to medicine and the earth 
sciences. Time series analysis comprises methods for extracting meaningful statistics from 
the data. Models are used in time series forecasting to predict the future evolution of time 
series based on previously observed values.

To exemplify the potential of the developed enhancements, a synthetic time-series data-
base has been generated with the model:

where t is the time variable and � represents a noise term of the following form:

where �(a, b) is a random gamma noise with shape parameter a, scale parameter b and 
amplitude � . The analysis has been carried out for t ∈ [1s, 10s], dt = 0.001, a = b = 0.5 and 
� = [0.01, 0.05, 0.2, 0.5, 1 ]. In Fig. 5, a visual representation of the synthetic signals gener-
ated to carry out the analysis is reported. The competing model is a  9th-degree polynomial.

(41)y = 5 ⋅ e−t + 0.9 ⋅ t ⋅ sin(t) + 1 + �(t)

∈ (t) =

{
� ⋅ �(a, b); t ∈ (1s, 5s)

−� ⋅ �(a, b); t ∈ (5s, 10s)

Fig. 5  Examples of signal realisations generated with Eq. (41) for different levels of noise
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The model selection performance of the standard versions of AIC and BIC have then been 
compared with the proposed version  AICGF,  BICGF. The performance metric used is the num-
ber of times the model selection criteria succeed in finding the correct model over 100 noise 
instances. The statistical results are reported in Table  5. When the amplitude of the noise 
increases to realistic values, the superiority of the  BICGF,  AICGF over the standard version is 
clearly evident.

Among time series, a category of models very difficult to identify are typically those con-
taining feedback loops. Feedback takes place when some outputs of a system are routed back 
as inputs. The resulting chain of cause-and-effect forms a circuit called a feedback loop. The 
concept of cause-and-effect is problematic when applied to systems containing feedback, 
because causality becomes circular. Indeed, even in the basic case of only two subsystems, 
simple causal reasoning is delicate because the first system influences the second and second 
system influences the first. Reductionist approaches to the analysis typically break down and it 
is necessary to investigate the system as a whole (Åström and Murray 2008).

Given the inherent difficulties of modelling systems with feedback, the tools proposed 
in the present work can present quite competitive advantages. A representative example of 
application is constituted by the Lotka-Volterra equations, which are also known as the preda-
tor–prey equations (Bomze 1983). The Lotka-Volterra system comprises a pair of first-order 
nonlinear differential equations (Turchin 2003). They are often utilised to model the dynamics 
of biological systems, in which two species interact, one as a predator and the other as prey. 
The two populations are evolved through time according to the equations:

where x is the number of prey individuals, y is the number of some predator species and 
t represents time. The interaction of the two species is governed by the parameters α, β, γ 
and δ. This set of equations has been chosen not only for its difficulty but also for its gener-
ality. Indeed, the system of Eqs. (42) and (43) has the same mathematical form as the law 
of mass action for two chemical elements of concentrations [A] and [B]:

(42)
dx

dt
= �x − �xy

(43)
dy

dt
= �xy − �y

(44)
d[A]

dt
= k1[A] − k2[A][B]

(45)
d[B]

dt
= k3[B] − k4[A][B]

Table 5  Results of the tests 
performed for the case of 
synthetic data generated with 
Eq. (41). the table reports 
the number of successful 
identifications out of 100 
different noise realisations

� BIC BICGF AIC AICGF

0.01 100 100 100 100
0.1 0 59 0 59
0.2 0 64 0 63
0.5 0 68 0 68
1 0 64 0 64
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The Lotka-Volterra system of ordinary differential equations has been solved in MAT-
LAB using the ode45 function based on an explicit Runge–Kutta (4,5) formula. The ini-
tial conditions for the numerical case reported are x0 = y0 = 2 , and the solutions have 
been evaluated between 0 and 5  s for 1000 points. The chosen model’s coefficient are 
� = 2∕3, � = 4∕3, � = � = 1. A normal random noise, with mean � = 0 and standard 
deviation � = �perc ∗ mean(mean(x),mean(y)), has been added to the solution obtaining 
two noised signal xnoise, ynoise . The analysis has been carried out for �perc = 0.1, 0.2, 0.3 . A 
visual representation of an instance of the generated signals with �perc = 0.2 is reported in 
Fig. 6.

One of the most severe tests has been the comparison of the correct model, the one we 
used to generate the data, with one slightly more complex but much more flexible. This 
second model is reported below:

The number of parameters of the models has been used as a measure of complexity. The 
correct model has complexity equal to 5, while the alternative model has complexity equal 
to 6.

Given the well-known sensitivity of the Lotka-Volterra equations to noise (Bomze 
1983), the refinements of Sect. 3 are obvious candidates for the analysis. Assuming that 
no information about the noise is available, the evaluation of the goodness of fit with the 
help of the mutual information seems particularly appropriate. The evaluation of the BIC, 
 BICMI, AIC,  AICMI of the competing models for 100 instances of the noise, has provided 
the results reported in Table 6.

