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A B S T R A C T   

Aging affects all organs. Arteries, in particular, are among the most affected. Vascular aging (VA) is defined as age-associated changes in function and structure of 
vessels. Classical VA phenotypes are carotid intima-media thickness (IMT), carotid plaque (CP), and arterial stiffness (STIFF). Individuals have different predispo-
sition to these VA phenotypes and their associated risk of cardiovascular events. Some develop an early vascular aging (EVA), and others are protected and identified 
as having supernormal vascular aging (SUPERNOVA). The mechanisms leading to these phenotypes are not well understood. In the Northern Manhattan Study 
(NOMAS), we found genetic variants in the 7 Sirtuins (SIRT) and 5 Uncoupling Proteins (UCP) to be differently associated with risk to developing VA phenotypes. In 
this article, we review the results of genetic-epidemiology studies to better understand which of the single nucleotide polymorphisms (SNPs) in SIRT and UCP are 
responsible for both EVA and SUPERNOVA.   

1. EVA and SUPERNOVA 

Age is the most important and independent risk factor for all chronic 
diseases, including vascular disorders (atherosclerosis, stroke, myocar-
dial infarction), vascular cognitive impairment and dementia[1,2]. Like 
other organs across the age, vessels are damaged by inflammation, 
oxidated circulating lipids, reactive oxygen species (ROS), mitochon-
drial dysfunction, and genetic predisposition[3]. The result of these 
persistent insults and damage leads to vascular aging (VA)[3]. Although 
the definition is still debated, VA includes all age-associated changes in 
vessels function and structure, that start by endothelial dysfunction that 
progress to clinically evident phenotypes, such as intima-media thick-
ness (IMT) [4], carotid plaque (CP), and arterial stiffness (STIFF) [5], 
that may be considered markers of VA[5]. 

Individuals have different predisposition to developing atheroscle-
rosis and cardiovascular events and, therefore, to early vascular aging 
(EVA)[6]. EVA, refers to premature modifications in artery structure and 
function, mimicking the effects of accelerated aging[3]. Conversely, 
individuals having low STIFF, no arterial plaques, or less IMT than ex-
pected for their age, even in presence of vascular risk factors (RFs), are 

considered to have supernormal vascular aging (SUPERNOVA)[7]. 
Therefore, EVA and SUPERNOVA individuals may be defined as those 
with discrepancy of their chronological age from biological VA. 

SUPERNOVA are those with elastic arteries despite exposure to 
classical RFs[7]. Epidemiological studies reported of subjects that, be-
side their chronic exposure to RFs, were protected from major cardio-
vascular complications[8,9]. Data from the Malmö Diet and Cancer 
Study Cohort demonstrated that SUPERNOVA subjects had VA ≤6 years 
than their chronological age, and had an age- and sex-adjusted rate of 
cardiovascular events ~40 % lower than individuals with normal VA 
and EVA, despite a greater chronological age, and a similar burden of 
RFs[6]. These findings are suggestive as beyond the classical and less 
classical RFs, there are other mechanisms predisposing or protecting 
individuals to VA. 

Genetics and epigenetics are main human components involved on 
individual variability to develop chronic diseases. Several findings, 
belonging from genome-wide association studies (GWAS), candidate 
genes method, and epigenetic analysis, associated different genetic 
variants with risk to EVA predisposition[10]. Previously, by using a 
multi-ethnic cohort population from the Northern Manhattan Study 
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(NOMAS)[11], we demonstrated, as diverse single nuclear poly-
morphisms (SNPs) of Sirtuins (SIRT), and uncoupling proteins (UCP), 
associated with different risk to develop phenotypes of atherosclerosis, 
and therefore VA[12–15]. All mechanisms regulated by SIRT and UCP 
are significantly implicated in processes leading or protecting to VA 
[16]. In this article, we review the results of genetic-epidemiology 
studies to better understand which of the SNPs in SIRT and UCP are 
responsible for both EVA and SUPERNOVA. 

2. Sirtuins and UCPs: General description 

2.1. Sirtuins 

Sirtuins (SIRT) belong to a conserved family of proteins, originally 
described in Saccharomices cerevisiae as silent mating type information 
regulation-2 (Sir2), involved in regulating aging and longevity[16]. 
SIRT1, an homolog of Sir2, was the first described in mammals where 
then, other six members of this family were subsequently identified[16]. 
SIRT are defined as class III histone deacetylases that require nicotin-
amide adenine dinucleotide (NAD+) as cofactor[16] and, therefore, are 
considered sensors of cellular energetic and oxidative balance[17]. 

