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Abstract: Cellular solids are materials made up of cells with solid edges or faces that are piled
together to fit a certain space. These materials are already present in nature and have already
been utilized in the past. Some examples are wood, cork, sponge and coral. New cellular solids
replicating natural ones have been manufactured, such as honeycomb materials and foams, which
have a variety of applications because of their special characteristics such as being lightweight,
insulation, cushioning and energy absorption derived from the cellular structure. Cellular solids
have interesting thermal, physical and mechanical properties in comparison with bulk solids: density,
thermal conductivity, Young’s modulus and compressive strength. This huge extension of properties
allows for applications that cannot easily be extended to fully dense solids and offers enormous
potential for engineering creativity. Their Low densities allow lightweight and rigid components to
be designed, such as sandwich panels and large portable and floating structures of all types. Their
low thermal conductivity enables cheap and reliable thermal insulation, which can only be improved
by expensive vacuum-based methods. Their low stiffness makes the foams ideal for a wide range of
applications, such as shock absorbers. Low strengths and large compressive strains make the foams
attractive for energy-absorbing applications. In this work, their main properties, applications (real
and potential) and recent developments are presented, summarized and discussed.

Keywords: cellular solids; sandwich materials; mechanical characterization; honeycomb and foam
materials; physical properties; industrial applications

1. Introduction

Many industries, including the automotive, aerospace, sport and biomedical sectors,
have a critical need for materials that are extremely reliable (fatigue tolerant), stiff, perform-
ing and lightweight [1]. Cellular solids are a class of materials made up of cells with solid
edges or faces that are piled together to fit a certain space. These materials are present in
nature and have been utilized by people for ages. Some examples are wood, cork, sponge
and coral. Recently, new cellular solids, inspired by natural ones, have been manufactured
such as honeycomb materials and polymer foams, which have a variety of uses because of
their special characteristics. Lightweight, insulating, cushioning and energy-absorbing are
characteristics that come from having a cellular structure. Cellular solids are frequently
disregarded despite their significance as an engineering material. Yet, they are commer-
cially significant and widely manufactured and consumed. There is a high demand for
porous biomaterials that imitate the varied characteristics of bone [2]. This is because
they are useful for replacing bone and used in different kinds of orthopedic implants
that must minimize stress shielding while providing adequate mechanical support and
a long fatigue life. Additionally, the permeability of bone-like porous biomaterials must
be suitably constructed to enable for the nutrient and oxygen delivery of cells dwelling
in the interior of the porous biomaterials. When compared to other types of biomaterials,
fully porous biomaterials offer several benefits [2]. In-plane qualities can change greatly
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with different loading situations; however, many researches focus on out-of-plane mechan-
ical properties, making investigations into various loading scenarios inherently outside
the study’s purview. Isotropy is a crucial factor to consider for applications where the
directions of forces cannot be assumed, such as lightweight sandwich panels in aviation
and explosion protection in military vehicles. Some honeycombs, including those with
a hexagonal foundation and those presumed to be totally isotropic, may be anisotropic
for large deformations while remaining isotropic for tiny deformations [3]. Polymeric
foams are frequently utilized for a variety of purposes, including energy absorption, noise
reduction, thermal insulation and floral design. The modeling of a substantial displace-
ment, including the unloading component, is crucial for an effective foam design in several
engineering applications, such as energy absorption. Over the past ten years, several foam
deformation models have been developed [4]. More than 60% of this market is made up of
cellular materials, which are used in the building and construction, automotive, bedding,
furniture and insulation industries. There are two primary varieties of foam that may be
produced: flexible with open cells that have stress and tensile qualities, such as those found
in furniture or bedding, and stiff with closed cells that have low thermal conductivity, low
density and good dimensional stability, primarily for thermal insulation, such as those
found in construction industries [5]. The microstructure or morphology of these cellular
materials is greatly influenced by the formulation stage, which also affects the final foam
qualities. Commercial PU cellular materials are now mostly based on fossil resources,
notwithstanding the possibility of using certain partly biobased components (polyols).
But to meet social expectations, new materials will combine excellent performance with
little environmental effect. These results in distinct renewable macromolecular designs as
novel biobased substances fusing diverse domains such as biotech, chemistry, science and
materials engineering are increasingly utilized in complicated formulations for renewable
foams. Producing biodegradable polymers from fossil resources like polycaprolactone
is another option. The huge and growing issue of plastic dispersion and accumulation
in the environment is related to the development of biodegradable polymers. Designing
sustainable polymeric materials is a must given the real buildup of microplastics in the
ocean and global warming. Sandwich structures are a specific type of laminated composite
made of a lightweight core (such as honeycomb, truss or foam) and two stiff facings at
the top and bottom made of fiber-reinforced polymer (FRP) composites, epoxy/carbon
composites or other metal alloys. Using an appropriate joining method, the face sheet and
the core were joined together. An illustration of a typical cellular honeycomb sandwich
structure is shown in Figure 1 [6].
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2. Sandwich Composite Cellular Materials

