
Neurocomputing 568 (2024) 127058

A
0
n

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

4Ward: A relayering strategy for efficient training of arbitrarily complex
directed acyclic graphs
Tommaso Boccato a,∗, Matteo Ferrante a, Andrea Duggento a, Nicola Toschi a,b

a Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
b A.A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, USA

A R T I C L E I N F O

Communicated by M. Sanguineti

Keywords:
Neural networks
Complex networks
Temporal computation complexity

A B S T R A C T

Thanks to their ease of implementation, multilayer perceptrons (MLPs) have become ubiquitous in deep
learning applications. The graph underlying an MLP is indeed multipartite, i.e. each layer of neurons only
connects to neurons belonging to the adjacent layer. In contrast, in vivo brain connectomes at the level
of individual synapses suggest that biological neuronal networks are characterized by scale-free degree
distributions or exponentially truncated power law strength distributions, hinting at potentially novel avenues
for the exploitation of evolution-derived neuronal networks. In this paper, we present ‘‘4Ward’’, a method and
Python library capable of generating flexible and efficient neural networks (NNs) from arbitrarily complex
directed acyclic graphs. 4Ward is inspired by layering algorithms drawn from the graph drawing discipline
to implement efficient forward passes, and provides significant time gains in computational experiments with
various Erdős-Rényi graphs. 4Ward not only overcomes the sequential nature of the learning matrix method,
by parallelizing the computation of activations, but also addresses the scalability issues encountered in the
current state-of-the-art and provides the designer with freedom to customize weight initialization and activation
functions. Our algorithm can be of aid for any investigator seeking to exploit complex topologies in a NN design
framework at the microscale.
1. Introduction

Thanks to their ease of implementation, multilayer perceptrons
(MLPs) have become ubiquitous in deep learning (DL) applications. Vir-
tually all state-of-the-art neural architectures (e.g., convolutional neu-
ral networks [4,5], variational autoencoders [6], transformers [7]) in-
clude MLPs among their functional blocks. Amongst other advantages,
a forward pass in an MLP reduces to a series of matrix multiplications,
guaranteeing computational efficiency.

The graph underlying an MLP, however, is multipartite. In other
words, each layer of neurons only connects to neurons belonging
to the adjacent layer. In this context, studies conducted on in vivo
brain connectomes, at the level of individual synapses, suggest that
biological neuronal networks are characterized by scale-free degree
distributions [8] or exponentially truncated power law strength dis-
tributions [9]. These architectural differences between biological and
artificial neural networks (NNs) suggest potentially novel avenues for
the exploitation of evolution-derived neuronal networks as artificial
NNs by relaxing the topological constraints of MLPs.

In the current DL landscape, there is no satisfactory tool that allows
to efficiently experiment, on the microscale, with analog (i.e., nonspik-
ing) NNs based on arbitrarily complex topologies. Current strategies
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to convert complex networks into NNs can be divided into three main
categories: topology-dependent, layer-specific and generalist.

Topology-dependent approaches include strategies in which NNs are
generated by randomly rewiring a fraction of the edges of a MLP [10–
14]. Typically, these models can be trained with standard backpropa-
gation; however, the range of usable topologies is constrained by the
random interpolation procedure used on the original MLP. Addition-
ally, the strategy presented in [15] is compatible with Barabási–Albert
graphs [16] only, and the difficulties related to the extension of back-
propagation toward nonlayered graphs is overcome through the use of
evolutionary algorithms for training the networks.

Layer-specific approaches include [17], where the focus is placed on
the interlayer connections of MLPs. The procedure employed (sparse
evolutionary training - SET), is capable of inducing sparsity in the
MLPs’ bicliques by pruning the weakest connections. The produced
topologies, however, are a result of the SET procedure and, hence,
not defined a priori. Also the framework presented in [18] allows the
definition of a trainable topology through a tool called relational graph.
Still, the expressiveness of relational graphs is limited to the bipartite
graphs that underlie an MLP.
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Fig. 1. Time complexity evaluation of the 4Ward algorithm. The process starts with the generation of Erdős-Rényi (ER) [1] graphs from a predetermined parameter grid. Each
undirected network is then converted into a DAG following a random heuristic. As highlighted in purple, 4Ward is able to process the DAGs produced and return deployable NNs.
Finally, the execution times of the forward passes of the networks are measured and compared with those obtained from the baselines [2,3].
Finally, the generalist category is mostly represented by the learning
matrix method [2,19]. The learning matrix is an augmented adjacency
matrix on which forward and backward operations are performed, i.e. it
includes additional rows and columns that contain the state information
required to compute the forward/backward passes. The framework
accepts directed acyclic graphs (DAGs) represented as upper triangular
matrices; however, neuron activations are computed sequentially w.r.t.
the network nodes. As a consequence, the method does not scale with
the network size. The recent work by Stier et al. deepstruct [3,20],
faces a similar issue. In the model’s forward pass, neural activations
are decomposed using a series of matrix multiplications, which are
defined based on a pre-calculated partitioning of the NN nodes. This
decomposition leads to a reduced number of matrix multiplications
when the graph has a density close to zero, demonstrating sublinear
dependence on the number of neurons; otherwise, the required number
of multiplications can exhibit a quadratic dependence.