As expected, the benefits of the proposed improvements of the criteria become more 
evident the higher the noise. The standard BIC is less affected for a high number of time 
slices but, if only a reduced number of points is available, it becomes very vulnerable as 

(46)
dx

dt
= �x − �xy − �x2

(47)
dy

dt
= �xy − �y

Fig. 6  Time evolution of the 
Lotka-Volterra equations for the 
choice of parameters reported in 
the text
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well. In case of high disturbance levels and scarcity of examples, knowing the statistics of 
the noise can improve the situation, allowing to deploy the version of the criteria based on 
frequentist indicators, as formulated in SubSect. 3.2. Such an alternative, perfectly in line 
with the approach of developing utility-based context dependent indicators, can provide an 
important improvement with respect to the already more than satisfactory results reported 
in Table 6.

7  Examples of exploratory applications: genetic programming 
supported symbolic regression

In the last decades, complex optimization problems have been addressed with a series of 
techniques, grouped under the name of evolutionary computation or evolutionary algo-
rithms (Sumathi et  al. 2008). They are inspired by natural selection and have been very 
successful in many fields, ranging from bioinformatics and operations research to machine 
learning, automatic programming and even branches of the social sciences. From a techni-
cal perspective, a variety of methods are included in evolutionary computation, the main 
families being standard Genetic Algorithms (GA), Genetic Programming (GP), Evolu-
tion Strategies (ES) and Evolutionary Programming (EP) (Koza 1992). Motivated by the 
results in various disciplines, more recently the methods of evolutionary computation, and 
in particular genetic programming, have been applied to solve scientific and engineering 
problems. The so-called Genetic Programming supported Symbolic Regression (GPSR) 
has been deployed to determine the relationship between a dependent quantity and one or 
more independent regressors (also called ’predictors’). In particular, GPSR allows deriving 
model equations directly from the database available, without assuming a priori the math-
ematical form of the final equation (Murari 2019b, Murari 2020).

Genetic Programs (GPs) are designed to emulate the behaviour of living organisms and 
work with a population of individuals, e.g., mathematical expressions in our case, each 
representing a possible solution. The best individuals of each generation are selected as the 
parents for the application of the genetic tools (copy, mutation, cross over), to obtain the 
next set of candidate models, hopefully more performing than the previous ones. Contrary 
to traditional fitting routines, the task does not consist of identifying the parameters of a 
predefined class of equations and indeed no specific model is provided as a starting point. 
The objective is to determine the best mathematical form interpreting the data and this is 
achieved by combining mathematical building blocks such as constants, operators, basic 
analytic functions, state variables and even user defined elements (Koza 1992) (Hingston 
2008).

Regarding the knowledge representation, the candidate mathematical formulas are 
codified as trees, which have a very high expressive capability, typically not limiting the 

Table 6  Results for the 
traditional version of the AIC 
and BIC criteria, compared with 
the accuracy of the improved 
version of the indicators 
described in SubSect. 3.3

The table reports the number of successful identifications out of 100 
different noise realisations

�perc BIC BICMI AIC AICMI

0.1 100 100 90 99
0.2 99 100 87 97
0.3 98 100 83 96
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potential of the developed tools for scientific and engineering applications. On the other 
hand, representing formulas as trees is particularly suited to the implementation of the 
genetic programming operators.

The fundamental aspect of this type of evolutionary programmes consists of deter-
mining the quality of the candidate models. This is achieved with a specific metric 
called fitness function (FF). The FF is typically a cost function, i.e., an indicator to be 
minimised. On the basis of the FF, the best candidate models of each generation are 
selected and they are granted a higher probability to have descendants. Therefore, the 
better the FF of an individual (the lower the value of its FF), the higher is the probabil-
ity that its genes can be passed on to the next generations.

Originally the most widely implemented form of the fitness function was the MSE. 
Nowadays, to find a better trade-off between goodness of fit and complexity, in prac-
tice model selection criteria of the AIC and BIC families are the most often adopted. 
Consequently, improving these indicators with the ameliorations proposed in this work 
is expected to increase the performance of GPSR as well. This has been checked with 
a series of systematic tests to identify tens of equations and models from the Feynman 
Lectures on Physics, adopting an approach very similar to the one described in (Udrescu 
and Tegmark 2020). Some representative cases are reported in Table  7. Again, the 
results have been very positive, in the sense that the appropriate choice of the cost func-
tion always tends to improve the selectivity of GPSR. This has been verified for most 
improvements described in Sect.s 3, 4 and 5.