SIRT regulate several cellular pathways, are distributed in all meta-
bolically active tissues and have different subcellular localization 
[17–19]. SIRT1, 2, 6 and 7 are mainly located in the nucleus, SIRT1 and 
2 are also present in the cytoplasm, while SIRT3, 4 and 5 localize in the 
mitochondria[16]. 

SIRT1 deacetylates histone-target, promoting gene transcription 
[20], and non-histone proteins such as p53, Peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), 
and Forkhead box protein O family (FOXO), involved in apoptosis, 
mitochondrial biogenesis, and oxidative stress regulation[18]. SIRT1 
activation protects from neurodegenerative disorders[21], regulates 
stem cell differentiation[22], blunts replicative senescence in fibroblasts 
[23], and is involved in several protective mechanisms associated with 
longevity and metabolism[24]. 

SIRT2 regulates cell cycle[25], and among the non-histone target 
proteins, deacetylases tubulin in skeletal muscle[26], and FOXO1 in 
adipocytes[27], promoting cell differentiation. SIRT2 also plays a pro-
tective role in brain aging and neurodegenerative disorders[28]. 

SIRT3 regulates oxidative phosphorylation and fat oxidation[29,30], 
and activates the manganese-dependent superoxide dismutase (MnSOD 
or SOD2), providing mainly protection against oxidative stress[31]. 
SIRT4 promotes ADP-ribosylation activity which is responsible to 
regulate insulin secretion in pancreatic β-cells[32]. SIRT5 regulates urea 
cycle through its deacetylase activity on the carbamoyl phosphate syn-
thetase 1[33]. 

SIRT6 contributes to telomere maintenance[34], and is also involved 
in protection against aging; it has been shown that lack of SIRT6 may 
induce an accelerated senescent phenotype in mice[35]. 

SIRT7 is still the less studied SIRT; some studies reported that lacking 
of this protein may be associated to acceleration of aging[36], and a 
strong link with this protein has been recently reported with protection 
against cardiorenal disease[37]. 

2.2. Uncoupling proteins 

Uncoupling proteins are inner mitochondrial membrane proteins and 
belong to mitochondrial anion carrier family (MACP)[38,39], that is 
responsible for the uncoupling during the oxidative-phosphorylation in 
mitochondrial respiration, dissipating energy as heat (thermogenesis) 
[40]. The UCP family is composed by 5 members (UCP1-5). UCP1 was 
firstly described 30 years ago; it is expressed in BAT, murine and human 
WAT[41], and in human skeletal muscle[42]. UCP1 is up-regulated by 
cold exposure and high fat diet[43,44]. Ectopic skeletal muscle 
expression of UCP1 in mice, fed with high fat diet, improves glucose 
tolerance[45]. UCP1 reduces ROS production by reducing 

mitochondrial membrane potential[45]. 
UCP2 is widely distributed in a variety of tissues: BAT, WAT, brain, 

islet of Langerhans and does not play a role in thermogenesis[46–49]. 
UCP2 has a relevant role in regulating insulin secretion in pancreatic 
β-cells[50]; in fact, knockout mice for UCP2 have significantly increase 
in insulin secretion after glucose stimulation[50]. 

UCP3 is distributed in skeletal muscle of both rodents and human, 
and in BAT of rodents[38]. UCP3 plays a role in protecting against 
oxidative stress[51]: its overexpression reduces oxidative stress in mu-
rine myotubes subjected to hyperoxia, preventing oxidative 
stress-mediated muscle degradation[51]. 

UCP4 and UCP5 are mainly located in brain[52]. They exert a pro-
tective role against oxidative stress and neuronal death induced by 
hydrogen peroxide and dopaminergic toxins[52]. Genetic variants of 
Ucp4 were described to be associated with schizophrenia and Amyo-
trophic lateral sclerosis (ALS)[52]. 

3. Vascular aging: Different phenotypes of atherosclerosis 

VA is a gradual process involving biochemical, enzymatic, and 
cellular events in vascular area combined with epigenetic and molecular 
alterations. It is considered that atherosclerosis, a complex and multi-
factorial disorder playing a significant role in cardiovascular and stroke 
etiology[53], is a fundamental reflection of biological aging[54]. Now a 
day, CP, and STIFF are considered different phenotypes of atheroscle-
rosis in the carotid artery, in association to the phenotype derived by 
arterial thickening, IMT [55]. Moreover, in the last decades an emergent 
role of vasa vasorum in the pathogenesis of atherosclerosis has been 
proposed [56,57]. 