Outside the three discussed categories, several NNs architectures
have computational graphs defined on a macroscopic scale [21–23]. In
these works, nodes typically represent differentiable functional blocks
(e.g., linear layers, convolutions), while the edges are tensors. Neural
architecture search, in both its ‘‘classical’’ [24] and differentiable [25,
26] variants, also falls within this body of research. Although these
works have achieved remarkable results in computer vision and natural
language processing, they do not address the requirements for which
microscopic-scale models were designed: transforming and combining
features without a specific spatial relationship.

In order to overcome the mentioned microscale-related difficulties,
in this paper, we present ‘‘4Ward’’, a method and Python library1

capable of generating flexible and efficient NNs from arbitrary DAGs.
The method minimizes the number of matrix multiplications required
to perform a forward pass, and is inspired by layering algorithms
drawn from the graph drawing discipline to implement efficient forward
passes. The 4Ward functional blocks are deployable as modules com-
patible with PyTorch [27]. An overview of the experimental protocol
developed to evaluate the time complexity of the 4Ward algorithm is
reported in Fig. 1.

2. Methods

The computational graph is a powerful formalism used to repre-
sent NNs. Nodes are typically associated with function-variable pairs,
(𝑓𝑣, 𝑎𝑣), 𝑣 ∈  ⊂ N, while each edge is associated with a weight
𝑤𝑢𝑣, (𝑢, 𝑣) ∈  ⊆  ×  . When the values of the variables associ-
ated with the predecessors of node 𝑣 are fixed, its activation can be
computed through:

𝑎𝑣 = 𝑓𝑣

(

∑

𝑢∶(𝑢,𝑣)∈
𝑤𝑢𝑣𝑎𝑢

)

(1)

Graph sources (i.e., {𝑣 ∶ {(𝑢, 𝑣) ∈ } = ∅}) are called input nodes since
their role is to provide input values for subsequent function evaluations.
Similarly, sinks (i.e., {𝑣 ∶ {(𝑣, 𝑢) ∈ } = ∅}) are called output nodes

1 https://github.com/BoCtrl-C/forward.
2

since their activations correspond to the result of previous function
evaluations.

Directed graphs with no directed cycles are the backbone of feed-
forward NNs. DAGs are of particular interest as they admit at least one
topological ordering, that is a linear ordering such that ∀ (𝑢, 𝑣) ∈  𝑢 <
𝑣; this implies the possibility of computing the output values of the
graph, given a set of values for the input nodes, evaluating functions
in the same order expressed by the topological one. However, this
straightforward implementation of the forward pass (i.e., the process
that leads to the evaluation of the output nodes) is inefficient due to
its sequential nature. All nodes whose predecessors’ values are already
available can, in principle, be evaluated in parallel.

MLPs, whose underlying graph is a chain of bicliques, are particu-
larly well suited for an efficient implementation of the forward pass.
All activations of a layer, 𝒂𝑙, are computed simultaneously from the
activations of the previous layer, 𝒂𝑙−1, through matrix multiplication2:

𝒂𝑙 = 𝜎(𝑊 𝑙𝒂𝑙−1) (2)

where 𝒂𝑙 ∈ R|𝐿𝑙|, 𝐿𝑙 is the set of nodes in layer 𝑙, 𝑊 𝑙 ∈ R|𝐿𝑙|×|𝐿𝑙−1|

represents the weights and 𝜎 denotes the activation function. While the
computational graph of an MLP is characterized by a specific topology
for which a node partition is immediately identifiable, it is worth noting
that the same does not hold for arbitrary DAGs. The latter require
relayering algorithms to implement efficient forward passes.