To further exemplify the benefits of adopting ameliorated versions of the fit-
ness function in GPSR, again a quite challenging case of a system with feedback is 
described in the following, namely the set of Lotka-Volterra ordinary differential 
Eqs.  (42), (43). The initial conditions in this case are x0 = y0 = 2 , and the solutions 
have been evaluated between 0 and 13 s in 500 points. The chosen model’s coefficients 
are: � = 2∕3, � = 4∕3, � = � = 1. A normal random noise with mean � = 0 and standard 
deviation � = 0.15 has been added to the solution. Also, the signals have been contami-
nated with outliers, obtained summing a quantity equals to 4 ⋅ � to 50 randomly selected 
points in the time series. The two obtained signals have been indicated with xout, yout . 
The two synthetic signals have been given as input to the GPSR algorithm.

The performances of the algorithm with two different fitness functions have been 
compared. The first fitness function used is the standard BIC version, while the second 
one is the  BICRob, described in SubSect. 5.2 The most important configuration param-
eters for the GPSR runs are reported in Table 8. The k-step ahead prediction parameter 
represents the number of forward steps for evaluating the model residuals.

For the modelling of the xout, the two models identified by the algorithm using the 
BIC and the  BICRob are reported in Table 9. From inspection of Table 9, it can be noted 
that the algorithm could not converge on the right solution with the standard version of 
the BIC as the fitness function. On the contrary, deploying the enhanced  BICRob, the 
algorithm manages to find the correct model. Indeed, the corresponding Eq. (46.2) can 
be rewritten as:

Approximating the finite difference as the derivative and substituting Δt = 0.0261 , 
Eq. (47) becomes:

(48)
xout(t) − xout(t − 1)

Δt
=

0.007

Δt
∗ xout(t − 1) −

0.043

Δt
yout(t − 1) ⋅ xout(t − 1)



S2853A practical utility‑based but objective approach to model…

1 3

Ta
bl

e 
7 

 S
om

e 
ph

ys
ic

al
 m

od
el

s s
el

ec
te

d 
fo

r a
pp

lic
at

io
n 

of
 th

e 
im

pr
ov

em
en

ts
 o

f S
ec

t. 
3 

an
d 

4

Fe
yn

m
an

 E
q

Eq
ua

tio
n

C
or

re
ct

 m
od

el
A

lte
rn

at
iv

e 
m

od
el

I.6
.2

0
f
=

e−
�
2

2
�
2

√ 2
�
�
2

f
=
b
(1
)
e−

�
b
(2
)

2
�
2

√ 2
�
�
2
+
b
(3
)

f
=
b
(1
)
e−

�
b
(2
)

2
�
2

√ 2
�
�
2
+
b
(3
)
e−

�
b
(4
)

2
�
2

√ 2
�
�
2
+
b
(5
)

I.1
3.

4
K
=

1 2
m
(v

2
+
u
2
+
w
2
)

K
=
m
( b
(1
)v

2
+
b
(2
)u

2
+
b
(3
)w

2
) +

b
(4
)

K
=
m
( b
(1
)v

2
+
b
(2
)u

2
+
b
(3
)w

2
+
b
(4
)v
+
b
(5
)u

+
b
(6
)w
) +

b
(7
)

I.3
4.

14
�
=

1
+
v∕
c

√ 1
−
v2
∕
c2
�
0

�
=

b
(1
)+

b
(2
)v
∕
c

√ 1
−
v2
∕
c2

�
0
+
b
(3
)

�
=

b
(1
)+

b
(2
)v

c
+

b
(3
)v
2

c
√ 1

−
v2
∕
c2

�
0
+
b
(4
)

I.3
7.

4
I
=
I 1
+
I 2
+
2
√ I 1

I 2
co
s�

I
=
b
(1
)I
1
+
b
(2
)I
2
+
b
(3
)√ I 1

I 2
co
s�

+
b
(4
)

I
=
b
(1
)I
1
+
b
(2
)I
2
+
b
(3
)√ I 1

I 2
co
s�

+
b
(4
)I
1
I 2
co
s�

+
b
(5
)

I.4
4.

4
E
=
n
k b
T
ln
( V

2

V
1

)
E
=
b
(1
)n
k b
T
ln
( V

2

V
1

) +
b
(2
)

E
=
b
(1
)n
k b
T
ln
( V

2

V
1

) +
b
(2
)n

2
k b
T
ln
( V

2

V
1

) +
b
(3
)

II
.1

1.
28

�
=
1
+

n
�

1
−

n
� 3

�
=
b
(1
)
+

b
(2
)n
�

1
−

n
� 3

�
=
b
(1
)
+

b
(2
)n
�

1
−

n
� 3

+
b
(3
)n

2
�
2

1
−

n
� 3

II
.3

5.
21

M
=
n
p
�
M
ta
n
h
( �

M
B

k b
T

)
M

=
b
(1
)n

p
�
M
ta
n
h
( �

M
B

k b
T

) +
b
(2
)