Sandwich composite cellular materials utilized in building and manufacturing are
arranged to combine good quality and robustness with low weight. They are created
by sandwiching a lightweight center texture, such as foam or honeycomb, between two
outside layers of solidified, strong materials, such as carbon fiber or fiberglass. The most
recently developed sandwich structure gives astonishing strength-to-weight and stiffness-
to-weight ratios, making it a well-known choice in applications where weight may be
an essential consideration, such as flying, car, marine and advancement businesses. The
points of interest in sandwich composite materials over routine materials are that they
incorporate higher quality and solidity, a prevalent resistance to influence and advanced
separator properties. Moreover, sandwich composites can be molded into complex shapes,
diminishing the need for additional components and facilitating the manufacturing plan.
Sandwich composite materials have a wide range of applications, from aviation and defense
to renewable imperatives and systems. They are utilized to create everything from plane
and carrying components to wind turbine edges, vessel outlines and building sheets.
Figure 2 shows different designs of sandwich composite structures [7].
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2.1. Honeycomb Core

After defining a sandwich composite, it is possible to categorize different types of
sandwich structures based on the materials used for the core and the front [8]. For instance,
Figure 3a depicts a sandwich composite with a foam-type core, Figure 3b depicts a hexago-
nal honeycomb, Figure 3c depicts a unidirectional corrugated core, and Figure 3d depicts a
back-to-back corrugation variation of the unidirectional corrugated core. Two fluted metal
sheets are connected to the corrugated core in this instance. Typically, aluminum foil is
used to make the honeycomb-shaped core. The typical honeycomb core has a propensity to
bend anticlockwise and is difficult to fit into a cylindrical surface. The flexible core with
multiwave, an enhanced variant, appears to offer remarkable formability into compound
curvatures [8]. Additionally, it offers greater shear strengths than a comparable hexagonal
core with the same density. To create new core shape combinations, a superplastic forming
approach has been used. The initial outcomes with this novel technique appear to be
quite encouraging. The main advantages of a honeycomb core are toughness, lightness,
recyclability, cost-effectiveness and customizability.
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Aluminum, stainless steel or other alloys are all acceptable materials for facing sheets.
As face sheet materials, fiber-reinforced laminates such as glass–epoxy, graphite–epoxy and
boron–epoxy have often been employed. On the other hand, plywood, glass-reinforced
cement, plasterboard, hardboard and other materials are often utilized in the construction
of buildings as facings [8]. Almost any form of core may be bonded together with any
type of face sheet depending on how the sandwich composite will be used. Sandwich
composites may be produced for specific purposes, but naturally, commercially available
composites are significantly less expensive than materials that are built to order.