2.1. 4Ward

Let the layering  = {𝐿0,… , 𝐿𝐻−1} be a partition of  such that
∀ (𝑢, 𝑣) ∈  𝑢 ∈ 𝐿𝑖, 𝑣 ∈ 𝐿𝑗 ⟹ 𝑖 < 𝑗. As in the MLP case, all functions
associated with the 𝑙th layer can be evaluated in parallel since the
required input values are already available at computation time; this
is guaranteed by the definition of layering. Consequently, Eq. (2) can
be generalized as follows:

𝒂𝑙 = 𝜎(𝑊 𝑙𝒙𝑙) (3)

where 𝒙𝑙 = [… , 𝑎𝑣,…]𝑇 , 𝑣 ∈ 𝑃𝑙 and 𝑃𝑙 = {𝑢 ∶ ∀ 𝑣 ∈ 𝐿𝑙 (𝑢, 𝑣) ∈ }. In
other words, 𝒙𝑙 contains the activations of the predecessors (i.e., 𝑃𝑙)
of nodes belonging to layer 𝑙. Importantly, in 𝑊 𝑙 ∈ R|𝐿𝑙|×|𝑃𝑙|, all
entries corresponding to ( × ) ⧵  must be 0 to preserve the given
DAG topology; this constraint is enforced in the implementation phase
through the mask trick. A major difference from Eq. (2) lies in the ability
of nodes belonging to layer 𝑙 to draw information from the subnetwork
∪𝑙−1
𝑖=0𝐿𝑖.

Under the assumption that the overall time complexity of a forward
pass is dominated by 𝐻 , optimizing the graph partitioning becomes
crucial.3 In this context, the longest-path layering algorithm [28,29] can
be employed (Appendix C). A layering algorithm can be seen as a

2 The overall time complexity of the forward pass depends on the matrix
multiplication algorithm.

3 It is also important to take the impact of memory accesses and data
transfers between devices into account.

https://github.com/BoCtrl-C/forward
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Fig. 2. Forward pass computation for an example NN built through 4Ward (from left to right). Left: computation of the activations of layer 1. Right: computation of the activations
of layer 2. The subnetworks involved are highlighted through the purple overlay. Computations follow 𝒂𝑙 = 𝜎((𝑀 𝑙 ⊙ 𝑊̃ 𝑙)𝒙𝑙), in accordance with (3).
E

apping between graphs and layerings:  ↦ ; with  = ( , ). In gen-

ral, DAGs admit more than one layering; the longest-path algorithm,
owever, returns one of those of minimum height (i.e., 𝐻). While it
s possible for the minimum height layering to be non-unique (refer
o Appendix B), in accordance with the above assumption, different
ayerings of same height lead to the same time complexity. It is worth
oting that topological orderings can be seen as a particular case of
ayering in which 𝐻 = (|

|

 |

|

). Instead, in minimum height layerings,
is topology-dependent.

.2. Implementation

We chose PyTorch [27] as our reference machine learning frame-
ork for its ease of use in research prototyping, its automatic dif-

erentiation engine, Autograd, and its popularity among scientists.
mplementing the forward pass in a PyTorch Module is immediate,
ith the exception of preventing the gradient from updating the zero
ntries of all 𝑊 𝑙. PyTorch tensors, indeed, can be marked as learnable
r nonlearnable; however, the topology of the DAG which is object of
elayering needs to be preserved.

To circumnavigate this issue, we propose a strategy which we term
he mask trick. It consists of masking the fully-learnable tensor 𝑊̃ 𝑙;
his is accomplished by pointwise multiplication 𝑊 𝑙 = 𝑀 𝑙 ⊙ 𝑊̃ 𝑙.
pecifically, the 𝑙th mask matrix is defined as:

𝑢𝑣 =

{

1 if (𝑢, 𝑣) ∈ 
0 otherwise

(4)

here 𝑚𝑢𝑣 denotes the entry of 𝑀 𝑙 linked to edge (𝑢, 𝑣). The partial
erivative of a loss function 𝑙 w.r.t. 𝑤̃𝑢𝑣 immediately follows:

𝜕𝑙(ℎ𝒘(𝒂0), 𝑦)
𝜕𝑤̃𝑢𝑣

= 𝜕𝑙
𝜕ℎ𝒘

𝜕ℎ𝒘
𝜕𝑤̃𝑢𝑣

= 𝜕𝑙
𝜕ℎ𝒘

𝜕ℎ𝒘
𝜕𝑤𝑢𝑣

𝜕𝑤𝑢𝑣
𝜕𝑤̃𝑢𝑣

= 𝜕𝑙
𝜕ℎ𝒘

𝜕ℎ𝒘
𝜕𝑤𝑢𝑣

𝑚𝑢𝑣 (5)

here ℎ𝒘 denotes the NN parameterized by {𝑤𝑢𝑣, (𝑢, 𝑣) ∈ }, (𝒂0, 𝑦)
is the generic labeled training sample and 𝑤𝑢𝑣 = 𝑚𝑢𝑣𝑤̃𝑢𝑣. As a conse-
quence, 𝑚𝑢𝑣 = 0 ⟹