M
=
b
(1
)n

p
�
M
ta
n
h
( �

M
B

k b
T
+
b
(2
)) +

b
(3
)

II
I.8

.5
4

p
�
=
��
�
( E

t h

) 2
p
�
=
b
(1
)�
��
( E

t h
+
b
(2
)) 2

+
b
(3
)

p
�
=
b
(1
)�
��
( E

t h
+
b
(2
)) 2

+
b
(3
)s
in
( E

t h

) 2
+
b
(5
)

II
I.1

4.
14

I
=
I 0

( e
q
V
e

k b
T
−
1

)
I
=
b
(1
)I
0

( e
q
V
e

k b
T
−
b
(2
))

+
b
(3
)

I
=
b
(1
)I
0

( e
q
V
e

k b
T
−
b
(2
))

+
b
(3
)I
0

( e
q
V
e

k b
T

)
+
b
(4
)



S2854 A. Murari et al.

1 3

Equation  (47) is exactly Eq.  (42) that was used to generate the data. The model 
parameters can indeed be refined in a post-processing fitting to recover exactly the 
original equation.

The same has been done for the modelling of yout.The results are reported in 
Table 10. In this case, Eq. (49.2) can be rewritten as:

Approximating the finite difference as the derivative and substituting Δt = 0.0261 , 
Eq. (50) becomes:

Which is again equal to Eq. (43) implemented to generate the data. Again, without 
the proposed improvement of the fitness function, GPSR practically never manages to 
converge on the right model.

(49)
dxout

dt
= 0.27 ∗ yout(t − 1) − 1.64 ⋅ yout(t − 1) ⋅ xout(t − 1)

(50)
yout(t) − yout(t − 1)

Δt
=

0.0417

Δt
∗ yout(t − 1) +

0.02718

Δt
yout(t − 1) ⋅ xout(t − 1)

(51)
dyout

dt
= 1.59 ∗ yout(t − 1) + 1.04 ⋅ yout(t − 1) ⋅ xout(t − 1)

Table 8  The table reports 
the number of successful 
identifications out of 100 
different noise realisations. 
Configuration parameters for the 
SR via GP algorithm

Population size 100

Number of generations 50
Max. time shift 1
k-step ahead prediction 10
Active functions ∗,+,−,÷, ab;ea

Table 9  Models selected by SR via GP for xout

models

BIC xout(t) = 0.9898 ∗ xout(t − 1) − 0.032 ∗ yout(t − 1) − 5, 9e − 4 ⋅ exp
(
yout(t − 1) ⋅ xout(t − 1)

)
(46.1)

BICRob xout(t) = 1.007 ∗ xout(t − 1) − 0.043 ⋅ yout(t − 1) ⋅ xout(t − 1)(46.2)

Table 10  Models selected by SR via GP for yout

models

BIC yout(t) = 0.9628 ∗ yout(t − 1) − exp
(

yout(t − 1)2
)

∗ 5, 9e − 5 − 2.9e − 4 ⋅ exp
(

yout(t − 1)⋅

xout(t − 1)
)

+ 0.01739 ⋅ yout(t − 1) ⋅ xout(t − 1)(49.1)

BICRob yout(t) = 0.9583 ∗ yout(t − 1) + 0.02718 ⋅ yout(t − 1) ⋅ xout(t − 1)(49.2)
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8  Discussion and conclusions

The identification of the most adequate equations, to model a phenomenon given the 
available data, is a fundamental task in both science and engineering. The holy grail 
of model selection is the definition of a universal indicator that would always produce 
the correct hierarchy of the candidate models. In the effort to identify such a general 
indicator, powerful and conceptually sound families of criteria have been devised, in the 
framework of information theory and Bayesian statistics. The AIC is the representative 
of the first class and BIC of the second. These criteria, and all the numerous variants 
derived from them, are all informed by the conceptual objective of identifying a general 
solution valid for all applications.

In practice, the most widely used versions of the model selection criteria AIC and 
BIC assume that the data are affected by Gaussian, zero sum additive noise. This is a 
consequence of the fact that, in most practical applications in science and engineering, 
it is often very difficult, if not impossible, to compute the likelihood of the data given 
the model. In this situation, the AIC and BIC have been reformulated as reported in 
Eqs.  (4) and (5). These versions of the criteria can fail badly, when the data does not 
verify the underlying assumptions and mainly for three orders of reasons. First, because 
the statistical information about the residuals, limited to their MSE and variance, can 
become insufficient to discriminate properly between the candidate models. The second 
main weakness of the popular versions of the AIC and BIC, resides in their rudimental 
quantification of complexity, which can result in major blunders. The last aspect, ren-
dering the traditional versions of AIC, BIC and their families sometimes inadequate, 
is the implicit assumption that all the parts of the data pdfs are equally relevant and 
of equal quality. All these limitations are particularly dangerous and penalising when 
investigating real life complex systems. The practitioners would therefore certainly ben-
efit from more flexible but at the same time not arbitrary versions of MSC.