2.2. Cellular Polymer Core

Due to their heat sensitivity and viscoelasticity, polymers are quickly melted or subject
to thermal rupture. In general, micro-flaws and crazing in highly stress-concentrated
places signal the start of fatigue breakdown in polymeric materials. Internal and exterior
surface imperfections, voids and poorly bonded matrix interfacial regions, which have a
significant impact on the mechanical strength and subsequently lead to deformation, are
the main causes of crazing [9]. Up until the critical fracture size is achieved, which results
in an abrupt catastrophic failure, continued cyclic loading produces plastic deformation
and crack propagation in polymers. Analyzing the beginning and growth of fractures
allows for a detailed study of polymeric material fractures under fatigue. Due to their
special qualities and myriad prospective uses in the automotive, aerospace, building,
medicinal and electrical sectors, cellular polymer cores have opened a new frontier in
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material research [10]. Few technological fields need multidisciplinary collaboration more
or have a greater influence on the quality and longevity of life than polymer cores; as
a result, researchers in the fields of materials, biology and engineering sciences, among
others, face enormous hurdles [11].

2.3. Wood Core

Sandwich constructions made of a balsa wood core and a carbon-fiber-reinforced
polymer (CFRP) skin joined by an adhesive film are examined in [12]. Due to the benefits
they offer, sandwich constructions with a balsa wood core are often utilized in the rail,
road, building, renewable energy and aerospace sectors. A thorough investigation of the
compression response and a failure analysis of samples made from readily available balsa
wood that were tested in several directions (axial, radial and tangential) were given [12].
The balsa wood demonstrated a linear rise in the modulus of elasticity and strength vs.
density when exposed to axial compression, flexure and torsion. Figure 4 shows the
wood core of the balsa wood sandwich structure [12]. Balsa’s air-dry density was largely
responsible for its mechanical characteristics. The end-grain balsa panels from Ecuador’s
shear characteristics show the influence of the density, adhesive connections and shear
plane on the shear characteristics of the balsa panels. The balsa’s density grew along with
its shear stiffness and strength [13]. Due to plastic deformations in the tracheid, certain
specimens showed notable ductility.
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2.4. Metallic Foam Core

Metallic foams have generated a lot of interest, in part because of improvements in
processing that have made the material more affordable and in part because they can
exhibit appealing property combinations, notably in terms of specific stiffness and specific
energy absorption. Metallic foams may be produced using a variety of techniques. Some
of them entail treating the metal in the liquid or semisolid state, especially those that
produce closed-cell structures [14]. Open-cell metallic foams are less rigid than closed-cell
metallic foams, but since they allow fluids to flow easily through heated structures, they
offer advantages that may be used in heat transfer and multifunctional load-supporting
applications [15,16]. They can be utilized as high-temperature supports for catalysts and
electrodes in electrochemical cells due to their high surface-area-to-volume ratio. Open-cell
metal foams can be created through electrolytic deposition, chemical or physical vapor
deposition on polymer templates, investment casting utilizing an open-cell mold and the
PM method [15].

For foams, sponges and porous materials with macroscopic pores, there are several
production techniques. Only the commercially most pertinent approaches will be dis-
cussed here. The two primary families of closed-cell foams, also known as the production
routes, are the ML route and the powder metallurgical (PM) approach. The direct and
indirect foaming procedures are other names for them. In the literature, most of these
manufacturing processes and their variants have previously been covered [17]. There are
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other production processes as well, particularly when it comes to metallic sponges, which
cannot be immediately foamed since the gas would leak. Figure 5 illustrates the schematic
grouping of the economically most significant metal foam and sponge production tech-
niques, together with some illustrative brand names and industries [17]. They do not
directly contribute to foaming in the traditional meaning of the word, but they do result in
a structure that resembles foam. These techniques may also be separated into two primary
groups: the first uses a polymeric sponge structure as a pattern or carrier, while the second
uses a removable placeholder. Typically, but not always, their applications are centered on
their functionality.
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2.5. Tubular Core

Due to their capacity to sustain transverse loads with no weight penalty and absorb
significant amounts of plastic energy, sandwich-type cladding structures with lightweight
cores are currently becoming more attractive for blast mitigation applications, including
armor systems [18]. The performance of the sandwich panels is significantly influenced
by the sandwich core selection. Typical core materials include wood, various foams and
tubular constructions. Tubular constructions are frequently employed due to their great
energy absorption capacities. Sandwich panels use tubular constructions as cores under
blast and dynamic stresses [18].