𝜕𝑙
𝜕𝑤̃𝑢𝑣

= 0.
The pseudocode in Algorithms 1 and 2 provides a detailed descrip-

ion of the 4Ward implementation. Fig. 2, instead, shows an example
orward pass computation. In Algorithm 1, 𝑙𝑜𝑛𝑔𝑒𝑠𝑡_𝑝𝑎𝑡ℎ() wraps the

layering algorithm, 𝑝𝑢𝑠ℎ_𝑠𝑜𝑢𝑟𝑐𝑒𝑠() moves the source nodes within 𝐿0
4

and 𝑖𝑛𝑖𝑡() initializes the weights. The 𝑖𝑛𝑖𝑡() function accepts 𝑀 𝑙 as
an argument to allow the use of sophisticated initialization methods
(e.g., Kaiming Uniform [30]) that take into account the in-degree of
nodes. Biases can be easily included in the framework by adding a

4 The considered layering algorithm, by default, places each node in the
ighest possible layer.
3

column to 𝑊̃ 𝑙, e.g. replacing 𝑀 𝑙 with [𝑀 𝑙 , 𝟏] and 𝒙𝑙 with [(𝒙𝑙)𝑇 , 1]𝑇 .
xtending 𝒙𝑙 to matrix 𝑋𝑙 allows 4Ward to work with batches.

 ← 𝑙𝑜𝑛𝑔𝑒𝑠𝑡_𝑝𝑎𝑡ℎ();
 ← 𝑝𝑢𝑠ℎ_𝑠𝑜𝑢𝑟𝑐𝑒𝑠(,);
for 𝑙 ← 1 to 𝐻 − 1 do

𝑃 𝑙 ← ∅;
for 𝑣 ∈ 𝐿𝑙 do

𝑃 𝑙 ∪ {𝑢 ∶ (𝑢, 𝑣) ∈ }
end
𝑀 𝑙 ← 𝟎;
𝑊̃ 𝑙 ← 𝟎;
for 𝑣 ∈ 𝐿𝑙 do

for 𝑢 ∈ {𝑢 ∶ (𝑢, 𝑣) ∈ } do
𝑚𝑢𝑣 ← 1

end
end
𝑊̃ 𝑙 ← 𝑖𝑛𝑖𝑡(𝑊̃ 𝑙 ,𝑀 𝑙)

end
Algorithm 1: 4Ward instantiation.

for 𝑙 ← 1 to 𝐻 − 1 do
𝒂𝑙 ← 𝜎((𝑀 𝑙 ⊙ 𝑊̃ 𝑙)𝒙𝑙); /* the mask trick */

end
Algorithm 2: 4Ward forward pass.

2.3. Baseline

In addition to 4Ward, we developed a baseline for the experimental
protocol described in Section 2.5. The baseline is a PyTorch-compatible
extension of the learning matrix method [2,19] which implements the
sequential forward pass discussed above. The baseline pseudocode is
shown in Algorithms 3 and 4. Algorithm 3 reports the model instanti-
ation while Algorithm 4 describes how the forward pass is computed.
In both algorithms, 𝒘𝑣 denotes the weight vector of node 𝑣, and 𝒂𝑣
stores the activations of the 𝑣’s predecessors. Both vectors share the
same dimension: |{𝑢 ∶ (𝑢, 𝑣) ∈ }|.

sources ← {𝑣 ∶ {(𝑢, 𝑣) ∈ } = ∅};
for 𝑣 ∈  ⧵ sources do

𝒘𝑣 ← 𝟎;
𝑖𝑛𝑖𝑡(𝒘𝑣);

end
Algorithm 3: Baseline instantiation.
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for 𝑣 ∈  ⧵ sources do
𝑎𝑣 ← 𝜎(𝒘𝑇

𝑣 𝒂
𝑣)

end
Algorithm 4: Baseline forward pass.

