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Abstract
Vascular tone regulation is a crucial aspect of cardiovascular physiology, with significant implications for overall cardio-
vascular health. However, the precise physiological mechanisms governing smooth muscle cell contraction and relaxation 
remain uncertain. The complexity of vascular tone regulation stems from its multiscale and multifactorial nature, involving 
global hemodynamics, local flow conditions, tissue mechanics, and biochemical pathways. Bridging this knowledge gap 
and translating it into clinical practice presents a challenge. In this paper, a computational model is presented to integrate 
chemo-mechano-biological pathways with cardiovascular biomechanics, aiming to unravel the intricacies of vascular tone 
regulation. The computational framework combines an algebraic description of global hemodynamics with detailed finite 
element analyses at the scale of vascular segments for describing their passive and active mechanical response, as well as 
the molecular transport problem linked with chemo-biological pathways triggered by wall shear stresses. Their coupling is 
accounted for by considering a two-way interaction. Specifically, the focus is on the role of nitric oxide-related molecular 
pathways, which play a critical role in modulating smooth muscle contraction and relaxation to maintain vascular tone. The 
computational framework is employed to examine the interplay between localized alterations in the biomechanical response 
of a specific vessel segment—such as those induced by calcifications or endothelial dysfunction–and the broader global 
hemodynamic conditions—both under basal and altered states. The proposed approach aims to advance our understanding of 
vascular tone regulation and its impact on cardiovascular health. By incorporating chemo-mechano-biological mechanisms 
into in silico models, this study allows us to investigate cardiovascular responses to multifactorial stimuli and incorporate 
the role of adaptive homeostasis in computational biomechanics frameworks.

Keywords  Cardiovascular biomechanics · Chemo-mechano-biological modeling · Multiscale computational approach · 
Vascular tone regulation · Nitric oxide signaling · Adaptive homeostasis

1  Introduction

The physiological behavior of the cardiovascular system is 
governed by various factors, such as blood flow conditions, 
vessel mechanical response, and smooth muscle cell tone 
(Quarteroni et al., 2016; Green et al., 2017; Marino, 2019). 
Non-physiological events affect mechanobiological stimuli 
applied to vessel cells. This initiates a series of signaling 
pathways that can result in alterations of tissue behavior at 
localized sites within vessels tree, impacting local hemo-
dynamic conditions and possibly the overall response of 
the cardiovascular system. Changes in vessel response can 
contribute to the restoration of homeostasis, but they may 
prove inadequate and contribute to the progression of dis-
eases (Lacolley et al., 2017; Loerakker and Ristori, 2020).
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In this context, this work addresses the key role played by 
vascular tone regulation. Vascular tone refers to the degree 
of constriction or dilation of blood vessels, a process regu-
lated by the contraction or relaxation of vascular smooth 
muscle cells (SMCs) within the vessel walls. Changes in 
vascular tone play a critical role in cardiovascular health and 
the functioning of the circulatory system (Marti et al., 2012). 
At a global level, vascular tone governs blood flow and pres-
sure by modulating resistance and compliance across all ves-
sel segments—a topic extensively discussed in the literature 
(Green et al., 2017; Leloup et al., 2019). Yet, the local effects 
of vascular tone regulation are often overlooked. Variations 
in SMC contraction significantly impact the local biome-
chanical state of vessels. Initially, alterations in the vessel’s 
internal radius affect wall shear stresses, known to be influ-
ential in the development of cardiovascular diseases (Gallo 
et al., 2016; Mazzi et al., 2022). Additionally, SMC contrac-
tion finely tunes hemodynamic loads affecting blood pres-
sure and modifies the tissue’s constitutive response, thereby 
influencing intramural stresses and strains within the ves-
sel wall. These are known to be instrumental in long-term 
growth and remodeling mechanisms (Cyron and Humphrey, 
2017).

Knowledge of the molecular pathways governing the 
contraction and relaxation of SMCs in the arteries has been 
greatly enhanced through extensive research (Lacolley et al., 
2017; Russell and Watts, 2000). These studies have shed 
light on the local, humoral, mechanical, and neurogenic 
regulatory mechanisms involved. It has been established 
that dysregulation of these pathways can lead to various 
pathologies, such as hypertension and arterial stiffening 
(Marti et al., 2012; Sena et al., 2018; Leloup et al., 2019). 
Such mechanisms occur all along the arterial tree, involv-
ing both elastic and muscular arteries (Green et al., 2017; 
Leloup et al., 2019). A major actor in the maintenance of a 
functional vascular tone is played by the endothelium, that is 
the mono-layer of cells covering the inner surface of blood 
vessels. The endothelium, in a healthy state, functions as 
a dynamic organ that maintains vascular tone by carefully 
balancing the production of vasodilators and vasoconstric-
tors in response to various stimuli (Sena et al., 2013, 2018). 
Nitric oxide (NO), which serves as the primary mediator of 
normal vascular function, is released by the endothelium and 
diffuses within the vessel wall, resulting in the dilation of 
smooth muscle (Liu et al., 2008; Hall and Garthwaite, 2009; 
Zhao et al., 2015). For instance, acute changes in blood flow 
conditions are detected by endothelial cells. They detect 
variations in shear stress applied by the blood flow through 
intra-lumen receptors and promptly release NO in response 
(Mashour and Boock, 1999; Andrews et al., 2010). The rapid 
release of NO leads to alterations in vascular tone (Green 
et al., 2017).

However, the precise physiological mechanisms govern-
ing the regulation of SMC contraction and relaxation remain 
uncertain. The complexity of vascular tone regulation arises 
from its multiscale and multifactorial nature. Global hemo-
dynamic conditions, such as heart rate and resistance in 
downstream vasculature, have a significant impact on local 
flow conditions, local pressure fields, and tissue stresses, 
that in turn affect the biochemical pathways that influence 
vascular tone. Conversely, vascular tone influences vessel 
resistance and compliance, which in turn determine global 
and local hemodynamic conditions. Although numerous 
well-established in vitro studies have provided evidence on 
the regulation of SMC contraction and relaxation by shear 
stress and NO since the early 1990s (Rees et al., 1989; Buga 
et al., 1991; Kuchan and Frangos, 1994; Corson et al., 1996; 
Mashour and Boock, 1999; Qiu et al., 2001; Andrews et al., 
2010; Wang et al., 2023a), understanding their significance 
in in vivo cardiovascular conditions and translating this 
knowledge into clinical practice remains a major unresolved 
challenge.

Computational models have proven to be highly effective 
in accurately describing various aspects of cardiovascular 
biomechanics, providing insights that are difficult to obtain 
through experimental means. Without the aim of being 
exhaustive, Table 1 lists several notable examples from the 
literature, providing context for positioning the present work 
in the current state of the art.

