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Abstract – In recent years the fluid mechanics community has been intensely focused on pur-
suing solutions to its long-standing open problems by exploiting the new machine learning (ML)
approaches. The exchange between ML and fluid mechanics is bringing important paybacks in
both directions. The first is benefiting from new physics-inspired ML methods and a scientific
playground to perform quantitative benchmarks, whilst the latter has been open to a large set of
new tools inherently well suited to deal with big data, flexible in scope, and capable of revealing
unknown correlations. A special case is the problem of modeling missing information of partially
observable systems. The aim of this paper is to review some of the ML algorithms that are playing
an important role in the current developments in this field, to uncover potential avenues, and to
discuss the open challenges for applications to fluid mechanics.
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Introduction. – There is no doubt that our ability
to produce, collect and analyze data is rapidly increasing
boosted by a positive feedback loop between technolog-
ical progress and new algorithms. Computer scientists,
engineers, as well as physicists and mathematicians, are
pushing toward the new machine learning (ML) era, which
has already resulted in reforming standard data analy-
sis paradigms. Breakthroughs have been achieved in nu-
merous areas of computer science, from computer vision
(CV) [1,2], up to natural language processing [3–5] as
well as in some scientific contexts as the protein folding
problem [6].

In complex flows as well, there have been numerous
positive outcomes in nearly all testing scenarios, varying
from control problems as single and multi-agents naviga-
tion in complex environments [7–15], to turbulent control
and drag reduction [16–21], up to data assimilation prob-
lems [22–33] to cite few of them. However, applications in
fluids are still in their infancy, and the majority of cases
are either conducted on highly idealized setups or only
showing preliminary results on more realistic conditions.
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author)

The objective of this paper is to examine some of the ML
tools that have been applied with promising results to re-
construct data from incomplete observations of complex
systems, including idealized turbulent [34–41], engineer-
ing [42–45], and geophysical flows [32,33], and to discuss
the possible future directions for quantitative advance-
ments in fluid mechanics.
Data reconstruction is the art of filling in missing infor-

mation by interpolating, denoising, or super-resolving a
single realization, or a time series, of data fitting a specific
statistical distribution [46,47]. ML applications for data
reconstruction are emerging in many areas, from com-
puter vision [48–51], to medical imaging [52–54] up to seis-
mic data reconstruction [55,56] and astrophysics [57,58].
Also in geophysical fluid dynamics works using ML to re-
construct missing data are rapidly growing [59–64]. For
our focus on reconstructing complex flows it is possi-
ble to distinguish four possible different questions, see
fig. 1: (i) full-state restoration, with the aim to fill missing
gaps in the real space state of a complex flow, (ii) in-
ferring missing fields, which can be derived as the in-
verse problem solution where a physical observable that
cannot be accessed/measured directly can be inferred
by measuring other quantities to which it is coupled,

23001-p1

https://creativecommons.org/licenses/by/4.0


Michele Buzzicotti

Fig. 1: Graphical illustration of different types of reconstructions. Panel (i): the full state reconstruction from partial ob-
servations, gap fill. Panel (ii): inverse problems, reconstruction of missing physical quantities coupled to the observed ones.
Panel (iii): super-resolution, this is equivalent to a gap reconstruction on the high Fourier space frequencies. Panel (iv):
dynamical reconstruction, or modeling of missing physics on the observed scales.

(iii) super-resolution, which can be seen as the equiva-
lent of point (i) but when the gap to fill is on the high
wave numbers of the Fourier domain, (iv) dynamical mod-
eling, which consists of reconstructing dynamically the ef-
fects of missing scales on the evolution of the resolved
ones [65–68]. The issue of designing a ML-inspired sub-
grid closure for modeling computational fluid dynamics is
a subject per se and has been recently reviewed in [69,70].
Here, our focus lies on the first three categories of prob-
lems under the assumption that the amount of missing
information to fill in is very large, which renders the prob-
lem ill-posed. This means that multiple solutions can fit
within the same reconstruction [38,43]. Under this as-
sumption, already defining what the optimal solution is,
it is a question that can have different answers depending
on the specific target. For instance, as discussed in [71,72],
the optimal reconstruction providing the minimum mean
squared error (MSE) is different from optimal solutions
in terms of other statistical quantities. In this review, we
target reconstructions that maximize the correlations with
the observed data while respecting the statistical features
of the ground truth solution. The large-gap assumption is
required when dealing with the reconstruction of complex
flows. For instance, let us consider the full-state recon-
struction problem of ocean surface currents. Even though
satellites have allowed us to get, for the first time, a global
picture of the ocean [73,74], from mesoscale eddies up to
western boundary currents, over time scales relevant to cli-
matological studies (decades), observing the full dynamics
of the ocean remains a gigantic task [75,76], and requires
filling gaps of spatial scales between hundred km up to less
than a meter and time-frequency gaps spanning weeks up
to turbulent and wave scales (of seconds), which cannot
be neglected to explain turbulent stirring, mixing, and all
vertical motions