The basic component of this sandwich construction is made up of tubes. Applications
for low-velocity impacts (perforation), shock waves and crashworthiness are the most
common ones of tubular cores. Figure 6 illustrates an example of a tubular core sandwich
structure [19]. Metals (aluminum/stainless steel) or fiber composites are frequently em-
ployed as sandwich construction face sheets. Metals and polymers were the two most
often employed materials for the core construction [19]. The following are some of the
major conclusions: Although less perforation-related, such a core design offers strong blast
protection and crashworthiness. Because it influences the creation of the plastic hinge, the
tube configuration between the face sheets is essential; foam-filled tubes provide strong
energy absorption properties.
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3. Manufacturing Process of Cellular Solids Sandwich Structures

The cellular solids’ sandwich structure manufacturing process includes skin manufac-
turing, honeycomb core preparation, adhesive application, sandwich structure assembly,
curing and finishing. This process ensures the production of lightweight, high-strength
and rigid composite panels that are suitable for a variety of applications in industries such
as aerospace, automotive and construction. Using a corrugated roller to create a corrugated
sheet from a roll of aluminum foil is an alternate method. This sheet’s flat parts are coated
with adhesive before sections of the corrugated sheets are placed on top of them, with
the flats holding them together while the glue cures [20]. This is usually carried out for
honeycomb cores that are not generated through the expansion process and have smaller
cells. Figure 7 illustrates the manufacturing process for corrugated honeycomb cores [20].
Both techniques require gluing two sheets of aluminum foil together to form a honeycomb
structure where the cell walls along one orientation have twice the wall thickness as com-
pared to those in either oblique orientation. The “ribbon direction” is the name given to
this position.
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Sandwich panels are created by using an adhesive to join the face sheets to the core
material [19]. This might happen at the same time as the composite material’s curing
process in the case of face sheets made of carbon-fiber-reinforced polymers (CFRP) or other
composite materials.

3.1. Prepreg Lay-Up Process

The degassing lamination method is often used to create thermoset-based composite
laminates. The prepreg lay-up process produces layers of the desired shape, which are
assembled in this method in a certain orientation to create a laminate. Figure 8 shows an
overview of the prepreg lay-up process [21]. Following layers of an absorbent substance
(glass bleeder fabric), a fluorinated film to avoid adhering and, lastly, a vacuum bag, the
laminate is coated. In an autoclave, the complete system is put on a flat metal tool surface,
the bag is vacuumed and the temperature is raised steadily to encourage resin flow and
polymerization [21]. This section will utilize the autoclave process as a case study to discuss
how matrix properties affect high-performance composites during the process.
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3.2. Hand Lay-Up Process

The earliest process for creating woven composites is called hand lay-up. To prevent a
polymer from adhering to the mold surface, a released antiadhesive agent is applied first.
The product’s surface is then made smooth by applying a thin plastic layer to the top and
bottom of the mold plate. Figure 9 illustrates the hand lay-up process [23]. Cut into the
necessary forms, the woven reinforcing layers are laid down on the mold’s surface. As a
result, as previously stated, the resin combines with other materials and is evenly applied
with the aid of an assist brush over the surface of the reinforcement that was already set
up in the mold. The remaining mats are then positioned on top of the prior polymer layer,
and pressure is applied with a roller to remove any trapped air bubbles as well as extra
polymers [23]. To produce a single mat, the mold is then shut and the pressure is released.
The woven composite is removed from the mold’s surface once it has finished curing at
room temperature.
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One of the oldest techniques employed in the sector is the hand lay-up method, often
known as the wet lay-up method. Each ply is handled only by hand during the whole pro-
cess, which entails the layer-by-layer stacking of the ply up to the necessary thickness [24].
Even though this approach is dependable, it is labor-intensive and takes longer to complete
than modern production techniques. The employee’s expertise determines the quality. The
complexity of the aircraft is a manufacturing constraint for this technology as well. Any
materials, such as carbon or glass fiber, in any form (continuous fiber, chopped fiber, woven,
etc.) are acceptable for this procedure [24].