2.4. Deepstruct

We also incorporated the deepstruct methodology, mentioned
n Section 1, into our experiments. In the high sparsity regime, the
fficiency of this methodology, in terms of time complexity, depends
n how the computation of activations is decomposed within the
orward pass. Similar to 4Ward, deepstruct initializes the input
AG by partitioning it into a layering of minimum height. However,

ayers are exploited in a different manner during the forward pass. To
ompute the activations of a specific layer, 𝒂𝑙, deepstruct follows
he equation:

𝑙 = 𝜎
( 𝑙−1
∑

𝑗=0
𝑊 𝑗↦𝑙𝒂𝒋

)

(6)

ccording to (6), each layer preceding layer 𝑙 contributes additively
o the computation of 𝒂𝑙 with its own activations (i.e., 𝒂𝑗) through
he matrix multiplication 𝑊 𝑗↦𝑙𝒂𝒋 , where 𝑊 𝑗↦𝑙 represents the synaptic
eights connecting neurons in layer 𝑗 to neurons in layer 𝑙. In contrast

o (3), where activations are computed all at once, the summation in
6) involves 𝑙 matrix multiplications. It is important to note that, in
he worst case, 𝑙 corresponds to the number of nodes preceding 𝐿𝑙
i.e., ||

|

∪𝑙−1
𝑗=0𝐿𝑗

|

|

|

, where each 𝐿𝑗 contains only one node).
We provide a detailed description of the deepstruct imple-

entation of (6) in Algorithm 5. The first for loop iterates over the
ayers, while the second loop performs the summation in (6). Partial
ctivations are cumulatively stored in the 𝒂𝑙 variable. As in Algorithm
, 𝑊̃ 𝑗↦𝑙, 𝑀 𝑗↦𝑙, and 𝜎 represent the raw weights between layers 𝑗 and
, their mask, and the activation function, respectively. If a mask is
ompletely empty, the associated multiplication operation is skipped.
hen 𝐻 ∼ |

|

 |

|

, the time complexity of the algorithm, in terms of
atrix multiplications, becomes quadratic in the number of nodes.

for 𝑙 ← 1 to 𝐻 − 1 do
𝒂𝑙 ← 𝟎;
for 𝑗 ← 0 to 𝑙 − 1 do

if 𝑀 𝑗↦𝑙 ≠ 𝟎 then
𝒂𝑙 ← 𝒂𝑙 + (𝑀 𝑗↦𝑙 ⊙ 𝑊̃ 𝑗↦𝑙)𝒂𝑗 ;

end
end
𝒂𝑙 ← 𝜎(𝒂𝑙);

end
Algorithm 5: deepstruct forward pass.

2.5. Experiments

Evaluating the time complexity of Algorithm 2 analytically, w.r.t. a
traditional set of graph attributes (e.g., |

|

 |

|

and ||), is not viable, es-
pecially in view of the dependency on low-level operations (e.g., matrix
multiplications) and, most importantly, on the topology-dependency of
𝐻 and 𝑊̃ 𝑙. Instead, we rely on an empirical evaluation of the execution
time of our proposed forward pass. Specifically, in a set of experiments,
we monitored how long it took neural networks created in accordance
with the same generative model to process a predetermined number
of batches. Notably, the actual content of a batch is irrelevant for the
purposes of time evaluation. Hence, all input tensors were filled with
1s.
4

We set the Erdős-Rényi (ER) model [1] as our reference generator.
Given a graph of size |

|

 |

|

, the ER algorithm randomly places the
etwork edges by sampling from || = | |(| |−1)

2 i.i.d. Bernoulli
distributions, (1, 𝑝). Subsequently, the largest connected component
of each network was extracted and converted into a DAG following the
procedure in [21].

For completeness, we repeated the exact same temporal assessment
for all the (|

|

 |

|

, 𝑝) pairs belonging to a 2D grid defined over the ER’s
ize-probability parameter space, averaging, for each parameter pair,
everal execution times linked to a fixed number of ER generation
eeds: E

[

𝛥𝑇 ∙
| |,𝑝

]

where ∙ can take on the values 4𝑊 , 𝑆𝑄 or 𝐷𝑆

epending on the methodology considered - 4Ward, sequential baseline
r deepstruct. The mean gains were calculated by running the same
xperimental protocol on E

[

𝛥𝑇 𝑆𝑄
| |,𝑝

∕𝛥𝑇 4𝑊
| |,𝑝

]

and E
[

𝛥𝑇𝐷𝑆
| |,𝑝

∕𝛥𝑇 4𝑊
| |,𝑝

]

.

ll experiments where run on a workstation equipped with an Intel
eon Gold 6326 CPU, 512 GB of RAM and an NVIDIA RTX A6000 GPU
driver version 510.47, CUDA version 11.6).

. Results

We implemented the experimental protocol described in Section 2.5
hile setting |

|

 |

|

∈ {26, 27, 28, 29, 210} and 𝑝 ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
or each (|

|

 |

|

, 𝑝) pair, 30 graphs were generated starting from different
andom seeds. We tested three batch sizes: 32, 128 and 512; all com-
utations involved a sequence of 100 batches. The experiments were
epeated for all the implementations (i.e., baseline, deepstruct and
Ward).