On top of applications, there are fundamental ques-
tions associated with reconstructing complex flows. What
type and quantity of information are required to perform
different reconstructions is one open theoretical question,
which can be investigated via a reverse engineering ap-
proach: different inputs can be passed to the same model
to assess the impact on the reconstruction quality. Here,
we discuss some of the ML algorithms that are transform-
ing the conventional paradigms of data analysis and that
have the potential to facilitate breakthroughs in the field
of fluid dynamics. Following a chronological order, we
start with an introduction of “Variational Auto-Encoders”
(VAEs), “Generative Adversarial Networks” (GANs), and
“denoising Diffusion probabilistic Models” (DMs). After
we discuss how to combine pure data-driven methods with
the physical knowledge at hand and we provide possible
future directions in this discipline.

Data-driven methods. – A typical approach to repair
missing data in gappy fields, before the rise of ML, was
based on proper orthogonal decomposition (POD). POD is
used to reduce data dimensionality by identifying the dom-
inant patterns in a dataset and representing them using
a smaller set of orthogonal basis functions (POD modes,
i.e., eigenvectors of the correlation matrix) [77–79]. The
same approach has been extensively used also for filling
of missing points in geophysical data sets where it takes
the name of Empirical Orthogonal Function [80]. Exten-
sion of such techniques as the Gappy POD (GPOD) [81]
or the Extended POD (EPOD) [82] were derived to repair
missing data with minimal MSE solutions, showing results
outperforming Kriging interpolation [83]. However, POD-
based approaches are limited when dealing with complex
multi-scale and non-Gaussian statistics as is the case of
turbulent flows. As shown in [84], where they implemented
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Fig. 2: Schematic representation of the three ML algorithms
developed to generate data accordingly with the probability
distribution function described by a training dataset. Top:
Variational Auto-Encoders, based on a probabilistic encoder
qφ(z|x) and decoder pθ(x|z). Middle: Generative Adversar-
ial Networks, based on a generator gθ(z) and a discriminator
dθ(x). Bottom: Diffusion Models, aiming to model the reverse
transition probability of a Markov chain, through a network
pθ(xt−1|xt).

EPOD to reconstruct the bulk velocity of wall-bounded
turbulence from wall measurements, and in [71] where
they used EPOD and GPOD to fill missing data on ve-
locity planes extracted from 3d rotating turbulent flows,
POD methods can only reconstruct the large-scale, Gaus-
sian features of the ground truth data.
A significant advancement in this regard was brought

by the ML generative models [85–87] aiming to gener-
ate new data that resembles “statistically” the training
dataset. Their success can be attributed to two factors.
Firstly, their architecture relies on multi-layer Convolu-
tional Neural Networks (CNN) [88,89], which inherently
possess the ability to emphasize long-range correlations in
data. Secondly, they are trained with loss functions that
not only account for MSE accuracy but also for statistical
differences between the generated and ground truth data.
Figure 2 gives a schematic illustration of the three main
generative models that are commonly utilized in ML.
VAEs have been the first type of neural network trained

to give in output new samples, not belonging to the train-
ing dataset, which satisfy the same statistical properties.
In the first row of fig. 2, a simple diagram depicts the
workflow of the VAE model. VAEs, like their predeces-
sors, Auto-Encoders, are based on an encoder-decoder
structure. However, unlike Auto-Encoders, the aim of
VAEs is not to perform a dimensionality reduction by pro-
jecting the input data, x, into a low-dimensional latent
space, z. Instead, VAEs define a probabilistic decoder,
pθ(x|z), which maps any input from the latent space, sam-
pled from a simple distribution, p(z), typically a multi-
variate Gaussian, into a sample in the output space that
satisfies the (generally unknown) statistical distribution
characterizing the training dataset. The probabilistic en-
coder, qφ(z|x), plays a crucial role in VAEs by facilitating
the sampling of the latent space, z, during training to