IMT is defined as a double-line pattern between the intimal-luminal 
and the medial-adventitial interfaces of the carotid artery wall[58]. The 
intima and the media layer increase with aging as a result of biome-
chanical processes, such as blood flow and tension on the arterial wall 
[59], leading to the activation of molecular and cellular pathways 
involved in the formation of CP. IMT is considered a marker of arterial 
injury[60] and increased cardiovascular risk[61]. 

The Mannheim consensus defined CP as a focal structure encroach-
ing into the arterial lumen of at least 0.5 mm or 50 % of the surrounding 
IMT value, or demonstrates a thickness >1.5 mm as measured from the 
media—adventitia interface to the intima—lumen interface[62]. CP 
presence, size[63], composition, plaque echodensity (echolucent vs. 
echogenic) and morphology are all important predictors of CVD[64]. 
Plaque echodensity is assessed using plaque image analyses techniques, 
such as gray scale median (GSM)[65]. Echolucent plaques are lipid-rich 
and present low GSM, whereas echogenic plaques are rich of fibrous 
tissue and calcification and present high GSM. Plaque echolucency is 
associated with a higher ipsilateral stroke risk due to plaque instability 
[66]. 

Although IMT and CP share the effect of some atherosclerotic risk 
factors, they have different natural history, associated risk factors, and 
prediction of vascular events. While IMT is mainly associated with hy-
pertension, and media hypertrophy in the vessel wall[67], CP is more 
related to dyslipidemia and hypercholesterolemia. CP is strongly influ-
enced by environmental factors, while IMT is strongly influenced by 
genetic factors[68]. Finally, in large population-based studies, CP is a 
stronger predictor of CVD compared to IMT[13]. 

Arterial stiffness is defined as the reduced ability of the vessel wall to 
adapt to the deformation induced by systolic blood pressure (BP) during 
the cardiac cycle[69]. Some authors report a linear relationship between 
arterial stiffness and age, while others reported accelerated stiffening 
between 50 and 60 years of age[70]. Hyperlipidemia, diabetes mellitus, 
elevated body mass index and smoking, are associated with accelerated 
STIFF[71]. However, when adjusted for age and blood pressure these 
findings are inconsistent in different studies[71]. 

IMT, CP and STIFF represent biologically and genetically distinct 
phenotypes correlated with atherosclerosis and may be the different 
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aspects of VA, even though they also can be dependent from mechanism 
not related with aging. 

However, the diverse phenotypes of VA may develop differently 
across vascular anatomic location. For instance, presence of plaque and 
IMT are more often associated with large arteries in peripheral circu-
lation, while stiffness and change in arterial compliance are more often 
associated to small vascular bed. These phenomena are manly linked to 
the structure of the vessels, since large arteries are rich in elastin and 
collagen, and small muscular arteries are rich in vascular smooth mus-
cle. Obviously, based on the different genetic impact of phenotypes of 
VA, the same will results in a diverse predisposition of risk for athero-
sclerosis and vascular events [72]. 

4. Sirtuins and atherosclerosis 

Oxidative stress and both systemic and endothelial inflammation, 
caused by turbulent blood flow, are associated with development of 
atherosclerosis[73]. SIRT1 protects against endothelial inflammation 
[74], and reduces endothelial wall damaged induced by oxidative stress 
[75]. An increase in SIRT1 expression was reported in mice’s vessels 
with laminar vs. turbulent flow, suggesting a possible protective effect of 
SIRT1 against atherosclerosis[76]. SIRT1 transgenic mice (sirt1-Tg) 
hyper-expressing SIRT1, have less endothelial dysfunction compared to 
wild type animals[77]. After EX-527 administration, a specific SIRT1 
inhibitor, ApoE− /− mice subjected to HFD, showed increase in plaque 
size and macrophages infiltration, suggesting as SIRT1 is strongly 
associated with protection against atherosclerotic plaque formation and 
growth[78]. 

The association between SIRT1 and atherosclerosis has been re-
ported also in clinical studies. Coronary artery disease (CAD) patients 
show a downregulation in SIRT1 expression and activity in monocytes, 
linked with higher level of oxidative stress and pro-inflammatory state 
[79]. Nevertheless, SIRT1 overexpression, induced by SIRT1 activator 
(SRI1720), reduces both oxidative stress and inflammation[79], sug-
gesting that SIRT1 could provide a direct anti-atherogenic effect offering 
novel therapeutic strategies for CAD care. 