The computed mean execution times (baseline and 4Ward) are
eported in Fig. 3. Once the probability 𝑝 is fixed, function E

[

𝛥𝑇
| |,𝑝

]

rows with the network size; this applies to both the baseline and our
ethod. However, the two implementations behave differently as the
R probability varies. The execution time of the baseline’s forward pass
oes not appear to depend on 𝑝, while that of 4Ward increases with 𝑝.
n other words, the gradient of E

[

𝛥𝑇 𝑆𝑄
| |,𝑝

]

w.r.t. 𝑝 and |

|

 |

|

is almost
ertical, the one of E

[

𝛥𝑇 4𝑊
| |,𝑝

]

points toward the top-right corner of
he investigated parameter space. No differences emerged from the data
ollected for the different batch sizes.

Fig. 4 shows the results obtained in terms of mean gain (Sec-
ion 2.5). In the top panel, the gradient of the metric points toward
he left boundary of the parameter space. The isolines corresponding to
he unity gain vertically cut the tested spaces in a low-density region
i.e., 𝑝 ∼ 0.8). 4Ward decreases computation time by up to a factor 2.80,
ith higher gains at higher sparsity levels. In the bottom panel, instead,
radients point toward the top-right corners of the drawn parameter
paces, and therefore present a non-zero horizontal component. In
his comparison, mean gains span across a minimum of 2.47 and a
aximum of 160.37. Minor differences emerge for the different batch

izes.

. Discussion

Our results verified the assumption that the overall time complexity
f a forward pass is dominated by 𝐻 . For the baseline, the result can
e directly inferred from the mean times reported in Section 3, which
epend only on the number of nodes that characterizes the graphs. Our
equential implementation is indeed a special case of 4Ward in which
he layering  always has one node per hidden layer (i.e., 𝐻 ∼ |

|

 |

|

).
he same conclusion can be reached for 4Ward (see Appendix A). The

eft panel of Fig. A.5 reports function E
[

𝐻
| |,𝑝

]

, which demonstrates
n how many layers, on average, a graph corresponding to a precise
|

|

 |

|

, 𝑝) pair is partitioned by the longest-path layering algorithm.
nsurprisingly, E

[

𝛥𝑇 4𝑊
| |,𝑝

]

and E
[

𝐻
| |,𝑝

]

exhibit the same behavior.
he batch size, which was set to values commonly used in DL literature,
as little impact on the analyzed execution times, potentially due to the
omparatively high computational power of the A6000 unit.
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Fig. 3. Mean execution times in seconds. Timings were examined on 100 forward passes. Top: baseline. Bottom: 4Ward. Each column refers to a specific batch size. Plots span
the investigated ER parameter space. Network sizes are represented on the 𝑦-axis, while probabilities are represented on the 𝑥-axis. Elapsed times are color-coded.
Fig. 4. Mean gains. Top: 4Ward vs. baseline. Bottom: 4Ward vs. deepstruct. Each column refers to a specific batch size. Plots span the same size-probability parameter space
of Fig. 3. Gain values are color-coded. The isolines corresponding to the unity gain are denoted in white.
The most distinctive feature of 4Ward, however, is its efficiency,
as shown by the gain analysis of Section 3. According to Fig. 4, the
mean gain function computed on the times of 4Ward and the baseline,
E
[

𝛥𝑇 𝑆𝑄
| |,𝑝

∕𝛥𝑇 4𝑊
| |,𝑝

]

, presents a series of vertical bands characterized by

the same gain. The mean gain increases as the ER probability decreases.
In other words, it is particularly advantageous to rely on the forward
pass defined by our library when dealing with sparse neural networks.
An undirected network is defined to be sparse when || ≪ | |(| |−1)

2 ,
and E[||] = 𝑝 | |(| |−1)