In silico models focusing on arterial segments at the scale 
of millimeters to centimeters have successfully captured the 
biomechanical state of tissues (Gasser et al., 2010; Polzer 
and Gasser, 2015; Bianchi et al., 2017; Horvat et al., 2019; 
Geith et al., 2020; Mousavi et al., 2021) and the local–global 
hemodynamic conditions (Greve et al., 2006; Ismail et al., 
2013; Quarteroni et al., 2016; Romarowski et al., 2018; 
Kumar et al., 2018; Kim et al., 2021; Mazzi et al., 2022). 
These models account for detailed characteristics of arterial 
structures at specific locations within the vessel tree, poten-
tially even incorporating patient-specific information. How-
ever, the integration of such biomechanical descriptions with 
chemo-biological pathways remains limited to a few exam-
ples (Aparício et al., 2016; Marino et al., 2017; Irons et al., 
2022; Uhlmann and Balzani, 2023; Gierig et al., 2023). 
Simultaneously, mathematical models focusing on the 
molecular biology of NO and its regulation by shear stress 
stimuli have been developed (Buerk et al., 2003; Lamkin-
Kennard et al., 2004; Kang et al., 2007; Sriram et al., 2012) 
that led to a deeper understanding of NO reaction kinetics 
in vessels. However, these descriptions primarily operate at 
the molecular length scale and are not effectively integrated 
with upper-scale models of arterial biomechanics.

This study introduces an in silico model of vascular 
tone regulation through NO-related molecular pathways 
in response to shear stresses. To the best of the authors’ 



Unraveling the complexity of vascular tone regulation: a multiscale computational approach…

knowledge and as highlighted in Table 1, state-of-the-art 
approaches often provide an overly simplified representa-
tion of arterial biomechanics (Lanzarone et al., 2009; Wang 
et al., 2017; Liu et al., 2018; Wilstein et al., 2018; Moshfegh 
et al., 2021) or do not account for inter-cellular molecular 
pathways (Schmitz and Böl, 2011; Stålhand et al., 2011; Böl 
et al., 2012; Murtada et al., 2017). They also generally lack 
integration with the cardiovascular system, severe limita-
tion considering that the global hemodynamics affects the 
actual loads applied to the single vascular segments (internal 
pressure and shear stresses). Hence, their applicability in 
realistic scenarios is limited since under-representing the 
complexity of chemo-mechano-biological coupling. In con-
trast, this paper presents a computational framework that 
enables a two-way coupling between: 

1.	 global hemodynamic features, modeled using reduced-
order approaches;

2.	 a refined description of passive and active biomechani-
cal behaviors of arterial tissues through detailed finite 
element analyses;

3.	 and chemo-biological pathways that account for diffu-
sion–reaction mechanisms regulated by local hemody-
namic conditions.

The computational framework is employed to examine the 
interplay between localized alterations in a specific vessel 
segment—such as those induced by calcified portions or 
endothelial dysfunction—and the broader global hemody-
namic conditions—both under basal and altered states. The 
investigations prove the suitability of the developed frame-
work in clarifying the impact of these interactions on the 
regulation of vascular tone through the NO-ROS pathway. 
Specifically, it aims to understand how these interactions 
alter the local biomechanical state of the vessel of interest in 
terms of wall shear stresses and intramural stresses/strains.

2 � Materials and Methods

A schematic representation of the workflow proposed in this 
study is depicted in Fig. 1. The framework encompasses both 
mechanical and chemo-biological equilibrium conditions. 

Table 1   Positioning of present work with respect to selected papers on the biomechanics of vessel segments: a focus on multiscale descriptions 
of the cardiovascular system and on chemo-mechano-biological tissue models

G&R Growth and remodeling; PDEs Partial differential equations; ODEs Ordinary differential equations; AA Aortic aneurysm; FSI Fluid–struc-
ture interaction; ROM Reduced-order model

Reference Vessel geometry Tissue mechanics Biochemical signal-
ing

Blood flow 
(multiscale 
coupling)

Solution method Goal of the study

 Ismail et al. (2013) 3D (AA) Hyperelastic − FSI (0D-3D) FEM (PDEs) Patient-specific cir-
culation model

 Polzer and Gasser 
(2015)

3D (AA) Hyperelastic 
(with residual 
strains)

− − FEM (PDEs) AA Risk Index

 Aparício et al. 
(2016)

Ideal cylinder G&R Proteases and 
growth factors

− Quasi-analytical 
(ODEs)

Biochemical model 
of G &R

 Bianchi et al. 
(2017)

3D (AA) Hyperelastic − FSI (0D-3D) FEM (PDEs) AA Risk Index

 Marino et al. (2017) Ideal cylinder G&R Proteases and 
growth factors

− Quasi-analytical 
(ODEs)

Biochemical model 
of G &R

 Murtada et al. 
(2017)

Ideal cylinder Active Myosin motor 
model

− Quasi-analytical 
(ODEs)

Arterial contractility

 Wilstein et al. 
(2018)

Ideal cylinder Active, G&R NO-ROS pathway, 
proteases and 
growth factors

− Quasi-analytical 
(ODEs)

Hypertension-
induced G &R

 Mousavi et al. 
(2021)

3D (AA) G&R − FSI (0D-3D) FEM (PDEs) AA progression

 Irons et al. (2022) Ideal cylinder Active, G&R Receptors, proteases 
and growth factors

− Quasi-analytical 
(ODEs)

Biochemical model 
of homeostasis

 Gierig et al. (2023) Flat tissue Damage, G&R Proteases and 
growth factors

− FEM (PDEs) Damage-induced 
arterial inflam-
mation

Present work 2D (generic) Active NO-ROS pathway ROM (0D-2D) FEM (PDEs) Blood flow-related 
vasodilation
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The mechanical aspect includes hydrodynamic equilibrium 
of blood flow and balance of linear momentum within ves-
sel tissues and structures. On the other hand, the chemo-
biological aspect involves mass balance equations.

These phenomena operate on distinct time scales. 
Mechanical equilibrium conditions fluctuate with each 
heartbeat, typically occurring within seconds, while chemo-
biological processes are influenced by molecular production, 
degradation, and changes in cellular activities, taking place 
over hours or longer. Therefore, it is advantageous to intro-
duce two time scales (Gharahi et al., 2023):

•	 a slow time scale that pertains to biochemical alterations 
and is represented by the time variable t. The slow time 
scale encompasses the duration from 0 to T, where T 
represents the total duration of the observed biochemical 
alteration. The time range t ∈ [0, T] is discretized into 
N − 1 discrete time intervals, resulting in the identifica-
tion of N time values denoted as tk (where k = 1,… ,N ). 
The characteristic time T of biochemical alterations is 
typically measured in hours, thereby making the time 
intervals �tk = tk − tk−1 in the order of minutes.