SIRT3 plays a relevant antioxidant effect by regulating mitochon-
drial function[80]. In a study conducted in mice knockout for LDL and 
SIRT3 (Ldl− /− /Sirt3− /− ) the absence of SIRT3 significantly increased 
oxidative stress and risk for worse lipid associated outcomes[81]. The 
inactivation of Superoxide Dismutase 2 (SOD2) in mice model acceler-
ates atherosclerosis progression[82]. Resveratrol, a natural polyphenol, 
enhances SOD2 activity and reduces oxidative stress, by activating 
SIRT3 in endothelial cell[83]. Reducing ROS generation in mitochondria 
is crucial to improve the efficiency of mitochondrial electron transport 
chain (ETC) and ATP production. Resveratrol increases SIRT3 expres-
sion in mitochondria, promoting transcription of several ETC-subunits 
[83], ultimately demonstrating that SIRT3 activation is responsible for 
maintaining redox homeostasis in endothelial cells, reducing the risk of 
CVD onset. Similarly to resveratrol, esculetin, another polyphenolic 
compound, increased SIRT3 mitochondrial levels[84], and induced 
mitochondrial biogenesis mediated by SIRT3 in human aortic endothe-
lial cells (HAECs)[84]. These results confirm the anti-atherogenic role of 
SIRT3, by reducing the burden of mitochondrial metabolism and the 
subsequent oxidative state predisposing to CVD and atherosclerosis. 

SIRT2 activation and overexpression stabilizes atherosclerotic pla-
ques, by regulating lipid metabolism, and gluconeogenesis[85]. SIRT6 
regulates level of LDL cholesterol in blood especially by inhibiting 
PCSK9 enzyme[86]. 

All these findings highlight the beneficial effects of sirtuins against 
cardiovascular diseases. Besides the evidences reported to modulate 
sirtuins, dietary restriction and in particular caloric restriction (CR), has 
been reported to exert cardioprotective effects via sirtuins activation 
[87]. In particular, in the recent interesting review by Wei and col-
leagues, it has been reported that CR not only may directly modulate the 
activity of sirtuins, but also indirectly; the metabolic adaptions related to 

CR, in fact, promote the release of small metabolites and non-coding 
RNA that can impact sirtuin activity and, in turn, cardiovascular func-
tion [87]. 

5. UCPs and atherosclerosis 

UCPs, through Mitochondrial Oxidative Phosphorylation System 
(OXPHOS) dissipating energy as heat, reduce ROS production and in-
crease mitochondrial respiration by reducing ROS-induced damage in 
endothelial cells[88]. Conversely, some studies report that OXPHOS 
uncoupling is indeed detrimental for endothelial cells and promotes 
atherosclerotic lesion progression[89,90]. 

Data generated on ApoE− /− /Ucp1− /− mice, reported as absence of 
UCP1 is protective against plaque growth[91]. Moreover, exogenous 
adiponectin administration dramatically reduces UCP1 levels and, sub-
sequently, plaque growth, suggesting that UCP1 strongly contributes to 
plaque formation and atherosclerosis progression[91]. 

UCP2 knockout (Ucp2− /− ) mice, similarly to Ucp1− /− mice, have a 
greater size of atherosclerotic lesions and macrophages infiltration 
compared to wild type animals[92]. Moreover, a significant increase in 
ROS production in absence of UCP2 is observed, suggesting that UCP2 
exerts anti-atherogenic effect in vascular cells[92]. Ucp2− /− animals 
show a significant reduction in the activity of Glutathione peroxidase 
(Gpx), SOD, and catalase compared to wild type mice, both after chow 
and atherogenic diet, and develop more numerous and larger athero-
sclerotic plaque compared to control mice[93]. Taken together these 
data, suggest that UCP2 reduces susceptibility to atherosclerosis by 
lowering both oxidative stress and inflammation. 

The presence of macrophages in the plaque is associated to plaque 
instability[94] and higher plaque temperature in patients with unstable 
plaque compared to stable plaque carriers, suggesting that reducing 
plaque temperature may reduce macrophages content and, subse-
quently, plaque instability[94]. UCP2 is the only member of the UCPs 
described in macrophages and that has a reported role in atherosclerotic 
plaque stability[95]. UCP2 is highly expressed in subendothelial mac-
rophages of advanced plaques, and contributed to temperature hetero-
geneity[95]. 

The role of UCP3, 4 and 5 on atherosclerosis, at the best of our 
knowledge, is still under investigation. 