3.3. Liquid Bonding

Using liquid adhesives or bonding agents to bind cellular or porous materials together
is known as “liquid bonding” in cellular materials. To create a solid and long-lasting
connection, cellular materials, such as foam, honeycomb structures or other porous sub-
strates, frequently require specific bonding methods. The sandwich construction that will
be produced will determine the ideal honeycomb core pressure range. For instance, thicker
skins, lower vacuum bag pressure levels or greater internal core pressures may be necessary
for cores with larger cell diameters to stabilize the core and minimize skin voids. The man-
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ufacturing process’s pressure sinks and sources determine how the ideal core pressure is
reached [25]. Given the air permeability of the skin and the amount of vacuum bag pressure,
the honeycomb core pressure will decrease. It will then rise because of a gas expansion
brought on by rising temperatures and the presence of moisture or other volatiles. The foam
cells have accessible routes to the atmospheric environment due to the micro-hole array,
which entirely prevents Ostwald ripening and permits guided spontaneous evaporative
formation of discretized liquid–air interfaces [26]. Instead, in a controlled manner, the
micro-post array secures the grown interfaces at predetermined points. To illustrate the
MNLP approach used to shape different liquid film networks and explain the mechanics of
open-cell 2D liquid foam [26], it has been demonstrated that liquid-mediated materials may
ultimately be constructed into long-lasting well-ordered micro-/nanostructure patterns by
the evaporative thinning of the network to contain liquid-mediated or aqueous materials at
the microscale and nanoscale.

3.4. Continuous Lamination

Continuous-fiber composites are laminated materials in which the orientation of the
individual layers, plies or laminae enhances the strength in the main load direction. Unidi-
rectional laminates are exceedingly stiff and robust when viewed in a parallel direction,
but since the load must be borne by the much more fragile polymeric matrix, they are also
quite weak when viewed in a perpendicular direction [27].

A conventional polymeric matrix typically has a tensile strength of only 5–10 ksi, but a
high-strength fiber can have a tensile strength of 500 ksi or more. The matrix distributes the
tension loads across the fibers and stabilizes and prevents the fibers from buckling under
compression, while the fibers carry the longitudinal tension and compression loads.

Laminated materials have long been used. The use of laminated glass-fiber-reinforced
composites based on organic matrix resins in boat construction dates back more than
50 years, while applications for carbon fiber composite aircraft have gradually grown since
the early 1970s [28]. Plywood is a conventional building material. For composite materials,
whose mechanical behavior is strongly influenced by the manufacturing process, it has been
acknowledged that the formulation of test standards is of utmost significance. Significant
property alterations can occur because of changes in pressure, temperature or hygrometry.