Adopting an objective utility-based approach to model selection, various improve-
ments of the AIC and BIC families of criteria have been devised, which alleviate all the 
previously mentioned limitations of the traditional forms. The proposed modifications 
constitute an array of tools, giving the user ample choice of the most adequate indica-
tors to implement, depending on the application, the goals of the analysis and the prior 
information available. In most situations, the new versions of the criteria provide better 
discriminatory capability. The weighting of the entries and the robust statistics indica-
tors proposed in Sect. 5 are preliminary measures that have always a positive effect on 
the final selection. Exploiting all the statistical information contained in the residuals 
and not only the MSE, when it is not possible to calculate the likelihood of the mod-
els, is also very beneficial. A better quantification of the model complexity can also be 
very useful in many contexts. Moreover, the requirements of the developed improve-
ments, in terms of both data quality and computational resources, are not significantly 
more demanding than those of the original versions of the criteria. Of course, in full 
harmony with the conceptual framework proposed, none of the proposed advances can 
claim absolute validity or be applied blindly. Their deployment requires serious consid-
erations and conscious decisions by the analysts about their potential validity. On the 
other hand, the context, in which each one is more appropriate, can be determined quite 
clearly in an objective way. Moreover, the appropriate improvements can be very valu-
able particularly in difficult situations, including complex systems, high uncertainties 
and feedback loops. It is also worth pointing out that, even if in the paper the discussion 
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has been particularised for regression, the same improvements can be also very useful 
for classification and density estimation.

To avoid difficulties in the application of the proposed enhanced criteria, no recourse 
has been made to the prior probability of the models and their Bayes factors. Assigning 
a probability to a model is an issue, which has been the subject of much discussion for 
many years (Key, Pericchi, and Smith, 1999). Difficulties such as the Jefferys-Lindley 
paradox and the use of improper priors are not solved to the present day and nonin-
formative priors present their own issues (Spanos 2013). The fact that the developed 
indicators do not require the definition of a prior probability of the model is therefore 
to be considered a positive. On the other hand, coherently with the aim of providing 
a series of objective utility-based tools, if solid prior probabilities can be assigned to 
the candidate models, it would be important to allow the user to take advantage of that 
information. To this end, one can resort to a solution analogous to the odds of the Bayes 
factors. Indicating with πk the prior of the k model, the inverse odd ratios (INVODDR) 
for the various candidates can be calculated as:

Where CRIT indicates any of the proposed criteria and the sum is over the candidate 
models. Given the fact that the proposed indicators are cost functions to be minimised, 
the model with the lowest odd ratio is the one to be selected. Of course, great care must 
be taken, because a strong subjective element can be introduced by the selection of the 
priors πi.

In terms of future developments, as a consequence of their performance and their 
simple implementation, the proposed new versions of the selection criteria are expected 
to be deployed quite systematically in various fields of complex science, ranging from 
high temperature plasmas (Ongena 2004; Murari 2015; Puiatti 2002; Saarelma 2018) 
(Martini 2007) to atmospheric physics (Gaudio 2013). Other interesting applications 
could be found in the regularization of recent tomographic inversion methods (Craci-
unescu 2009; Odstrčil 2012) and machine learning. From a methodological perspec-
tive, the proposed criteria could be further improved by implementing more advanced 
metrics, such as the geometric distance (Amari and Nagaoka 2000; Craciunescu 2016; 
Murari 2013) (Craciunescu 2018) and the Venn definition of probability (Dormido-
Canto 2013). It should also be mentioned that the proposed tools and techniques can 
be applied equally well to the outputs of large-scale simulations, which nowadays can 
produce enormous amounts of data very difficult to interpret (Dubois 2018). The solu-
tions proposed are also expected to contribute to other delicate learning tasks, such as 
transfer learning, which have become quite important in modern societies (Robert and 
Adrian 1995).

Author contributions A.M conceptualization and writing; M.G and R.R numerical tests; M.L, L.S. and 
P.G. numerical tests; M.G coordination; M.L and R.R prepared figures; A.M. theoratical developments; All 
authors reviewed the manuscript

Funding Open access funding provided by Università degli Studi di Roma Tor Vergata within the CRUI-
CARE Agreement. No funding was received to assist with the preparation of this manuscript.

Data availability The datasets generated during and/or analysed during the current study are either publicly 
available online (https:// osf. io/ drwcq/) or available from the corresponding author on reasonable request.