2 for the ER model. In our experiments,
the highest percentage gain recorded is 280% (𝑝 = 0.2), and it can
reasonably be assumed that this figure would increase further with
increasing sparsity. In the examined density regime, the baseline and
4Ward become equivalent when the DAG is fully-connected, because
in this case it only admits one topological ordering in which each
node is connected to the entire subnetwork that precedes it. This is
experimentally confirmed in Fig. 4 (aside from a minor shift to the left
5

in unity gain isolines potentially due to low-level implementation dif-
ferences). The comparison between 4Ward and deepstruct yielded
even more impressive results, showing a remarkable highest percentage
gain of approximately 16 000%. Moreover, within the tested parameter
space, deepstruct consistently exhibited forward pass times that
were at least 2.4 times slower than those of 4Ward. Notably, the plots
demonstrate diagonal gain ‘‘isobands’’, indicating that mean gains are
influenced by both the size of the network, |

|

 |

|

, and the ER probability,
𝑝. Specifically, as network size and density increase, the mean gains also
increase. We hypothesize that the two models will perform similarly
along a curve that lies entirely within the narrow unexplored region
of the parameter space defined by 𝑝 < 0.2. At the lowest density
regime tested (i.e., 𝑝 = 0.2), the multiplication operations performed
by deepstruct already result in a significant slowdown compared to
4Ward. Lastly, it is important to acknowledge that slight differences in
the implementation of the two architectures might have introduced a
minor bias in the measured timings.
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5. Conclusions

In this paper we have presented and released 4Ward, a scalable
network generator capable of converting arbitrary DAGs into complex
NNs. 4Ward effectively addresses the sequential limitations of the
learning matrix method and resolves scalability concerns by introducing
a novel parallelization method for computing activations. Furthermore,
4Ward provides the designer with freedom to customize weight ini-
tialization and activation functions. The modules produced within the
library can be trained using all PyTorch optimizers (e.g., Adam [31],
stochastic gradient descent with momentum [32]) due to their compati-
bility with the machine learning framework. 4Ward provides significant
computational time gains and can be of aid for any investigator seek-
ing to exploit complex topologies in a NN design framework at the
microscale.
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Appendix A. Height attenuation

We define two new graph attributes useful to understand the tempo-
ral performance of 4Ward. The graph height, 𝐻 , tells us in how many
layers a layering of minimum height partitions the graph. The height
attenuation, instead, is defined as | |

𝐻 .

Appendix B. Non-uniqueness of minimum height layering

As anticipated in Section 2.1, there could be multiple minimum
height layerings associated to the same DAG. Since the implementation
of 4Ward, described in Algorithms 1 and 2, relies on the specific lay-
ering returned by the employed longest-path algorithm, it is legitimate
to ask what is the impact of different possible partitions on the time
complexity of our methodology. In order to address this question, we
designed an additional experiment in which we measured the forward
pass execution times for different implementations, corresponding to
different minimum height layerings, of the same NNs.

Similarly to the experiments described in Section 2.5 and reported
in Section 3, we set |

|

 |

|

= 64, a batch size of 512, and for each density
regime 𝑝 ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, we generated 30 ER graphs. Then, for
6

each graph, 10 variants of the same NN were initialized; variants were t
produced by a modified version of Algorithm 1 in which the stochastic
node reassignment procedure of Algorithm 6 is executed after the call
to the 𝑝𝑢𝑠ℎ_𝑠𝑜𝑢𝑟𝑐𝑒𝑠() function. The algorithm starts from the layering
returned by 𝑙𝑜𝑛𝑔𝑒𝑠𝑡_𝑝𝑎𝑡ℎ(), that is the one in which hidden nodes are
placed as close to sinks as possible. Hence, it attempts to randomly
reassign hidden nodes to new layers without altering the underlying
computational graph. This is done by sampling the new layer of a node
from the set of layers that stand between the lowest layer that is higher
than those of the node predecessors and the layer of the node itself.
Inside the algorithm, 𝑐𝑜𝑝𝑦() clones the set that is passed as an argument
while 𝑙𝑢 denotes the layer index of node 𝑢. It is important to highlight
that the procedure only changes the order according to which node
activations are computed; indeed, forward passes computed feeding
several models generated from the same DAG with the same input batch
produce exactly the same output.

for 𝐿 ∈ {𝐿2,… , 𝐿𝐻−2} do
𝐿′ ← 𝑐𝑜𝑝𝑦(𝐿);
for 𝑢 ∈ 𝐿′ do

preds ← {𝑣 ∶ (𝑣, 𝑢) ∈ };
lower ← max{𝑙𝑣 ∶ 𝑣 ∈ preds} + 1;
upper ← 𝑙𝑢;
𝑙 ∼ {lower,… ,upper};
𝐿 ← 𝐿 ⧵ {𝑢};
𝐿𝑙 ← 𝐿𝑙 ∪ {𝑢};
𝑙𝑢 ← 𝑙;

end
end

Algorithm 6: Node reassignment.