6. Sirtuins, UCP, and vascular aging: Experience from NOMAS 

6.1. Sirtuins, UCP and IMT 

In order to investigate the association between SIRT and UCP pro-
teins and IMT, we examined 1018 participants with IMT and genotype 
data from NOMAS. The mean age of the participants was 70 ± 9 years, 
61 % were women, 67 % Hispanic, 17 % non-Hispanic Black, and 15 % 
non-Hispanic White. The mean IMT was 0.96 ± 0.10 mm for men and 
0.93 ± 0.09 mm for women. This study manly reported as rs12363280 in 
Sirt3 was associated with decreased risk of elevated IMT, while 
rs1430583 and rs6818140 in Ucp4 were associated with increased IMT 
[12]. Analyses for interaction between SNPs and sex showed a decreased 
IMT in women carrying the polymorphism rs3825075 in Sirt3 and an 
increased risk of elevated IMT in men carrying the rs1430583 SNP in 
Ucp1 [24]. Analyses that explored the interaction between SNPs and 
smoking status demonstrated an increased IMT in smokers that carry the 
polymorphism rs4802998 in Sirt2 or the SNP rs7109266 in Ucp2 [24]. At 
the best of our knowledge, no similar studies have been conducted so far, 
which investigated association between genetic variants of these pro-
teins and this phenotype of VA. 

6.2. Sirtuins, UCP and CP phenotypes 

Large family studies have described as CP heritability is about 20–50 
%, suggesting a significant contribution of genetics to this phenotype of 
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atherosclerosis[96]. In 2 different studies conducted in 1356 stroke-free 
participants enrolled in NOMAS GWAS, we found that Sirt3, 5 and 6 and 
Ucp1, 3 and 5 were associated with different genetic contributions of CP; 
while Sirt5 and 6 were associated with increased plaque presence and 
number, Ucp5 seemed to have a protective role against CP presence and 
number [15]. Both SNPs rs4712032 and rs12216101 in Sirt5 were 
associated with increased number of CP after adjustments for several 
covariates such as age, sex, smoking and hypertension[15]. The SNP 
rs107251 in Sirt6 was associated not only with increased risk of CP 
presence and number but also with greater TPA. Analyses for in-
teractions of SNPs with sex showed that 2 SNPs (rs12363280 and 
rs4980329) in Sirt3 were associated with increased CP echodensity in 
men. 

Ucp5 rs5977238 was associated with a reduced risk of plaque pres-
ence and number and two SNPs in Sirt3 gene (rs4980329 and 
rs12363280) in the association with mean GSM [14]. After analyses for 
interaction between SNPs and sex, 2 SNPs (rs1430579 and rs1430583) in 
Ucp1 were associated with reduced risk of plaque presence in men and 
lower GSM in women, respectively. Finally, rs1685356 polymorphism in 
Ucp3 was related to increased risk of CP presence in women [15]. An-
alyses that looked at the interaction between SNPs and hypercholes-
terolemia showed that 2 SNPs (rs1685354 and rs2734827) were related 
with greater TPA but also greater GSM in participants with 

hypercholesterolemia [14]. 

6.3. Sirtuins, UCP and STIFF 

Similarly, to the other phenotypes of VA (CP and cIMT), STIFF is 
influenced by genetic factors[96]. We analyzed 1143 participants with 
STIFF and genotype data from NOMAS[13]. We reported the main role 
of SIRT1 and 5, and 3 UCP1, 3 and 5[13] in association with arterial 
elasticity. While Sirt1 and Ucp5 were associated with lower STIFF, Sirt5, 
Ucp1 and 3 were associated with increased STIFF. SNP rs7895833 in 
Sirt1 and rs129308417 in Ucp5 associated with decreased STIFF, while 4 
different polymorphisms in Ucp1 (rs141698129, rs141704584, 
rs141706434, and rs1707405), 1 polymorphism in Ucp3 (rs73397813) 
and 1 SNP in Sirt5 (rs10498683) associated with increased STIFF. Ana-
lyses that explored the interaction between SNPs and smoking status 
showed lower STIFF in smokers carrying the SNP rs17712705 in Sirt1. 
Analyses for interactions of SNPs with diabetes demonstrated that 2 
SNPs (rs2253217 and rs9382227) in Sirt5 were associated with 
increased STIFF among diabetic patients. 

Table 1 
Association between Sirt/Ucp SNPs polymorphisms and carotid plaque (CP) presence, number, total plaque area (TPA) and echodensity (GSM). 85 SNPs analyzed in the 
11 Sirt and Ucp genes.  