(52)INVODDRk = �kCRITk∕
(∑

�iCRITi

)

https://osf.io/drwcq/


S2857A practical utility‑based but objective approach to model…

1 3

Declarations 

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this 
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control. https:// doi. 
org/ 10. 1109/ TAC. 1974. 11007 05

Amari S, Nagaoka H (2000) Methods of Information Geometry. Oxford University Press, Oxford
Ando T (2010) Bayesian model selection and statistical modeling. CRC Press, Boca Raton
Arndt, C. (2004). Information Measures, Information and its Description in Science and Engineering. 

Springer Series: Signals and Communication Technology. doi:978–3–540–40855–0
Åström KJ, Murray RM (2008) What is feedback?", Feedback Systems: An Introduction for Scientists and 

Engineers. Princeton University Press, Princeton
Bailly F, Longo G (2011) Mathematics and the Natural Sciences. Imperial College Press, London
Bartlett P, Mendelson S (2002) Rademacher and gaussian complexities: risk bounds and structural results. J 

Mach Learn Res 3:463–482
Baudot P, Tapia M, Bennequin D, Goaillard JM (2019) Topological Information Data Analysis. Entropy 

21(9):869
Bomze IM (1983) Lotka-Volterra equation and replicator dynamics: A two-dimensional classification. Biol 

Cybern 48(3):201–211. https:// doi. org/ 10. 1007/ bf003 18088
Bousquet, O. (2004). Introduction to statistical learning theory. Biol Cybern 3176(1):169–207. https:// doi. 

org/ 10. 1007/ 978-3- 540- 28650-9_8
Breiman L (2001) Statistical modeling: the two cultures. Stat Sci 16:199–231. https:// doi. org/ 10. 1214/ ss/ 

10092 13726
Cavanaugh JE, Neath AA (2019) The Akaike information criterion. Wires Comput Stat 11(3):e1460
Chen Q, Xue B, Zhang M (2020) Rademacher complexity for enhancing the Generalisation of Genetic Pro-

gramming for symbolic regression. IEEE Transactions on Cybernetics. https:// doi. org/ 10. 1109/ TCYB. 
2020. 30043 61

Claeskens G (2016) Statistical model choice. Annu Rev Stat Appl 3(1):233–256
Corder GW, Foreman DI (2014) Nonparametric Statistics: A Step-by-Step Approach. Wiley, New York
Craciunescu T (2009) A comparison of four reconstruction methods for JET neutron and gamma tomogra-

phy. Nucl Instrum Methods Phys Res 605(3):374–383. https:// doi. org/ 10. 1016/j. nima. 2009. 03. 224
Craciunescu T (2016) Geodesic distance on Gaussian manifolds for the robust identification of chaotic sys-

tems. Nonlinear Dyn 86(1):677–693. https:// doi. org/ 10. 1007/ s11071- 016- 2915-x
Craciunescu T, Peluso E, Murari A, Gelfusa M (2018) Maximum likelihood bolometric tomography for the 

determination of the uncertainties in the radiation emission on JET TOKAMAK. Rev Scientific Instru-
ments 89(5):053504. https:// doi. org/ 10. 1063/1. 502788

D’Espargnat B (2002) On Physics and Philosophy. Princeton University Press, Ocford
Ding J (2018) Model selection techniques – an overview. IEEE Signal Process Mag 35(6):16–34. https:// doi. 

org/ 10. 1109/ MSP. 2018. 28676 38
Dormido-Canto S (2013) Development of an efficient real-time disruption predictor from scratch on JET 

and implications for ITER. Nucl Fusion 53(11):113001
Dubois G (2018) Modeling and Simulation. CRC Press, Boca Raton
Farcomeni A, Greco L (2013) Robust methods for data reduction. Chapman and Hall/CRC Press, Boca 

Raton

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1007/bf00318088
https://doi.org/10.1007/978-3-540-28650-9_8
https://doi.org/10.1007/978-3-540-28650-9_8
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1109/TCYB.2020.3004361
https://doi.org/10.1109/TCYB.2020.3004361
https://doi.org/10.1016/j.nima.2009.03.224
https://doi.org/10.1007/s11071-016-2915-x
https://doi.org/10.1063/1.502788
https://doi.org/10.1109/MSP.2018.2867638
https://doi.org/10.1109/MSP.2018.2867638


S2858 A. Murari et al.

1 3

Gaudio, P., and et al. (2013). Design and development of a compact Lidar/Dial system for aerial surveil-
lance of urban areas. Proceedings of SPIE - The International Society for Optical Engineering.

Guiasu S (1986) Grouping data by using the weighted entropy. J Stat Plan Inference 15:63–69
Hettmansperger TP, McKean JW (1998) Robust nonparametric statistical methods. John Wiley, New York
Hingston P., L. Barone, and Z. Michalewicz (Editors), Design by Evolution, Natural Computing Series, 200

8, Springer, ISBN 3540741097Huber, P. J. (1981). Robust statistics. New York: John Wiley and Sons, 
Inc.