•	 a fast time scale that pertains to cardiac cycles and 
operates over the time variable th , where the subscript 
h denotes heartbeats. Denoting by Th the duration of a 
cardiac cycle (from the beginning of systole to the con-

clusion of diastole), a sequence of nh cardiac cycles 
occurs within the time interval th ∈ [t, t + nhTh] . Here, 
t represents a given time in the slow time scale, denot-
ing the initiation of the first heartbeat in the series. The 
overall time interval is discretized into a collection of 
Nh discrete values, denoted as th,i (where i = 1,… ,Nh ). 
The characteristic time nhTh for a series of heartbeats is 
typically measured in seconds, resulting in time intervals 
�th,i = th,i − th,i−1 that are fractions of a second.

Following the principles of global–local approaches in con-
tinuum mechanics (Gerasimov et al., 2018), the proposed 
framework is founded upon the definition and coupling of 
two models designed for significantly different length scales. 
The global model encompasses (a portion of) the cardiovas-
cular system, and it is introduced in Sect. 2.1. In contrast, the 
local model focuses on the behavior of an individual vessel 
segment and includes a detailed description of arterial tissue 
behavior that establishes the link between its biochemical 
state and mechanical response. The local model is outlined 
in Sect. 2.2. The coupling strategy that bridges the global 
and local models is discussed in Sect. 2.3. Model specializa-
tion for a specific case study, along with information on the 
numerical formulation, is provided in Sect. 2.4.

Fig. 1   Multi-scale and multi-field approach developed for the com-
putational modeling of cardiovascular biomechanics problems. The 
global cardiovascular tree is modeled via a 0D description, where 
each segment is modeled through a resistance Rs and compliance 
Cs . Upstream and downstream pressures P+∕−

s  and flows Q+∕−
s  vary 

in time over a fast time scale th that pertains over cardiac cycles. At 

the local level, a detailed chemo-mechano-biological model is intro-
duced for the segment of interest, using the resulting pressure–radius 
relationship to determine values of Rs and Cs and how these are influ-
enced by both chemical and mechanical stimuli. These alterations 
occur gradually over a slower time scale t, primarily associated with 
biochemical changes
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2.1 � Global model: cardiovascular system

The cardiovascular system is macroscopically described as a 
discrete network of vascular segments (identified by subscript 
s). Each segment is considered a right cylindrical structure 
with a length �s and a lumen cross-sectional area As . The quan-
tities of interest are the blood flow and pressure drop across 
each segment, spanning from the inlet to the outlet. These 
quantities are evaluated for a given input blood flow law Qh(th) 
originating from the heart, assumed to be periodic in the fast 
time scale th over an heartbeat duration Th , and a given outflow 
pressure Pout downstream to the network.

Due to the aggregative nature of the quantities of inter-
est, a lumped parameter description is adopted, wherein 
each segment is represented by a 0D model, as illustrated in 
Fig. 1 (Korakianitis and Shi, 2006; Quarteroni et al., 2016). 
Within each segment, the fluid problem takes into account 
both the frictional loss of blood flow and the elasticity of vas-
cular tissues. The latter factor influences changes in the cross-
sectional area As of the lumen, which vary with alterations in 
the internal blood pressure within the s-th segment. The mean 
pressure within the segment, denoted as ps , is chosen as the 
governing variable, leading to As = As(ps).

The frictional and tissue elastic mechanisms are character-
ized by the introduction of the resistance Rs and the compli-
ance Cs of the s-th vascular segment. As described for instance 
by Quarteroni et al. (2016), these quantities are functions of 
the cross-sectional area As , and consequently the pressure ps , 
via:

where �b is blood density and KR is a friction parameter. 
The latter is related to the kinematic blood viscosity �b and 
assumes a specific form depending on the blood velocity 
profile at hand. In what follows, a Newtonian fluid and a par-
abolic Poiseuille profile are assumed, yielding KR = 8��b , 
(Quarteroni et al., 2016).

For each segment s, the pressure and flow rate at the 
upstream end are denoted by P+

s
 and Q+

s
 , respectively, while 

the downstream quantities as P−
s
 and Q−

s
 (see Fig. 1). Since 

the input blood flow to the system Qh varies with the fast time 
scale, the same occurs for upstream/downstream quantities 
P
+∕−
s = P

+∕−
s (th) and Q+∕−

s = Q
+∕−
s (th) . By neglecting con-

vective terms, upstream and downstream pressures and blood 
flows for each segment are related through the mass conserva-
tion law:

(1)Rs(ps) =
�bKR�s(
As(ps)

)2 , Cs(ps) = �s

dAs

dps
,

(2)Cs

dP+
s

dth
+ Q−

s
− Q+

s
= 0 ,

where it results Q−
s
= (P+

s
− P−

s
)∕Rs , as derived from the 

momentum conservation law by neglecting blood inertia 
terms, (Quarteroni et al., 2016). Equation (2) leads to a 
set of ordinary differential equations, which are closed by 
the blood flow boundary condition (equal to Qh(th) ) at the 
entrance of the network and the pressure boundary condi-
tion (equal to Pout ) at its exit. Moreover, appropriate alge-
braic relationships are introduced to describe the network 
topology, establishing inter-segment equivalences between 
upstream and downstream flow rates and pressures among 
different segments (Quarteroni et al., 2016). For instance, if 
segment s − 1 is connected without bifurcations to segment 
s (with the stream direction from s − 1 to s), it follows that 
Q−

s−1
= Q+

s
 and P−

s−1
= P+

s
.

The mean blood pressure ps and flow rate qs in each 
segment are estimated based on the upstream and down-
stream quantities, respectively, as ps = (P+

s
+ P−

s
)∕2 and 

qs = (Q+
s
+ Q−

s
)∕2 . It is important to note that both ps and 

qs depend on the fast time scale, that is ps = ps(th) and 
qs = qs(th) . These quantities serve as input for the local 
model, effectively connecting the two length scales of inter-
est (see Fig. 1).

2.2 � Local model: arterial 
chemo‑mechano‑biological response

The resistance Rs and compliance Cs of arterial segments in 
Eq. (1) depend on the functional relationship As(ps) . Cur-
rently, this relationship is either disregarded or approximated 
using phenomenological models, (van de Vosse and Ster-
giopulos, 2011; Alastruey et al., 2012; Epstein et al., 2015), 
that are difficult to adapt to the chemo-mechano-biological 
responses of arterial tissues. In this study, this limitation 
is addressed by obtaining, for the first time, the functional 
dependency As(ps) through the solution of a local model 
that incorporates the chemo-mechano-biology of arterial 
segments.