3.5. Adhesive Bonding

Humans have spent thousands of years learning about adhesives. Initially, materials
derived from natural sources, such as birch tar, bituminous substances (asphalts) or animal
collagen derivatives, were used, but the development of this technique has also been
facilitated by the constant advancement of knowledge in the disciplines of chemistry,
physics, materials engineering and mechanics [29]. There are already tens of thousands
of different adhesive formulations on the market. There are adhesives made specifically
for certain substrates, operational environments and joint loading scenarios, in addition to
universal adhesives. There are adhesives for detachable joints, such as light paper adhesives
and adhesives that are neutralized by solvents or heat, as well as adhesives for high-strength
joints that call for specific stages in the bonding process (surface preparation, the application
of the adhesive and the joint curing procedure). Figure 10 illustrates adhesive bonding in a
honeycomb structure [29]. Today, a wide range of materials are bonded using this method,
including simple building materials, tissues (adhesives used in biomedical engineering)
and even the most intricately made honeycomb composites utilized in the aerospace sector.
This demonstrates the current significance of the adhesive bonding process. Since adhesive
bonding could be the only approach available for making joints in some circumstances,
technology professionals are now adopting it more frequently than only as a complimentary
alternative for attaching materials. Bolted connections, soldering and other conventional
joining techniques are gradually being replaced by these joint types.
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Fiber–metal laminates, sandwich structures and other joint assemblies that scale from
the integration level of the part to the product employ adhesive bonding extensively.
For instance, to achieve the synergistic benefits of both metal and composites, titanium
alloys or steel alloys are adhesively linked to carbon-fiber-reinforced polymeric (CFRP)
composite fan blades [30]. Additionally, metal alloys guard against erosion brought on
by sand, stone or engine debris as well as damage from foreign object hits, such as those
caused by bird strikes, hailstorms or rain. Damage causes include manufacturing flaws and
internal residual stress release in use, which degrade the integrity of the composite blade
throughout the course of its life and need “debonding”. To ensure appropriate adhesion,
most structural adhesives create main chemical connections with the adherends, which are
surface atoms that are either covalent or ionic.

4. Applications of Cellular Solid Structures

Due to their high stiffness-to-weight ratio, superior crash energy absorption, fire resis-
tance, non-toxicity, low thermal conductivity, magnetic permeability and reduced density,
cellular materials have the most promising applications and have been shown to be suitable
for their applicability. In the case of cellular structures, there are additional application-
specific advantages such as noise and energy absorption, mechanical dampening and
filtration effects, in addition to significant weight reduction and material savings [31]. There
are several materials available where weight reduction is the only factor to be considered;
however, metal foams may be preferable if a low weight is also required, along with high
energy absorption or heat resistance properties. Possible uses may be found in industries
including light-weight building, crash energy absorption, noise reduction, transportation,
construction, heat exchangers, purifiers, decorating and the arts, among others.

The solid and voided networks that make up the porous microstructure of cellular
materials give them their distinctive properties. The growth of the subject of research
known as cellular materials has been greatly impacted and supported by a variety of
biological systems, including bone, honeycombs, marine sponges, wood and cork. One of
the most fascinating natural biological materials for humans is likely bone (Figure 11) [32].

For support, protection and mobility, its microstructure has been developed to offer
an unusual yet desired mix of strength and lightweight. Anatomically, bone is made up
of cancellous (or trabecular) bone, which is largely porous, and cortical (i.e., compact)
material, which is mostly solid. For instance, a thin cortical shell surrounds a porous
cancellous core at the end of a femur bone, but a flat bone like the calvaria has a thin
cancellous bone wedged between thick cortical shells. The Young’s modulus, strength,
toughness and other mechanical characteristics of bone are governed by three basic factors:
(1) the overall porosity of the bone, (2) the spatial distribution of the solid phase and (3) the
degree of mineralization. Porosity is increased to save weight, but it also reduces strength
and stiffness [32]. On the other hand, when the amount of mineralization rises, the bone
strength rises as well. Additionally, solid matrices are stronger when orientated in that way
because they offer more resistance to loading in that direction.
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As a result, an optimum combination of these elements must be applied to the anatom-
ical location of a bone and its intended use (external stress and functioning) to adapt the
mechanical properties to acceptable and desired levels. The unique combination of strength,
light weight and design flexibility of sandwich construction results in it having a wide
range of applications in a variety of industries. They are commonly used in aerospace
applications such as aerospace vehicles. Due to their mechanical, thermal, acoustic and
electromagnetic properties, cellular materials are appealing for a variety of engineering
applications, with the use of these materials for energy absorption and load attenuation
seeing a steady increase in the building, aerospace, defense, transportation and biomedical
sectors [33]. Because it is extremely light, less costly, fungus-resistant and impermeable,
EPS could be a viable substitute for many of the primary materials now utilized in maritime
applications. Unfortunately, it is also a somewhat weaker material, and because of this,
it is prone to delamination and damage due to its poor shear and compressive strength.
However, by thickening the core or utilizing shear webs, these restrictions can usually be
circumvented. Lattice webs, a variation on the shear web idea, are currently being used in
civil infrastructure applications. Unfortunately, polyester resin cannot be used with this
material. However, this issue can usually be fixed by attaching a thin PVC cover over the
central polystyrene core to serve as a barrier [34].