Huber PJ (1981) Robust statistics. John Wiley & Sons, Inc, New York
Karpinski M, Macintyre A (1997) Polynomial bounds for VC dimension of sigmoidal and general Pfaffian 

neural networks. J Comput Syst Sci 54(1):169–176. https:// doi. org/ 10. 1006/ jcss. 1997. 1477
Kelbert, M., Stuhl, I., and Suhov, Y. (2017). Weighted Entropy and its Use in Computer Science and 

Beyond. Analytical and Computational Methods in Probability Theory - 1st International Conference, 
ACMPT 2017, Proceedings.

Kenneth PB, Anderson DR (2002) Model Selection and Multi-Model Inference: A Practical Information-
Theoretic Approach. Springer, Berlin

Key, J. T., Pericchi, L. R., and Smith, A. F. (1999). Bayesian model choice: what and why. Bayesian 
statistics.

Koza JR (1992) Genetic Programming: on the Programming of Computers by Means of Natural Selection. 
MIT Press, Cambridge

Lofti S, Izmailov P, Benton G, Goldblum M, Wilson AG (2022) Proceedings of the 39th International Con-
ference on Machine Learning. PMLR 162:14223–14247

Mark C, Metzner C, Lautscham L et al (2018) Bayesian model selection for complex dynamic systems. Nat 
Commun 9:1803. https:// doi. org/ 10. 1038/ s41467- 018- 04241-5

Martini S et al (2007) Active MHD control at high currents in RFX-mod Nucl. Fusion 47:783
McDonald, J. D., Shalizi, C. R., and Schervish, M. (2011). Estimated VC dimension for risk bounds. Neural 

Computation.
Meyers RA (2009) Encyclopedia of Complexity and Systems Science. Springer, New York
Miller AJ (2002) Subset selection in regression. CRC Press, Boca Raton
Mitchell M (2009) Complexity: A Guided Tour. Oxford University Press, Oxford
Murari A (2012) A statistical methodology to derive the scaling law for the H-mode power threshold using a 

large multi-machine database. Nucl Fus 52(6):063016
Murari A (2013) Clustering based on the geodesic distance on Gaussian manifolds for the automatic clas-

sification of disruptions. Nucl Fus. https:// doi. org/ 10. 1088/ 0029- 5515/ 53/3/ 033006
Murari A (2019) On the use of entropy to improve model selection criteria. Entropy 21(4):394. https:// doi. 

org/ 10. 3390/ e2104 0394
Murari A (2021) Alternative definitions of complexity for practical applications of model selection criteria. 

Complexity. https:// doi. org/ 10. 1155/ 2021/ 88871 71
Murari A, Peluso E, Gelfusa M, Lupelli I, Gaudio P (2015) A new approach to the formulation and valida-

tion of scaling expressions for plasma confinement in tokamaks. Nucl Fus 55(7):073009
Murari A, Lungaroni M, Peluso E et al (2019) A model falsification approach to learning in non-stationary 

environments for experimental design. Sci Rep 9:17880
Murari A, Peluso E, Lungaroni M (2020) Data driven theory for knowledge discovery in the exact sciences 

with applications to thermonuclear fusion. Sci Rep. https:// doi. org/ 10. 1038/ s41598- 020- 76826-4
Odstrčil M (2012) Modern numerical methods for plasma tomography optimisation. Nucl Inst Methods 

Phys Res Sect A-Accel Spectrom Detect Assoc Equip 686:156–161
Ongena J (2004) Towards the realization on JET of an integrated H-mode scenario for ITER. Nucl Fus 

44(1):124–133. https:// doi. org/ 10. 1088/ 0029- 5515/ 44/1/ 015
Piqueira, J.R.C.. (2018). Dynamic Complexity Measures: Definition and Calculation. https:// doi. org/ 10. 

20944/ prepr ints2 01801. 0099. v1
Puiatti M (2002) Radiation pattern and impurity transport in argon seeded ELMy H-mode discharges in 

JET. Plasma Phys and Control Fusion. https:// doi. org/ 10. 1088/ 0741- 3335/ 44/9/ 305
Ricardo L-R, Mancini H, Calbet X (1995) A statistical measure of complexity. Phys Lett A 

209(5–6):321–326
Robert KE, Adrian E (1995) Bayes factors. Raftery J Am Stat Assoc 90(430):773–795
Rossi R (2020) Upgrading model selection criteria with goodness of fit tests for practical applications. 