Gene Chromosome SNP Sample size 
(stroke-free 
subjects) 

Logistic (plaque presence) and Poisson 
(plaque number) regression models 

Analyses for interactions of SNPs with sex, smoking status, diabetes 
and hypertension 

SIRTUIN 
Sirt3 11 rs12363280 1356 – – Increased GSM in men G-carriers: β ¼ 12.53 (95 % 

CI ¼ 3.88–21.17) 
rs4980329 – – T-carriers: β ¼ 11.62 (95 % 

CI ¼ 2.86–20.38) 
Sirt5 6 rs4712032 1018 Increased risk of 

plaque number 
CP number: RR ¼
1.14 95 % CI ¼
1.06–1.22) 

Increased risk of plaque number 
among non-smokers 

CP number: RR ¼ 1.47 95 % 
CI ¼ 1.20–1.82) 

rs12216101 CP number: RR ¼
1.16 95 % CI ¼
1.07–1.26) 

– – 

Sirt6 19 rs107251 1018 Increased risk of 
plaque presence 
and number 

CP presence: OR ¼
1.71 (95 % CI ¼
1.23–2.37) 
CP number: RR ¼
1.31 95 % CI ¼
1.18–1.45) 

– – 

rs107251 1356 Increased risk of 
greater TPA 

T-carriers: β ¼ 0.30 
(95 % CI ¼
0.14–0.45) 

– – 

UCPs 
Ucp1 4 rs1430579 1018 – – Reduced risk of plaque presence in 

men 
CP presence C-carriers: OR ¼
0.80 (95 % CI ¼ 0.72–0.90) 

rs1430583 1356 – – Reduced GSM in women T-carriers: β ¼ -8.87 (95 % 
CI ¼ -14.35 - -3.39) 

Ucp3 11 rs1685356 1018 – – Increased risk of plaque presence 
in women 

CP presence A-carriers: OR 
¼ 1.42 (95 % CI ¼
1.08–1.87) 

rs1685354 1356 – – Increased risk of greater TPA and 
GSM in participants with 
hypercholesteremia 

TPA increase G-carriers: β ¼
0.27 (95 % CI ¼ 0.09–0.46) 
GSM increase rs12363280 G- 
carriers: β ¼ 11.56 (95 % CI 
¼ 4.67–18.44) 

rs2734827 1356 – – Increased risk of greater GSM in 
participants with 
hypercholesteremia 

A-carriers: β ¼ 9.50 (95 % CI 
¼ 3.01–15.99) 

Ucp5 X rs5977238 1018 Reduced risk of 
plaque presence 
and number 

CP presence: OR ¼
0.49 (95 % CI ¼
0.32–0.74) 
CP number: RR ¼
0.64 95 % CI ¼
0.52–0.78) 

– –  
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Table 2 
Association between Sirt/Ucp SNPs polymorphisms and IMT. 85 SNPs analyzed in the 11 Sirt and Ucp genes.  

Gene Chromosome SNP Sample size 
(stroke-free 
subjects) 

Logistic (plaque presence) and Poisson (plaque 
number) egression models 

Analyses for interactions of SNPs with sex, smoking status, 
diabetes and hypertension 

SIRTUIN 
Sirt3 11 rs12363280 1018 Decreased risk of 

elevated cIMT 
CC-carriers: β ¼ -0.041 (95 
% CI ¼ -0.082 - -0.001) 

– – 

rs3825075 – – Decreased risk of 
elevated IMT in women 

TT-carriers: β ¼ -0.026 (95 
% CI ¼ -0.049 - -0.002) 

Sirt2  rs4802998 1018 – – Increased risk of 
elevated IMT among 
smokers 

GG-carriers: β ¼ 0.052 (95 % 
CI ¼ 0.018–0.085) 

UCPs 
Ucp1 4 rs1430583 1018 Increased risk of 

elevated IMT 
TT-carriers: β ¼ 0.036 (95 % 
CI ¼ 0.010–0.062) 

Increased risk of 
elevated IMT in men 

CC-carriers: β ¼ 0.062 (95 % 
CI ¼ 0.024–0.100) 

rs6818140 CC-carriers: β ¼ 0.035 (95 % 
CI ¼ 0.010–0.060) 

Increased risk of 
elevated IMT among 
smokers 

CC-carriers: β ¼ 0.035 (95 % 
CI ¼ 0.010–0.060) 

Ucp2  rs7109266 1018 – – Increased risk of 
elevated IMT among 
smokers 

AA-carriers: β ¼ 0.065 (95 % 
CI ¼ 0.013–0.116)  

Table 3 
Association between Sirt/Ucp SNPs polymorphisms and STIFF. 85 SNPs analyzed in the 11 Sirt and Ucp genes.  