The following description addresses a reference non-path-
ological local vessel model, although results will explore 
also pathological alterations that will be described when 
specializing the model to specific case studies in Sect. 2.4.1.

2.2.1 � Geometry and local hemodynamics

In agreement with the compartmental description introduced 
in Sect. 2.1, the response of the arterial segment is obtained 
by analyzing the one of a representative cross section when 
an homogeneous pressure, equal to the mean segment pres-
sure ps = ps(th) , is applied to its internal boundary. This 
assumption corresponds to neglect the travel time of the 
blood within the segment.

As shown in Fig. 2a, arterial cross section is identified 
by domain Ω0 in the reference unloaded configuration, in 
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turn split into two non-overlapping sub-domains, that is 
ΩM,0 associated with the inner media layer, and ΩA,0 with 
the outer adventitia layer (such that Ω0 = ΩM,0 ∪ ΩA,0 ). The 
internal boundary of ΩM,0 (adjacent to the lumen) identi-
fies the intima layer ΣI,0 , the media-adventitia boundary is 
identified by ΣM,0 = ΩM,0 ∩ ΩA,0 , while the external vessel 
boundary of ΩA,0 is denoted by ΣA,0 . All afore-introduced 
quantities are denoted in the current configuration by omit-
ting the “0” subscript. Moreover, material points within the 
reference and current configurations are denoted by X ∈ Ω0 
and x ∈ Ω , respectively. The normal unit vector to ΣI,0 (resp., 
ΣI ) is denoted by NI (resp., nI ), to ΣM,0 (resp., ΣM ) by NM 
(resp., nM ), and to ΣA,0 (resp., ΣA ) by NA (resp., nA ). These 
unit vectors are all defined outward (i.e., from lumen towards 
vessel wall).

Arterial cross section is assumed to be quasi-circular, 
meaning that regions ΣI,0 , ΣM,0 and ΣA,0 deviate from perfect 
circles centered at a common point O (representing vessel 
centerline) by a fraction 𝜂 < 1 of the minimum cross-section 
thickness. To describe the structure of tissue constituents, 
a cylindrical base system (ez, er, e�) is introduced in each 
point within Ω0 , aligned, respectively, with the vessel axial, 
radial and circumferential directions defined with respect to 
the position of the vessel centerline O (see Fig. 2a). Addi-
tionally, since the arterial cross section is quasi-circular, a 
mean internal radius ri

s
 can be conveniently computed from 

the lumen area As as ri
s
= (As∕�)

1∕2 . It is important to note 
that the arterial cross section and, consequently, the mean 
radius vary with the fast time scale due to changes in the 
blood pressure load ps(th) , and then ri

s
= ri

s
(th).

Fig. 2   Arterial local model. a 
Reference domain of arterial 
cross section, with relevant 
geometrical characteristics 
(see Sect. 2.2.1). b,c Reference 
versus current configurations 
at basal SMCs active stretch 
levels �a,b

smc
 , with (b) null pres-

sure and (c) internal pressure 
of 100mmHg (see Sect. 2.4.1). 
The finite element mesh 
adopted in numerical applica-
tions is also shown. (d) Tissue 
constitutive modeling approach 
(see Sect. 2.2.2). (e) Chemo-
mechano-biological modeling 
approach (see Sects. 2.2.3 and 
2.2.4). (f) Alterations consid-
ered in the local vessel model as 
representative of pathological 
conditions. Acronyms: ECM, 
extracellular matrix; SMC, 
smooth muscle cell; NO, Nitric 
Oxide; ROS, Reactive Oxygen 
Species; RNS, Reactive Nitro-
gen Species
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Following the quasi-circular assumption, the wall shear 
stresses exerted by blood flow on the arterial wall are esti-
mated by assuming a Poiseuille flow with flow rate qs(th) 
within an equivalent cylindrical tube having a circular cross 
section of internal radius ri

s
(th) . Hence, wall shear stresses 

�s in segment s at time th read:

Shear stresses trigger the regulation of bio-chemical pro-
cesses (see Sect. 2.2.3). Such mechanisms have a charac-
teristic time longer than the mechanical process and vary 
with the slow time scale t. Chemical processes at time t are 
assumed to be driven by the time average wall shear stresses 
(TAWSS) over a series of nh heartbeats starting at t. TAWSS 
are denoted by 𝜏s = 𝜏s(t) and computed as:

2.2.2 � Arterial tissue mechanics

From the mechanical viewpoint, the local model accounts 
for the arterial tissue response both in the media and in the 
adventitia layers. The stiffness of arterial tissues is mainly 
provided by the passive elastic behavior of the extra cellu-
lar matrix (ECM), mainly composed of collagen fibers and 
elastin (Marino et al., 2021). Moreover, the media layer of 
arterial tissues is rich of Smooth Muscle Cells (SMCs) that 
are both passive and active load bearings components. The 
active response governs the vascular tone, i.e., the state of 
vasodilation/vasoconstriction. A schematic representation of 
the main modeling choices is shown in Fig. 2d.

The modeling approach is developed under a large strain 
framework. For the sake of notation, let F be tissue defor-
mation gradient, C = FTF the right Cauchy-Green deforma-
tion tensor. Arterial tissue mechanics is modeled with an 
hyperelastic behavior, denoting by ΨM and ΨA the tissue 
strain energy densities for the media and adventitia layers, 
respectively. Two additive (in parallel) contributions to ΨM 
are introduced, representing contributions for the ECM 
( Ψecm ) and the SMC ( Ψsmc ). Moreover, arterial tissues are 
assumed to be quasi-incompressible, i.e., characterized by a 
very large value of their bulk modulus � . Volumetric locking 
in numerical applications is prevented through the use of an 
Augmented Lagrangian formulation, (Marino, 2019).

Tissue strain energy densities read, respectively, for the 
(healthy) media and adventitia, as: 

(3)�s(th) =
4�bqs(th)

�
(
ri
s
(th)

)3 .

(4)𝜏s(t) =
1

nhTh ∫
nhTh

0

𝜏s(𝜏h + t) d𝜏h .

 where p is a pressure-like Lagrange multiplier variable and 
J =

√
Det(C) the volume change associated with C . Specific 

modeling choices for Ψecm and Ψsmc are described next.
ECM behavior. The ECM contribution Ψecm is split into 

an isotropic response, related to the elastin content, and an 
anisotropic one, associated with collagen fibers. The iso-
tropic component of ECM response is modeled by means 
of the isochoric part of the right Cauchy-Green deforma-
tion tensor C̄ = J−2∕3C , and its associated first invariant 
Ī1 = Tr

(
C̄
)
 , (Marino, 2019).