Entropy 22(4):447
Rousseeuw PJ, Hubert M (2011) Robust statistics for outlier detection. Wiley Interdiscip Rev: Data Mining 

and Knowl Discov 1(1):73–79. https:// doi. org/ 10. 1002/ widm.2
Saarelma S (2018) Integrated modelling of H-mode pedestal and confinement in JET-ILW. Plasma Phys 

Control Fusion. https:// doi. org/ 10. 1088/ 1361- 6587/ aa8d45

https://doi.org/10.1006/jcss.1997.1477
https://doi.org/10.1038/s41467-018-04241-5
https://doi.org/10.1088/0029-5515/53/3/033006
https://doi.org/10.3390/e21040394
https://doi.org/10.3390/e21040394
https://doi.org/10.1155/2021/8887171
https://doi.org/10.1038/s41598-020-76826-4
https://doi.org/10.1088/0029-5515/44/1/015
https://doi.org/10.20944/preprints201801.0099.v1
https://doi.org/10.20944/preprints201801.0099.v1
https://doi.org/10.1088/0741-3335/44/9/305
https://doi.org/10.1002/widm.2
https://doi.org/10.1088/1361-6587/aa8d45


S2859A practical utility‑based but objective approach to model…

1 3

Schmid M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 
324(5923):81–85. https:// doi. org/ 10. 1126/ scien ce. 11658 93

Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464. https:// doi. org/ 10. 1214/ 
aos/ 11763 44136

Spanos A (2013) Who should be afraid of the Jeffreys-Lindley paradox? Philos Sci 80(1):73–93. https:// doi. 
org/ 10. 1086/ 668875

Stoica P, Selen Y (2004) Model-order selection: a review of information criterion rules. IEEE Signal Pro-
cess Mag 21(4):36–47. https:// doi. org/ 10. 1109/ MSP. 2004. 13111 38

Sumathi S, Hamsapriya T, Surekha P (2008) Evolutiory intelligence. Springer Verlag, Berlin
Turchin P (2003) Complex Population Dynamics: a Theoretical/Empirical Synthesis. Princeton University 

Press, Princeton
Udrescu, S., and Tegmark, M. (2020). AI Feynman: a Physics-Inspired Method for Symbolic Regression. 

Science Advances.
Vapnik V (2000) The nature of statistical learning theory. Springer, Berlin
Wang Z, Bovik AC (2009) Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. 

IEEE Signal Process Mag 26(1):98–117. https:// doi. org/ 10. 1109/ MSP. 2008. 930649
Wesson J (2004) Tokamaks. Oxford Clarendon Press, Oxford
Wilcox R (2012) Introduction to robust estimation and hypothesis testing, Statistical Modeling and Decision 

Science. Elsevier/Academic Press, Amsterdam
Zhou Y, Herath HM (2016) Evaluation of alternative conceptual models for groundwater modelling. Geosci 

Front. https:// doi. org/ 10. 1016/j. gsf. 2016. 02. 002

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Andrea Murari1,2 · Riccardo Rossi3 · Luca Spolladore3 · Michele Lungaroni3 · 
Pasquale Gaudio3 · Michela Gelfusa3

 * Michela Gelfusa 
 gelfusa@ing.uniroma2.it

 Andrea Murari 
 andrea.murari@istp.cnr.it

 Riccardo Rossi 
 r.rossi@ing.uniroma2.it

 Luca Spolladore 
 luca.spolladore@uniroma2.it

 Michele Lungaroni 
 michele.lungaroni@uniroma2.it

 Pasquale Gaudio 
 gaudio@ing.uniroma2.it

1 Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati 
Uniti 4, 35127 Padua, Italy

2 Istituto per la Scienza e la Tecnologia Dei Plasmi, CNR, Padua, Italy
3 Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 

Rome, Italy

https://doi.org/10.1126/science.1165893
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1086/668875
https://doi.org/10.1086/668875
https://doi.org/10.1109/MSP.2004.1311138
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1016/j.gsf.2016.02.002

	A practical utility-based but objective approach to model selection for regression in scientific applications
	Abstract
	1 Introduction: a short overview of model selection criteria and machine learning to motivate a utility-based approach
	2 The main aspects of model selection and their representation in terms of negative utility
	3 Improved cost functions for the goodness of fit term
	3.1 The entropy of the residuals
	3.2 Frequentist goodness of fit tests
	3.3 Information theoretic estimate of the goodness of fit

	4 Improving the measures of complexity
	4.1 A falsification approach to model selection
	4.2 Quantifying model flexibility (MF)
	4.3 An information theoretic quantifier of complexity for AIC

	5 The utility-based approach applied to the probability distribution of the data
	5.1 Weighting the various parts of the pdf
	5.2 Robust statistics

	6 Results of numerical tests
	6.1 The main model classes and noise statistics of relevance for scientific and engineering applications
	6.2 Overview of the main results of the numerical tests for cross sectional data
	6.3 Overview of the main results of the numerical tests for time series including feedback loops

	7 Examples of exploratory applications: genetic programming supported symbolic regression
	8 Discussion and conclusions
	References