At the bone–implant contact, the impact of adding cellular structures also shows enor-
mous potential. The cellular structure can be further treated with a biomaterial to unlock a
large potential for medicinal applications. High-molecular-weight bone morphogenetic
proteins were injected into the titanium cellular structure in an in vivo investigation to
promote bone regeneration. The medullary canal and cortex, as well as the whole segmental
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bone defect, fully recovered after four weeks [35]. They are used to manufacture aircraft
wings, fuselages, control surfaces and interior components. Sandwich lightweight construc-
tion reduces fuel consumption and increases payload, and it is used in the construction of
boats, yachts and ships. Moreover, it provides superior stiffness and strength at a minimal
weight for improved performance and fuel efficiency. Sandwich composites are widely
used for hulls, decks, bulkheads and superstructures. Cellular solids structures are used
in renewable industries such as photovoltaic modules. This is because their lightweight
design facilitates installation and transportation, while their structural rigidity protects
delicate solar cells. They are even used in electronic devices and cases to provide structural
support, thermal management and electromagnetic shielding. This is because they help
protect electronic components and ensure proper function. These are a few of the many
illustrations of the wide range of applications for sandwich structures. Its light weight, high
strength-to-weight proportion and flexibility make it suitable for a wide range of businesses
where weight reduction, toughness and execution are key variables. The fabrication of
porous CsPbBr3 and H-CTFs nanocomposites (CsPbBr3/CTFs) has been developed for en-
hanced photocatalytic H2O2 production due to their homogeneous active sites distribution
showing a unique hollow porous framework [36,37].

5. Properties of Cellular Structures

Cellular solid structures have thermal, physical and mechanical properties that are
measured using the same process that can be used for fully hard solids. Figure 12 shows
the range of four of these properties: density, thermal conductivity, Young’s modulus and
compressive strength [38]. The dotted shaded bar shows the range of the conventional solid
property; the solid bar shows the extent of this range that is made possible by foaming. This
huge extension of properties creates applications for foams that cannot easily be extended
to fully dense solids and offers enormous potential for engineering ingenuity. Their low
densities allow lightweight and rigid components to be designed, such as sandwich panels
and large portable and floating structures of all types. Their low thermal conductivity
allows for cheap and reliable thermal insulation, which can only be improved by expensive
vacuum-based methods. Their low stiffness makes the foams ideal for a wide range of
applications, such as shock absorbers. Their low strengths and large compressive strains
make the foams attractive for energy-absorbing applications [38].