accelerate decoder convergence. The encoder’s primary
objective is to model the posterior probability of the de-
coder, denoted as pθ(z|x), which corresponds to the likeli-
hood of obtaining a particular sample in the latent space
z when generating a specific input from the dataset x.
The presence of the probabilistic encoder assists the dis-
criminator in exploring a smaller and more relevant sub-
manifold of the latent space, resulting in faster and more
stable training. VAE models operate on the basic assump-
tion of learning a mapping between a simple and fixed dis-
tribution into the data probability distribution. Training
the encoder entails minimizing the Kullback-Leibler Diver-
gence (KLD) between the selected latent space distribu-
tion, p(z), and the encoder’s output distribution, qφ(z|x).
This operation can generally be computed analytically and
requires adding a few extra terms to the decoder loss func-
tion. As previously mentioned, the probabilistic decoder
of the VAE is trained by maximizing the log-likelihood of
the generated data, log pθ(x), where

pθ(x) =

∫
pθ(x|z)p(z)dz.

Directly computing this loss function is intractable. How-
ever, a lower bound can be defined, using a variational
inference formulation, and calculated under some approx-
imations. The approximations are based on the assump-
tion that the decoder’s errors are Gaussian. By making
this assumption, the maximization of the log-likelihood
can be rewritten as a minimization of the MSE. While
this approximation may be reasonable in some contexts,
it is certainly unsuitable for considering turbulent flows,
which are well known for their highly non-Gaussian ex-
treme fluctuations. As shown in the context of turbulent
flows on a rotating frame [71], the minimization of MSE
alone results in generating solutions that match the train-
ing data only at the large, more energetic scales, while
over-damping the smaller scales. Therefore, rather than
as generative methods, VAEs are mostly considered in the
context of reduced-order modeling to perform a proba-
bilistic projection on low-dimensional latent space, z, as
studied in the context of 3d homogeneous and isotropic
turbulent (HIT) flows [34] and more recently on a 2d flow
of a simplified urban environment [90].
GANs are proposed to improve VAEs by relaxing the

Gaussian errors assumption, and by improving the eval-
uation of statistical features in generated data in the
loss [91–93]. In general, the functional form of the proba-
bility distribution that characterizes the training dataset
is unknown. To overcome this issue, a second network,
the discriminator, dθ′(x), is used to evaluate the statis-
tical properties of training and generated datasets. The
discriminator provides a loss function that the GAN gen-
erative part, gθ(z), can optimize during training. The dis-
criminator functions as a classifier and is trained to assign
a probability of an input being generated or extracted from
a true dataset. On the other hand, the generator maps a
sample from a latent space into a sample in the data space,
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similar to a VAE decoder. Its objective is to generate in-
creasingly realistic samples that can fool the discriminator,
from which comes the name “adversarial”, where, as in a
zero-sum game, a gain for one network gives an equivalent
loss to the other [94,95]. For a fixed generator the analyti-
cal expression for the optimal discriminator can be derived
by maximizing the adversarial loss [91], and results in

d∗(x) =
ptrue(x)

ptrue(x) + pgen(x)
,

where ptrue and pgen represent the statistical distributions
of the true and generated datasets. Similarly, the opti-
mal generator, denoted as g∗(z), can be derived as the
network that minimizes the Jensen-Shannon Divergence
(JSD), a symmetric formulation of the KLD, between the
true and generated distributions [91]. GANs have exhib-
ited unparalleled potential in producing turbulent datasets
that display a remarkable level of statistical similarity to
their original counterparts. Both the original and gen-
erated data exhibit identical deviations from Gaussianity
up to the evaluation of high-order statistical observables
in several setups, as in super-resolving to a 64× larger 2d
turbulent flows behind cylinders [96], and of 3d HIT flows
[36,97], as well as in filling large gaps in rotating turbu-
lence [38] and 3d channel flows [43]. Figure 3 showcases the
workflows of VAEs and GANs focusing on the applications
of these models to fill gaps by exploiting their generative
capacities also when constrained to fit some observations.
In the three panels (a), (b) and (c), the sample x̂ represents
the gappy data and serves as a condition to the model, the
ground truth data (known only in the training stage) is de-
noted as xd, the model reconstruction is called xg. In the
VAEs the condition x̂ is passed to both the encoder and
the decoder. During training the encoder projects xd and
x̂ into the latent space by defining the variance and the
mean of a Gaussian distribution from which a sample z
is extracted. The loss function is the same as in the case
of pure generation. In testing setup, the reconstruction of
the sampling on z is done from a standardized multivariate
Gaussian while the decoder on top of the z sample ana-
lyzes also the condition x̂ [98–100]. Panel (b) displays the
GAN reconstruction setup, which distinguishes itself from
the unconstrained model in that the generator employs
an encoder-decoder architecture to map x̂ to an interme-
diate space z prior to generating the filling data instead of
performing a random sampling on the latent space. The
discriminator operates as usual, but now the overall gen-
eration loss is a linear combination of the MSE between
the ground truth and the reconstruction data, in addition
to the adversarial loss provided by the discriminator pre-
diction [48,71,72]. GAN generates realistic samples also
when constrained to match some observations. However,
in the reconstruction case having statistically consistent
data leads to a larger MSE with respect to the ground
truth solutions. Indeed a tiny shift in space between the
reconstruction and the true solution brings larger MSE if
the fields are both highly fluctuating [71]. The principal