Gene Chromosome SNP Sample size 
(stroke-free 
subjects) 

Logistic (plaque presence) and Poisson (plaque 
number) egression models 

Analyses for interactions of SNPs with sex, smoking status, 
diabetes and hypertension 

SIRTUIN 
Sirt1  rs7895833 1143 Decreased risk of 

greater stiffness 
G/A-carriers: β ¼ -0.06 
(95 % CI ¼ -0.12 - -0.01)   

rs17712705 – – Decreased risk of greater 
stiffness among smokers 

G-carriers 
DD: β ¼ 0.22 (95 % CI 
¼ 0.03–0.42) 
SD: β ¼ 0.22 (95 % CI ¼
0.03–0.42) 

Sirt5  rs10498683 1143 Increased risk of 
greater stiffness 

T/C-carriers: β ¼ 0.07 (95 
% CI ¼ 0.00–0.13) 

– –   

rs2253217 – – Increased risk of greater 
stiffness among diabetic 
patients 

C-carriers β ¼ 0.19 (95 
% CI ¼ 0.07–0.31)   

rs9382227 – – T-carriers β ¼ 0.14 (95 
% CI ¼ 0.01–0.26) 

UCPs 
Ucp1 4 rs141698129 1143 Increased risk of 

greater stiffness 
G/C-carriers 
DD: β ¼ 0.11 (95 % CI ¼
0.03–0.19) 
SD: β ¼ 0.11 (95 % CI ¼
0.03–0.19) 

– – 

rs141704584 A/G-carriers 
DD: β ¼ 0.10 (95 % CI ¼
0.02–0.18) 
SD: β ¼ 0.10 (95 % CI ¼
0.03–0.18) 

– – 

rs141706434 T/C-carriers 
DD: β ¼ 0.12 (95 % CI ¼
0.03–0.21) 
SD: β ¼ 0.11 (95 % CI ¼
0.02–0.20) 

– – 

rs1707405 G/A-carriers 
DD: β ¼ 0.12 (95 % CI ¼
0.03–0.20) 
SD: β ¼ 0.11 (95 % CI ¼
0.02–0.20) 

– – 

Ucp3 11 rs73397813 1143 Increased risk of 
greater stiffness 

A/G-carriers 
DD: β ¼ 0.11 (95 % CI ¼
0.00–0.22) 

– – 

Ucp5  rs129308417 1143 Decreased risk of 
greater stiffness 

A/G-carriers 
DD: β ¼ -0.21 (95 % CI ¼
-0.38 - -0.05) 
SD: β ¼ -0.23 (95 % CI ¼
-0.40 - -0.06) 

– –  
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7. SIRT and UCP pathways linked to development of EVA and 
SUPERNOVA 

As we demonstrated in NOMAS, variants of Ucp and Sirt genes were 
associated with variability in risk to develop VA. 

As reported in Table 1, Sirt3 rs12363280 increases GSM in men 
while, in the same population, decreases risk of elevated IMT in both 
sexes. In agreement, Sirt3 rs3825075 protects more woman than men 
from risk of elevated IMT, suggesting different biological mechanisms 
beyond the development of GSM compared to IMT, especially among 
sex. Sirt3 rs3825075 in people over and under 85 years of age from the 
"Treviso Longeva (TRELONG)" was associated with modulation of human 
longevity[97], suggesting that Sirt3 genetic variability might be relevant 
for the modulation of age-related phenotypes of senescence. Sirt3-defi-
cient mice model did not affect neither plaque burden nor features of 
plaque vulnerability (i.e., fibrous cap thickness and necrotic core 
diameter)[81]. However, loss of Sirt3 was associated with accelerated 
weight gain and an impaired capacity to cope with rapid changes in 
nutrient supply, resulting in an increase of oxidative stress levels, 
expedited weight gain, and low metabolic adaptation from these mice 
[81]. The function of SIRT3 in EVA and SUPERNOVA can be more 
related to risk factors for vascular diseases than directly with biological 
mechanisms of atherosclerosis, as further demonstrated by its different 
role on IMT and GSM (see Table 2). 

Sirt5 polymorphisms in NOMAS increased risk of plaque number, 
particularly among non-smokers. Similarly, Sirt5 SNPs increased risk of 
greater STIFF especially among diabetic patients (See Table 3). Sirt5 
gene regulatory regions sequence variants, have been associated with 
increased risk for coronary atherosclerosis and then acute myocardial 
infarct in 381 Chinese patients[98]. The role of SIRT5 levels on EVA and 
SUPERNOVA, especially in vascular stiffness and risk for plaque phe-
notypes, was already suggested by its function on the association be-
tween mitochondrial oxidative stress production and apoptosis in 
vascular cells[99]. 