Two broad classifications of cellular solids make up cellular structures, which are
strong and light in weight. One is open cell, in which linked pathways travel through each
individual pore of the foam or scaffold, and the other is closed cell, in which each pore is
fully separated from the others [39]. In many real-world applications, cellular materials
operate as a cushion and are loaded dynamically. This loading process is frequently
accompanied by a high loading strain rate [40]. When a side accident occurs at a speed of
90 km/h, the protective foam in the car-side door panels can be stretched up to 1500 s−1.
At 40 km/h, the strain rate of the car’s foam energy-absorbing box approaches 200 s−1.
The mechanical characteristics of the cellular medium cannot be precisely assessed by
the static test result and model when the cellular medium is subjected to greater strain
and a higher strain rate during dynamic loading [40]. Therefore, it is crucial to look at
their mechanical behavior under dynamic loads in high strain rate loading circumstances.
Rather than the regularity of its microstructure, a honeycomb’s nodal connection has a
significant impact on its macroscopic characteristics [41]. The cause of this is connected to
the honeycomb’s behavior in response to macroscopic stresses, which is bending- or stretch-
dominated behavior. Different cell material types from both softwoods and hardwoods,
both longitudinal and transverse, may be found in the microscopic cellular variety. These
also change as the plant grows, giving the earlywood and latewood various textures and
proportions. With reference planes for radial, tangential, transverse or cross-sectional
directions, wood is anisotropic. It is well acknowledged that tangential and radial surfaces
exhibit comparable wettability tendencies [42]. However, it is challenging to adhere cross-
sectional wood surfaces; hence; this is often avoided in wood adhesive joint designs.
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Sometimes, it might be difficult to connect knots because they frequently have cross-
sectional surfaces on wood that have longitudinal faces and other peculiarities.
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(d) compressive strength [38].

Due to the existence of flaws in the cellular solid structure, like knots and nonparallel
grain, the mechanical characteristics of wood are frequently varied. To lessen the impact
of such flaws, glue-laminated wood members have recently been created. To create glue-
laminated members, thin wood strips from which the flaws have been removed are glued
together. These members’ characteristics are more consistent than those of dimensioned
lumber. Another benefit of using glulam sections is that they may be bent and expanded
to any size [43]. Utilizing wood elements in sandwich structures can also increase their
efficiency. Normally, plywood faces are combined with balsa, foam or honeycomb cores. A
material’s specific strength is calculated by dividing its strength by its apparent density. It
is a crucial metric for determining how strong and light a material is. Ordinary concrete,
low-carbon steel and wood (cut against the grain) have specific strengths of 0.012, 0.053 and
0.069, respectively. A material has more strength and is lighter when its specific strength
is higher [44]. To increase a building’s height, decrease its structural weight and save
project costs, it is crucial to choose materials with high strengths or to increase their specific
strengths. Characterizing and modeling the in-plane and out-of-plane mechanical behavior
of honeycomb structures is one of the key challenges in material science. Three regimes,
the linear elastic, plateau and densification regions, describe the stress–strain curve for
the in-plane deformation process. Due to its high surface-to-volume ratio, surface effects
should be considered if the honeycomb structure is nanoscale [45]. Since nanowires or
nanorods have the potential to be used in nanodevice applications, the surface effect’s
impact on the linear elastic behaviors of nanowires has been the subject of many studies.
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6. Conclusions

The broad and interesting world of cellular-structured solid materials has been ex-
plored in detail in this thorough overview, along with their distinctive features and diverse
range of applications. The principles regulating these materials have been expanded on
by carefully analyzing their structural traits, mechanical properties, thermal behavior and
functional aspects. Cellular-structured solids are adaptable candidates for a wide range
of applications across many sectors because of their unique characteristics, which include
their low density, high strength-to-weight ratio, good thermal insulation and adjustable
porosity. The potential for their innovation and improvement is endless, ranging from
medicinal gadgets and sustainable building to aerospace, construction, biomedical and
automotive engineering. Looking at the future, cellular-structured solid materials will
undoubtedly play a crucial role in directing technological advancements and addressing
some of the most pressing issues of our time, such as energy efficiency, environmental
sustainability and sophisticated manufacturing. Researchers and designers will tackle the
uncommon characteristics of these materials to make notable adjustments that benefit us
further and support a more manageable climate. This analysis concludes by highlighting
the present state of understanding about cellular-structured solid materials as well as the
promising future directions. This is proof of the extraordinary potential of these materials
and the limitless ingenuity of scientists and engineers who consistently push the envelope
of what is feasible.
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