The anisotropic component of ECM mechanics considers 
two collagen fiber families, helicoidally arranged around the 
axial direction of the arterial segment. Denoting by �c,j the 
helix angle of the j-th collagen fiber family with respect to 
the circumferential direction, then

is the unit vector defining collagen fiber orientation in the 
circumferential-axial plane, from which the structural tensor 
Mc,j = ac,j ⊗ ac,j follows. The kinematics of the j-th collagen 
fiber family is assumed to follow the overall tissue deforma-
tion gradient F , that is multiplicatively split into an elastic 
Fe
c,j

 and an inelastic Fs
c,j

 contribution. The latter accounts for 
mechanisms such as inter-fiber sliding, variations in lamel-
lar undulation, or rearrangement of constituents, associated 
with the tissue’s active response. Therefore, it results (see 
Fig. 2d):

The inelastic deformation of collagen fibers Fs
c,j

 is assumed 
to be incompressible and expressed as:

where �s
c,j

 is the inelastic straightening stretch, discussed in 
following Sect. 2.2.4 in relation to tissue chemical state.

The elastic component of the total right Cauchy-Green 
deformation tensor of each collagen family reads:

and the corresponding squared elastic stretch along ac,j reads 
(with j = 1, 2):

(5a)ΨM = Ψecm + Ψsmc + p(J − 1) −
p2

2�
,

(5b)ΨA = Ψecm + p(J − 1) −
p2

2�
,

(6)ac,j = cos(�c,j)e� + sin(�c,j)ez ,

(7)F = Fe
c,j
Fs
c,j
.

(8)
F
s
c,j

= �s
c,j
Mc,j +

1√
�s
c,j

(
I −Mc,j

)
,

(9)Ce
c,j

= (Fe
c,j
)T Fe

c,j
= (Fs

c,j
)−T C (Fe

c,j
)−1 ,
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The strain energy density Ψecm of the extracellular matrix 
is defined as the sum of a Neo-Hookean incompressible 
isotropic material for the elastin content ( Ψel

ecm
 ) and an 

exponential strain energy density for collagen fiber families 
( Ψc,j

ecm ), reading:

where � , k1,1 , k1,2 and k2,1 , k2,2 are positive-valued model 
parameters, and ⟨⋅⟩ denotes Macaulay Brackets (i.e., such 
that ⟨x⟩ = max(x, 0)).

SMCs behavior. The active contraction of arterial tissues 
is triggered by an inelastic deformation of SMCs caused by 
the chemical activation of myosin motors. The resulting force 
transferred to the tissue following such active contraction 
depends on the elastic response of all the other components 
within cells and the stiffness of surrounding constituents. In 
agreement with the state-of-the-art, (Stålhand et al., 2011; Zul-
liger et al., 2004; Murtada et al., 2017), an active strain formu-
lation is adopted, focused solely on the tissue scale description 
of such active mechanism. SMCs are assumed to be aligned 
with the circumferential direction, the corresponding structural 
tensor reading Msmc = e𝜃 ⊗ e𝜃.

SMCs total deformation is assumed to coincide with the 
one of the tissue that is the same total deformation gradient 
F applies. This is multiplicatively split into an inelastic active 
component Fa

smc
 and an elastic one Fe

smc
 , that is (see Fig. 2d):

(10)Ie
4,j

= ac,j ⋅ C
e
c,j
ac,j = Tr(Ce

c,j
Mc,j) .

(11)
Ψecm(Ī1, I

e
4,1
, Ie

4,2
) =

𝜇

2

�
Ī1 − 3

�
�������

Ψel
ecm

(Ī1)

+

2�
j=1

k1,j

2k2,j

�
exp

�
k2,j⟨Ie4,j − 1⟩2 − 1

��

�������������������������������������������

Ψc,j
ecm

(Ie
4,j
)

,

The active stretch Fa is assumed incompressible and 
expressed as:

where �smc is a measure of the myosin-actin filament sliding, 
(Murtada et al., 2017), controlled by the chemical state of 
the tissue (see Sect. 2.2.3).

The elastic component of the total right Cauchy-Green 
deformation then reads:

and the elastic stretch of SMCs along e�:

The strain energy function Ψsmc is defined as:

(12)F = Fe
smc

Fa
smc

.

(13)Fa = �a
smc

Msmc +
1√
�a
smc

�
I −Msmc

�
,

(14)Ce
smc

= (Fe
smc

)T Fe
smc

= (Fa
smc

)−T C (Fa
smc

)−1 ,

(15)�e
smc

=

√
e� ⋅ C

e
smc

e� =
[
Tr
(
Ce

smc
Msmc

)]1∕2
.

(16)

Ψsmc(�
e
smc

) =
Pmax
smc

Csmc

{
Pmax
smc

log

[
1 + exp

(
2Csmc

Pmax
smc

(�e
smc

− 1)

)]

− Csmc�
e
smc

}
.

Fig. 3   Functions governing the chemo-mechanical response of 
smooth muscle cells (SMCs). Left: relationship obtained from Eq. 
(16) between the elastic stretch of SMCs, �e

smc
 , and the scalar measure 

Psmc = �Ψsmc∕��
e
smc

 of the SMCs’ first Piola-Kirchhoff stress. Right: 
relationship obtained from Eq. (25) between the relative variation of 

nitric oxide (NO) concentration, CNO , with respect to the basal con-
centration, Cb

NO
 , and the active stretch of SMCs, �a

smc
 . The curves are 

generated using parameter values from Table  2 (continuous lines), 
with +100% (dashed line) and −50% (dotted line) variations of Csmc 
and k�
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where Csmc and Pmax
smc

 are two model parameters, representing, 
respectively, the elastic stiffness of SMCs and the maximum 
first Piola-Kirchhoff stress during an isometric cell contrac-
tion. As shown in Fig. 3, a sigmoid stress-stretch relationship 
is obtained from Eq. (16).