Fig. 3: Workflow of a typical Variational Auto-Encoder
(panel (a)) and of a typical Generative Adversarial Network
(panel (b)) designed to generate samples xg conditioned on
some observations x̂. The gray boxes represent the functions
optimized during the training, the yellow boxes report the loss
functions and their connection with the different parts of the
network. The red box indicates where the stochastic sampling
is happening along the network propagation, while the green
and brown circles represent, respectively, the input and the
conditioning of the networks. (c) Visualization of typical fields
analyzed by the networks with the aim of transforming incom-
plete data into corresponding complete data.

limitation of GANs arises from their adversarial nature, re-
sulting in highly unstable training and slow convergence.
It can happen that one of the two players is dominated by
the other and converges into a failure solution.
Diffusion Models, fig. 2, bottom panel, are an alterna-

tive technique to generate data. DMs transform a simple
distribution into a more complex distribution, resembling
the training data while avoiding the need to introduce a
surrogate loss function, as seen in VAEs, and without rely-
ing on adversarial training, as in GANs. The workflow of
DMs is illustrated in fig. 4, for both the generation (a) and
the reconstruction (b) setups. DMs use a Markov chain
to gradually convert one distribution (latent space) into
another (dataset), following the idea developed in non-
equilibrium statistical physics [101]. To learn the param-
eterized Markov chain, DMs are trained using variational
inference to produce data samples that match the original
data after repeating a finite number of steps. The learn-
ing involves estimating small perturbations to a diffusion
process, a problem which is more tractable than explicitly
describing the full distribution within a single jump as
potentially done in the other generative models. Further-
more, since a diffusion process, q(xt|xt−1), exists for any
smooth target distribution, this method can capture data
distributions of arbitrary form [101]. If the forward diffu-
sion process is a Markov chain that gradually introduces
Gaussian noise to the data until the signal is destroyed,
the model subsequently learns how to reverse the diffu-
sion process and generate desired data samples starting
from pure Gaussian noise realizations. Unlike VAEs or
GANs, diffusion models involve a latent variable z with
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Fig. 4: (a) Typical workflow of a Diffusion Model designed and
trained to generate data respecting the statistical distribution
of a training dataset. Framework applied to reconstruct the full
state (reconstructed output) from partial observations (masked
input) using a pre-trained generative, unconditioned Diffusion
Model starting from a random noise (xT ) (panel (b)).

dimensionality identical to that of the original data x. In
fig. 4 panel (b) discusses the approach proposed in [102]
to employ pre-trained unconditional DMs to condition the
generation process on filling some partial observations.
The approach involves moving forward the gappy data
through the Markov chain by iteratively adding noise to
the observations, while simultaneously progressing back-
ward from the noise distribution using the reverse chain
learned by the DM. To incorporate the observed data
in the generation process, the strategy is to repeatedly
merge the forward-propagated noisy observations with the
reverse-propagated noisy signal. This allows the reverse
process to propagate data information within the gap and
generate a correlated reconstruction. DMs have produced
state-of-the-art results in image generation, see the famous
example of “DALL-E 2” [103], demonstrating their ease of
definition and effectiveness in training [102,104–107]. At-
tention [108] is another feature often implemented inside
DMs architecture, which is potentially crucial for large
gap-filling. Indeed, attention is meant to enhance the role
of some parts of the input data while diminishing oth-
ers, showing good results at handling long-range spatial
relations [109]. However, DMs and attention have not yet
been extensively applied in the generation and reconstruc-
tion of complex gappy flow data, but they have only been
used to super-resolve smooth bi-dimensional Kolmogorov
flows [110]. Therefore, the investigation of DMs and “at-
tention” capacity to generate high-quality samples of com-
plex flows is an ongoing field of research.