The results obtained are shown in the left panel of Fig. B.6, where,
for each density, we report mean (E

[

𝛥𝑇
]

) and standard deviation of
the produced distributions of forward pass times (100 batches per
measured time). Each distribution has been computed from graphs
characterized by the same number of nodes |

|

 |

|

, edges || and layers
𝐻 . This can be accomplished by generating multiple graphs from the
same pair (|

|

 |

|

, 𝑝) and keeping only those whose height equals the
ean one (pre-computed) that emerges from the generation hyper-
arameters considered. The standard deviation reported for 𝑝 = 1.0
onstitutes our baseline since it is only due to the noise introduced by
he hardware and software of the machine on which the experiments
ave been run; being fully-connected, all the 30 × 10 NNs generated
n this regime present indeed the same computational DAG and .

hen 0.4 ≤ 𝑝 ≤ 0.8, standard deviations become, counterintuitively,
ven smaller. The result suggests that the observed variability is again
ominated by machine-related noise. We motivate the higher standard
eviation of the baseline conjecturing that each matrix multiplication
erformed could contribute with its own additive noise component to
he measured times. And, as shown by the trend depicted in the top-
ight panel of Fig. B.6, the number of matrix multiplications performed
y a model (i.e., 𝐻 − 1) increases with 𝑝. The high sparsity regime
𝑝 = 0.2), instead, presents the highest standard deviation; on average,
bout 1∕4 of the hidden nodes are in this case reassigned to a new layer
Fig. B.6, bottom-right panel) by Algorithm 6. Overall, the standard
eviations are small compared to the values of the computed mean
xecution times, and, as expected, times, on average, increase with 𝑝.

Finally, we specify that not all layerings of minimum height, com-
utable from the same DAG, have the same probability of being gen-
rated by Algorithm 6; however, we believe that this does not impact
hat was concluded thanks to the experiments. We conclude reporting

n Fig. B.7 a visual example of layerings produced by Algorithm 6 from

he same 32-node DAG/layering pair.
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Fig. A.5. Summary of the defined graph attributes over the investigated ER parameter space. Left: mean height. Right: mean height attenuation. Plots span the same size-probability
space as Figs. 3 and 4. Attribute values are color-coded.
Fig. B.6. Results of the node reassignment experiment. Left: mean forward pass execution times and standard deviations (black error-bars). Each green bar refers to a specific ER
probability/density, 𝑝. Top-right: height 𝐻 of the tested computational DAGs. Bottom-right: averge number of node reassignments, with confidence interval (standard deviation),
performed by Algorithm 6 per density regime.
Fig. B.7. Layering visualizations. All partitions refer to the same 32-node DAG. The top-left layering has been produced through the longest-path algorithm; all others were processed
by Algorithm 6. Sources, hidden nodes and sinks are represented in green, red and violet, respectively. The white vertices in the top-left panel denote nodes that can be moved
according to the presented node reassignment procedure.
Appendix C. Longest-path algorithm

To ensure comprehensiveness, we report in Algorithm 7 the longest-
path layering algorithm for partitioning nodes into layerings of minimum
7

height. This algorithm utilizes two sets of vertices, namely 𝑈 and 𝑍,
which are initially empty. The variable 𝑙 represents the label of the
layer currently under construction, 𝐿̃𝑙. Whenever a node is assigned
to a layer, it is also included in the set 𝑈 , which contains all the
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p
a

vertices already assigned to a layer. On the other hand, 𝑍 consists of
the vertices assigned to a layer below the current one. To assign a new
node 𝑣 to the current layer, we select it from the vertices that have
not yet been assigned to any layer and whose immediate successors are
already assigned to the layers below the current one. The final layering
 = {𝐿0,… , 𝐿𝐻−1} is obtained by reversing layer indices: 𝐿𝑖 = 𝐿̃𝐻−𝑖,
≤ 𝑖 ≤ 𝐻 − 1.

The longest-path algorithm possesses two notable advantages: sim-
licity and linear time complexity. By employing Algorithm 7, nodes
re positioned as close as possible to the sinks.

𝑈 ← ∅;
𝑍 ← ∅;
𝑙 ← 1;
while 𝑈 ≠  do

set ← {𝑣 ∈  ⧵ 𝑈 ∶ {𝑢 ∶ (𝑣, 𝑢) ∈ } ⊆ 𝑍};
if set ≠ ∅ then

𝑣 ∼ set;
𝐿̃𝑙 ← 𝐿̃𝑙 ∪ {𝑣};
𝑈 ← 𝑈 ∪ {𝑣};

end
if set = ∅ then

𝑙 ← 𝑙 + 1;
𝑍 ← 𝑍 ∪ 𝑈 ;

end
end
 ← {𝐿̃𝐻 ,… , 𝐿̃1};

Algorithm 7: The longest-path layering algorithm.
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