Stress–strain relationship and balance laws. The Cauchy 
stress tensor �M of the tissue in the media layer obtained from 
Eq. (5a) reads: 

resulting in a stress–strain relationship depending on both 
the ECM tissue response:

and SMCs passive and active behavior:

The constitutive relationship for the pressure variable p is 
obtained from the stationary condition of ΨM with respect to 
p, that is:

Analogous relationships are obtained for the Cauchy stress 
tensor �A from Eq. (5b) for the tissue in the adventitia layer, 
but here the response is solely passive (i.e., without SMCs 
contribution and considering �s

c,j
= 1 for all collagen 

families).
Neglecting body force terms, the balance law of linear 

momentum gives in the current configuration:

where div(∙) is the divergence operator in the current con-
figuration. The balance of angular momentum gives the sym-
metry conditions �M = �

T
M

 and �A = �
T
A

 . Equation (19) is 
completed by the following set of boundary conditions:

representing the application of the internal lumen pressure 
ps , the stress continuity at the media-adventitia boundary, 

(17a)�M = J−1F

(
2
�ΨM

�C

)
F
T = −pI + �ecm + �smc

(17b)�ecm = 2J−1F
�Ψel

ecm

�C
F
T + 2J−1

2∑
j=1

F
e
c,j

�Ψ
c,j
ecm

�Ce
c,j

(Fe
c,j
)T ,

(17c)�smc = 2J−1Fe
smc

�Ψsmc

�Ce
smc

(Fe
smc

)T .

(18)
�ΨM

�p
= 0 ⇒ p = �(J − 1) .

(19)div(�M) = 0 in ΩM , div(�A) = 0 in ΩA ,

(20)
�M nI = p

s
nI on ΣI , �M nM = −�A nM on ΣM ,�A nA = 0 on ΣA ,

and null traction at the outer vessel boundary, respectively. 
In terms of displacements, minimal boundary conditions 
are prescribed to remove rigid-body motions, and continu-
ity of displacements is prescribed at the media-adventitia 
boundary.

It is noteworthy that it might be convenient to pull-back 
Eqs. (19) in the reference configuration, but special atten-
tion should be paid to the application of the internal lumen 
pressure as a follower load (i.e., in the current configura-
tion), for which the reader is referred to standard textbooks 
(Wriggers, 2008).

2.2.3 � Chemo‑biological model

Cell–cell signaling pathways involving nitric oxide (NO) 
and reactive oxygen species (ROS) are addressed, as sche-
matically shown in Fig. 2e. ROS family comprises numerous 
small reactive ions and molecules that are derived from oxy-
gen metabolism, such as hydrogen peroxide (e.g., unstable 
free radicals such as superoxide ion O∙−

2
 and hydroxyl radical 

HO∙− , generally transported in stable forms such as hydrogen 
peroxide H2O2 ), (Chen et al., 2018). ROS directly scavenges 
NO, by forming peroxynitrite ONOO− , a reactive nitrogen 
species (RNS), e.g., through:

Thus, ROS indirectly exerts vasoconstrictor effects by deple-
tion of the vasodilatory molecule NO. Direct contraction of 
SMCs through the activation of specific kinases by means 
of ROS-mediated pathways has been also reported but are 
here not considered due to lack of sufficient experimental 
data, (Chen et al., 2018).

NO and ROS are measured in terms of their molar con-
centration, resulting functions of space within the arte-
rial tissue and time over the slow time scale t. Molecular 
distributions can be measured either as spatial concentra-
tions (moles per unit current volume), denoted by cNO and 
cROS for NO and ROS, respectively, or by CNO = JcNO and 
CROS = JcROS as material concentrations (moles per unit ref-
erence volume in the reference configuration). An isotropic 
diffusion in the spatial configuration is assumed, introducing 
the diffusion constants DNO and DROS for the two species.

(21)NO + O∙−
2

�→ ONOO− .
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Within both the media and adventitia layers, function 
CNO = CNO(X, t) is obtained from the solution of the mass 
balance equation of NO reading: 

while function CROS = CROS(X, t) from:

 Here, �NO is the (first-order) reaction rate constant of NO 
scavenging, KRNS the (second-order) reaction rate constant 
of RNS production, Pb

NO
 and Pb

ROS
 basal production rates for 

NO and ROS, respectively.
Equation (22) is completed by the following set of bound-

ary conditions: 

 and by a continuity condition of CNO and CROS fields pre-
scribed at the media-adventitia boundary ΣM . In Eqs. (23a), 
CNO,e and CROS,e represent endothelial levels of NO and ROS, 
respectively. These latter are obtained by solving homogene-
ous and steady-state forms of mass balance equation (22) in 
the intima layer, when considering endothelial NO and ROS 
production rates PNO,e and PROS,e , that is: 

On the basis of well-established approaches in the field 
(Lamkin-Kennard et al., 2004; Sriram et al., 2012), a shear-
stress-dependent Michaelis-Menten kinetics is introduced 
for the NO endothelial production rate PNO,e . In detail, 
TAWSS values 𝜏s are chosen as governing variables (see 
Eq. (4)), leading to:

 where Rmax
NO

 is the maximum rate of NO production, PO2
 

is the partial pressure of oxygen, Km the Michaelis-Menten 
constant, and 𝜏s,b a reference value of shear stresses in the 
basal state.

(22a)�CNO

�t
= DNODiv

(
JC−1Grad(CNO)

)
− �NOCNO − KRNSCNOCROS + Pb

NO
, in ΩM,0 and ΩA,0 ,

(22b)�CROS

�t
= DROSDiv

(
JC−1Grad(CROS)

)
− KRNSCNOCROS + Pb

ROS
in ΩM,0 and ΩA,0 .

(23a)CNO = CNO,e , CROS = CROS,e , on ΣI,0 ,

(23b)
Grad(CNO) ⋅ NA = 0 , Grad(CROS) ⋅ NA = 0 , on ΣA,0 ,

(24a)

⎧⎪⎨⎪⎩

−�NOCNO,e − KRNSCNO,eCROS,e + PNO,e = 0

−KRNSCNO,eCROS,e + PROS,e = 0

⇒

⎧
⎪⎪⎨⎪⎪⎩

CNO,e =
PNO,e − PROS,e

�NO

CROS,e =
PROS,e�NO

KRNS(PNO,e − PROS,e)

.

(24b)PNO,e = Pb
NO

+
Rmax
NO

PO2

Km + PO2

(𝜏s − 𝜏s,b) ,

As regards the endothelial ROS production rate, in the 
lack of experimental evidence, a linear scaling with PNO,e is 
assumed, that is PROS,e = Pb

ROS
(PNO,e∕P

b
NO

) . In this way, it 

is straightforward to verify from Eq. (24a) that endothelial 

ROS concentration is always equal to its basal value, that is 
CROS,e = Cb

ROS
.