Physics-informed methods. – Leveraging the ob-
served data and the equation of motion, physics-informed
techniques exploit spatio-temporal correlations to derive
accurate reconstruction of incomplete data. Kalman fil-
ters, variational approaches, and nudging are examples
of advanced tools that have proven effective in enhancing
initial conditions for weather forecasting problems since
before ML [111–113].

Nudging is a physics-informed way to control the evolu-
tion of a flow via the continuous insertion of observed data
and the addition of a penalty term, which tries to keep the
flow trajectory close to that of the empirical subset [114].
Nudging has been recently applied to reconstruct high-
resolution HIT flow from sparse measurements [115] and
to estimate physical unknown parameters from turbulent
data [116]. While physics-agnostic ML approaches are
focused solely on finding patterns in data, there is growing
interest in incorporating physical knowledge into ML al-
gorithms, particularly in the field of fluid mechanics where
the underlying physical laws are well understood [117].
The first objective is to impose constraints on the ML
solutions to ensure that they adhere to the known physical
properties, the second objective is to streamline the train-
ing by integrating relevant information directly into the
network architecture or training setup. There exist three
methods for incorporating physics into ML algorithms:
i) observational, ii) inductive, or iii) learning biases. Ob-
servational biases may be introduced by selecting training
data to ensure that a specific aspect of physics is not only
present but also emphasized, i.e., extreme events can
be shown during training more often than the frequency
at which they occur. Inductive biases embed physical
constraints into the network architecture, as for example
the CNNs embed invariance along the groups of symme-
tries possessed by typical patterns observed in images.
Finally, learning biases operate in a “soft” way by adding
additional terms to the loss function that penalize non-
physical solutions [118], such as those that do not satisfy
equations of motion, violate mass or energy conservation,
and so forth. Physics-informed data-driven tools have just
begun to be highlighted as particularly promising in areas
as numerical weather prediction [26,119–121]. Improving
data-driven and physics-informed methods synergy will
undoubtedly be the focus of research in the upcoming
years.

Perspectives. – Although ML techniques have been
already implemented as standard tools in computer sci-
ence, fluid dynamics presents challenges that differ from
those tackled in many applications of machine learn-
ing, such as image recognition and advertising, as stated
in [122]. Fluid flows necessitate precise and quantita-
tive evaluations of the multi-scale and multi-frequency
physical mechanisms that they must adhere to. On top
of this, while idealized flow setups offer large datasets
of high complexity, and quality, in real-life flows, one
needs to deal with very sparse and noisy data. The
misalignment between the idealized cases studied in the
literature, and real applications opens non-trivial prob-
lems connected with the generalizability and the un-
certainty quantification (UQ) of the pre-trained models
[123–126]. To overcome those issues, it is highly desirable
to have in the future more open-access databases, such
as JHTDB (https://turbulence.pha.jhu.edu) and
Smart-Turb (https://smart-turb.roma2.infn.it), and
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well-defined open challenges, such as (https://github.
com/ocean-data-challenges), that can bring different
communities closer, and that can drive ML applications
to go beyond theoretical exercises towards the quantita-
tive improvement required to provide advancements in
fluid mechanics. Today’s challenges are connected with
the need of a quantitative AI, driven by several critical
factors such as validation, benchmarks on generalization,
and UQ of ML solutions. Another crucial aspect is the
problem dimensionalization, which involves understanding
the correlation between the network’s architecture, deep-
ness, structure, and size, and the physical parameters,
as Reynolds, Rayleigh, and time-to-solution, among oth-
ers. As discussed, already defining an evaluation metric to
quantify the solution quality is an issue in fluid mechan-
ics that needs to be carefully designed. Answering these
questions is necessary, and interdisciplinary collaborations
between applied scientists and AI specialists are unavoid-
able for establishing best practices outperforming today’s
data assimilation techniques. Scientists are skilled at ask-
ing the right questions and they are asked to define targets
that can be applied to real-world problems. AI specialists
have a unique ability to “open the box” of complicated al-
gorithms and unlock the potential of vast amounts of data.
Despite these challenges, scientific communities have

not been deterred from exploring the interactions between
ML and complex flows. On the contrary, the potential im-
pact is attracting increasing attention, resulting in a con-
vergence of challenges and new approaches that we believe
are likely to continue transforming both fluid mechanics
and machine learning research.
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