Sirt6 rs107251 increased both risk of plaque presence and number, 
and risk of greater TPA. In agreement with our study, significant and 
independent association of rs107251 C/T variant was found with pres-
ence of hypoechoic plaque, with an adjusted to sex, BMI, total choles-
terol, hypertension, and smoking status[100]. Sirt6 rs107251 is an 
intron variant, which might be in linkage disequilibrium with the 
neighboring functional variant[100]. A study conducted in 1749 Chi-
nese participants recruited from various communities demonstrated as 
the presence of this SNP was associated with abnormal brachial ankle 
pulse wave velocity, an indirect measurement of atherosclerosis[101]. 
This result was obtained after adjustment for conventional environ-
mental risk factors and after high level of soybean intake, suggesting a 
role of this genetic variant in the crosslink between gene-diet interaction 
and risk of atherosclerosis[101]. 

While Sirt1 SNPs decreased risk of greater STIFF among smokers, in 
NOMAS the genetic variants of its homologous Sirt2 increased risk of 
elevated IMT among smokers. Sirt1 rs7895833 was associated with 
different risk for dyslipidemia in elderly Brazilian patients[102]. These 
findings associate levels of SIRT1 with vascular risk factors[73]. Most 
probably the impact of SIRT1on EVA and SUPERNOVA development is 
related to interaction with epigenetic mechanisms. Recently, using a 
system called ‘‘ICE’’ (inducible changes to the epigenome), it was 
innovatively demonstrated the pivotal role of SIRT1 and SIRT6 as 
chromatin-modifying factors[103]. 

Ucp1 rs1430583 increased risk of elevated IMT in men while reduced 
GSM in women; Ucp1 rs6818140 increased risk of IMT among smokers, 
and several Ucp1 SNPs increased risk of greater STIFF. It was already 
associated with vascular risk factors in European adolescents from the 
HELENA study[104]. Variants in Ucp2 (rs7109266), similarly to Ucp1, 
increased risk of elevated IMT. Allelic variants in Ucp2 rs7109266 
(promoter − 866G/A) was associated with different susceptibility to risk 
for diabetes in a Chinese Han population[105]. Subjects with AA 

genotype of rs7109266 in Ucp2 had higher fasting insulin, HOMA-IR, 
and HOMA-β than subjects with different genotypes[105]. 

As well as Ucp1 and 2 variants, SNPs in Ucp3 increased risk of plaque 
presence, greater TPA and GSM, particularly in women and in partici-
pants with hypercholesteremia. Ucp3 rs1685356 and rs1685354 were 
associated with risk of obesity in 400 Dutch men between 40 and 80 
years[106], and prediabetes in 2014 subjects from rural community in 
eastern China[107]. Moreover, Ucp3 rs1685354 was linked with hand 
grip performances in elderly populations from Denmark, also influ-
encing the survival patterns, with people carrying this allele showed 
higher mortality rates[108]. 

Instead, variants in Ucp5 gene reduced risk of plaque presence and 
number and decreased risk of greater STIFF. We were able to find few 
information in literature regarding genetic polymorphisms in Ucp5. 
Interesting, variation in Ucp5 was shown to interact with the APOE-ε4 
carriers in the development of risk for neurodegenerative disease[109]. 
However, since predominantly in brain, the role of this gene/protein 
needs to be still fully clarified. 

8. Conclusive remarks 

SIRTs modulate UCPs expression directly[110], and also UCPs 
modulate SIRTs activities as positive/negative feedback, since UCPs in 
mitochondria control metabolic energetic state which depend the levels 
of SIRTs cofactors, like NAD[111]. Modulators of SIRTs activity were 
extensively proposed in science[112]. Recently, a new one referred as 
A5+ (a mix of polyphenols and micronutrients), was reported to protect 
against metabolic and neurodegenerative diseases through activating 
SIRTs’ pathways[112]. Physical activity, diet, polyphenols all are 
proven strategies to modulate SIRTs[113]. A recent study, by using 
“ICE” (inducible changes to the epigenome) system, demonstrated as the 
act of faithful DNA repair advances aging at physiological, cognitive, 
and molecular levels, including erosion of the epigenetic landscape, 
cellular ex-differentiation, senescence, and advancement of the DNA 
methylation clock, which can be reversed by epigenetic mechanism 
mediated by special factors including SIRT1, and SIRT6[103]. This 
innovation is epoch-making since, so far, we knew that we born with a 
certain risk to be an EVA or SUPERNOVA based on our genetic patterns, 

Fig. 1. Schematic representation for Sirt and Ucp related SNPs involved in 
EVA and SUPERNOVA. Created by BioRender.com. 
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however through lifestyle we can modify the probability to face vascular 
diseases in terms of modifiable risk factors. We know that our healthy 
lifestyle can also directly interact and change our DNA, and SIRTs and 
UCPs, and their genetic variants, are among the greatest candidates to be 
targeted to prevent and to protect against vascular aging (Fig. 1). 
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