2.2.4 � Vascular tone: chemo‑biological regulation of active 
mechanisms

The concentration field of NO within the media layer gov-
erns the vascular tone (see Fig. 2e). To this aim, a direct rela-
tionship between CNO (obtained from Eqs. (22)) and SMCs 
active stretch �a

smc
 is introduced (in Eq. (13)). In particular, 

it is adopted: 

where k𝜆 > 0 is a model parameter governing the sensitivity 
between NO and active stretches variations (i.e., the slope of 

(25a)

�a
smc

↓
=�a

smc
(CNO) = a� + 2b�

{
1

c� + exp[−k�(CNO∕C
b
NO

− 1)]
−

1

2

}
,

function �a
smc

(CNO) at basal value CNO = Cb
NO

 ), and quanti-
ties a� , b� and c� are expressed as:

Here, �a,+
smc

 represents the maximum active stretch of 
dilated SMCs at high NO concentrations CNO ≫ Cb

NO
 , �a,−

smc
 

(25b)

a� =
�a,b
smc

(�a,+
smc

− 3�a,−
smc

) + �a,−
smc

(�a,+
smc

+ �a,−
smc

)

2(�a,+smc − �a,−smc)
,

b� =
(�a,+

smc
− �a,−

smc
)(�a,b

smc
− �a,−

smc
)

2(�a,+smc − �a,bsmc)
,

c� =
�a,b
smc

− �a,−
smc

�a,+smc − �a,bsmc

.
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the minimum active stretch of contracted SMCs at low 
CNO ≪ Cb

NO
 , and �a,b

smc
 the active stretch of SMCs at basal 

NO concentrations CNO = Cb
NO

 , that is:

 As shown in Fig. 3, a sigmoid relationship between CNO and 
�a
smc

 is obtained from Eqs. (25).
Inelastic mechanisms associated with the rearrangement 

of collagen fibers (described by �s
c,j

 for the j-th collagen fiber 
family, see Eq. (8)) are in turn governed by active stretches 
�a
smc

 of SMCs through:

where �c ∈ [0, 1] is the fraction of inelastic stretch trans-
ferred from SMCs to collagen structures.

2.3 � Multiscale coupling approach

At the scale of the local model, consider the chemo-biolog-
ical state at a given time t along the slow-time scale. This 
state is determined by solving Eqs. (22) and (23) at time t, 
considering a specific endothelial NO production in Eqs. 
(24) for a given value 𝜏s of TAWSS. The solution field 
CNO(X, t) is employed in Eqs. (25) and (26) to obtain distri-
butions of �a

smc
 and �s

c,j
 within the tissue, respectively. By 

considering this resulting inelastic strain field, the balance 
of linear momentum in Eq. (19) is solved to investigate the 
mechanical behavior of the arterial cross section. Specifi-
cally, the internal pressure ps in Eq. (20) is varied in the 
range [0, pmax] using np incremental load steps. At each pres-
sure step, Eq. (19) is solved via the finite element method, 
and the internal lumen size As computed, thus obtaining 
pairs of values (ps,As) . The relationship between ps and As 
is approximated within the entire range ps ∈ [0, pmax] using 
a surrogate model defined as:

where a, b, c, and d are constants to be interpolated from 
numerical pairs (ps,As) . A constrained interpolation pro-
cedure, enforcing c > 0 , is performed for minimizing the 
residual between numerical data and surrogate model predic-
tions. Subsequently, using Eq. (27), arterial resistance and 
compliance are defined as function of the applied pressure 
and the specific chemo-biological state at time t via Eq. (1).

At the global model level, blood flow and pressure in each 
segment of the cardiovascular system can be then obtained 
by solving a nonlinear system of ordinary differential 

(25c)

lim
k�→+∞

lim
CNO→+∞

�a
smc

(CNO) = �a,+
smc

,

lim
k�→+∞

�a
smc

(0) = �a,−
smc

,

�a
smc

(Cb
NO

) = �a,b
smc

.

(26)�s
c,j

= 1 + �c(�
a
smc

− 1) , ∀ j ,

(27)As(ps) =
a

1 + exp(−b(ps∕c − 1))
+ d ,

equations derived from Eq. (2). The arterial resistance Rs(ps) 
and compliance Cs(ps) , which were previously determined 
based on the specific chemo-mechano-biological state of 
arterial cross section at time t (along the slow time scale), 
can be reliably used in this solution, given that the global 
model operates over the fast time scale variable th . From the 
solution of the global model, TAWSS 𝜏s in Eq. (4) can be 
computed and used to update the chemo-biological state of 
the local model.

Therefore, the chemo-mechano-biology of arterial cross 
section and the hemodynamics in each vessel segment is 
coupled via a two-way nonlinear coupled system: the local 
chemo-mechano-biological behavior determines the depend-
ency between As and ps , and hence the global hemodynam-
ics; in turn, the latter affects the values of 𝜏s , and hence the 
boundary conditions of the local chemo-biological problem. 
In the next Sect. 2.4, a specific solution strategy is discussed 
to tackle this coupled problem, along with additional infor-
mation on the numerical strategy for solving the single-scale 
models.

2.4 � Case study and Numerical formulation

This section specializes the previously presented model to 
the specific case study analyzed in numerical applications, 
providing also information on numerical implementation 
procedures. The coupled problem is solved by developing 
an in-house code implemented in Wolfram Mathematica.

2.4.1 � Local model specialization

The local model represents one segment of interest in the 
global model, generically denoted by subscript S. As previ-
ously introduced, vessel response is investigated by analyz-
ing the one of a single cross section. Its geometry is gen-
erated following the procedure described in Appendix A, 
characterized by a mean reference internal radius Ri

S,0
 , the 

mean intima-media thickness ΔIM
S,0

 , and the mean adventitia 
thickness ΔA

S,0
 (see Fig. 2a). From the kinematic viewpoint, 

vessel deformation is assumed to occur in the circumfer-
ential-radial plane with a constant axial pre-stretch �z and 
null axial-circumferential and axial-radial shear strains. The 
chemo-mechano-biology problem described in Sect. 2.2 is 
solved via Finite Element Analyses (FEA).

Finite element formulation. The finite element formula-
tion employs five-noded quadrilateral elements. The four 
(topological) corner nodes host 2 degrees of freedom (dof) 
for displacements and 2 dof for CNO and CROS , while the 
fifth node is a local auxiliary one and hosts 1 dof for the 
pressure-like Lagrange multiplier p (see Eq. (5)). Concen-
tration’s dof represents the remainder between actual con-
centrations CNO (resp., CROS ) and basal one Cb

NO
 (resp., 

Cb
ROS

 ), normalized with respect to basal concentrations. 
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Bi-linear Lagrange polynomials are introduced for dis-
placements and concentrations, while a constant interpola-
tion is employed for the pressure-like Lagrange multiplier. 
To ensure numerical stability, an average concentration 
Ce
NO

 is computed in each finite element e, which is then 

used to define element-wise constant �a
smc

 and �s
c,j

 accord-
ing to Eqs. (25) and (26). The element residual and tangent 
stiffness are derived taking advantage of the symbolic-
numeric libraries of the AceGen plug-in, while assembly 

Table 2   Values of parameters employed for the local model in 
numerical applications (if not differently specified), together with rel-
evant literature references and criteria. Acronyms: NO, nitric oxide; 

ROS, reactive oxygen species; RNS reactive nitrogen species; SMCs, 
smooth muscle cells; TAWSS, time averaged shear stresses

† to enforce quasi-incompressibility
¶reaction rate between NO and guanylate cyclase in the vascular wall.
§since experimental data in Andrews et al. (2010) indicate a production rate of circa 50 − 100 nM∕s for WSS around 1 Pa and
a maximum production rate of around 150 − 160 nM∕s.
‡ to have −30% decrease of the internal radius from the relaxed to the basal state at systolic pressure

 Description Parameter Value Ref./Criterion

Geometry and pre-stretch
  Unloaded reference radius R

i

S,0
5.55 mm Calibrated via Sonesson et al. (1997)

  Unloaded intima-media thickness ΔIM
S,0

0.8mm Total thickness 1-1.5mm , (Rosero et al., 2011)
  Unloaded adventitia thickness ΔA

S,0
0.4mm

  Vessel segment length �
S

30 cm Imposed
  Axial pre-stretch �

z
1.3 Horný et al. (2017)

Mechanical model (Eqs. (5), (11) and (16))
  Elastin shear modulus � 10 kPa Wang et al. (2023b)
  Collagen fibers constants k1,1 = k1,2

k2,1 = k2,2

10 kPa

2.5
 Wang et al. (2023b)

  Collagen fibers angle �c,1 = −�c,2 45◦ Wang et al. (2023b)
  SMCs stiffness constants Csmc 100 kPa Calibrated via Sonesson et al. (1997)
  SMCs maximum stress P

max

smc
35 kPa Calibrated via Sonesson et al. (1997)

  Tissue bulk modulus � 100MPa Calibrated†

Chemo-biological model (Eqs. (22) and (24b))
   NO diffusion constant DNO 848�m2∕s Liu et al. (2008)
   NO natural decay �NO 0.01 s Estimated from Condorelli and George (2001); 

Buerk et al. (2003)¶

   NO basal production rate P
b

NO
80nM∕s Estimated from Andrews et al. (2010)§

   NO basal concentration C
b

NO
10nM Average value between Andrews et al. (2010) and 

Hall and Garthwaite (2009)
   NO maximum production rate R

max

NO
75 nM∕s Estimated from Andrews et al. (2010)§

   Oxygen partial pressure P
O2

90mmHg Ortiz-Prado et al. (2019)
   Michaelis-Menten constant K

m
5.5mmHg Converted from Rengasamy and Johns (1996) at 37◦

   Basal value of TAWSS 𝜏b
s

1.74Pa Obtained as described in Section 2.4.2
   RNS production rate KRNS 4 (nMs) Buerk et al. (2003)
   ROS diffusion constant DROS 848 μm2∕s = DNO

   ROS basal production rate P
b

ROS
69.9 nM∕s Eq. (28)

    ROS basal concentration C
b

ROS
1.74 nM Eq. (28)

Chemo-mechano-biological coupling (Eqs. (25) and (26))
   Minimum SMCs active stretch �a,+

smc
0.59 Calibrated via Sonesson et al. (1997)

   Basal SMCs active stretch �a,b
smc

0.75 Calibrated via Sonesson et al. (1997)
   Maximum SMCs active stretch �a,+

smc
1.3 Imposed

   NO-stretch sensitivity k� 100 Imposed
   Collagen inelastic stretch fraction �c 0.15 Calibrated‡
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and nonlinear solution of the resulting finite element alge-
braic system (implemented via the Newton–Raphson 
scheme) are performed using the AceFem plug-in. The 
computational mesh, consisting of approximately 1500 
elements, was determined through a sensitivity study (not 
reported) and is shown in Fig. 2b. Mesh convergence was 
confirmed by conducting simulations with finer meshes 
(up to 2 × elements), which resulted in negligible differ-
ences (less than 5%) in the model’s outcomes of interest, 
such as intramural stresses and strains, species concentra-
tions, and predicted wall shear stresses.

Mechanics. The vessel cross section introduced in the 
local model is chosen to be representative of a human 
abdominal aorta. In fact, geometry and material mechani-
cal parameters are calibrated from experimental data 
by Sonesson et al. (1997) on pressure–radius loops of a 
human abdominal aorta at three different conditions: con-
stricted, basal, and relaxed. The values of geometrical and 
material parameters adopted in all numerical simulations 
(unless otherwise specified) are listed in Table 2. The pres-
sure–radius relationships obtained for different values of 
active stretches �a

smc
 are reported in Fig. 4, showing an 

excellent agreement with data by Sonesson et al. (1997) 
for the three states of vascular tone. In this case, the active 
stretch is not determined through the chemo-biological 
coupling (i.e., from Eq. (25)), but is imposed a priori as 

constant values within the media layer. Notably, the basal 
contraction has a remarkable effect on arterial mechan-
ics, although being a feature often overlooked in current 
cardiovascular biomechanical models (see Fig. 2b and 2c).

The effects of inelastic collagen straightening are 
reported in Fig. 4. This is analyzed since, to the best of 
authors’ knowledge, this effect is introduced in this paper 
for the first time in the literature. A change in vascular tone 
leads to a variation of the internal arterial radius at high 
pressure loads only when considering inelastic collagen 
straightening mechanisms. This occurs since an inelastic 
stretch �s

c,j
 of collagen fibers induces a change in their ref-

erence configuration that reduces the total distensibility of 
collagen fibers for 𝜆s

c,j
< 1 (and, vice versa, increases it for 

𝜆s
c,j

> 1).
The cor responding functions RS = RS(pS) and 

CS = CS(pS) , obtained through Eqs. (1) and (27), are 
reported in Fig.  4 for different vascular tone states. 
Remarkably, the obtained values fall within the typical 
ranges reported in the literature for the resistance and 
compliance of human vessels (Korakianitis and Shi, 2006; 
Tossas-Betancourt et al., 2020), and the shape of the func-
tion CS = CS(pS) agrees qualitatively with in vivo meas-
urements of arterial compliance versus blood pressure 

Fig. 4   Mechanical response of 
the arterial local model. Top: 
pressure–radius curves for dif-
ferent values of active stretches 
�a
smc

 , imposed uniformly within 
the media layer. Results are 
obtained with ( �c = 0.15 ) and 
without ( �c = 0 ) considering the 
mechanism of inelastic collagen 
straightening. Comparison with 
experimental data by Sonesson 
et al. (1997) on pressure–radius 
loops for a human abdominal 
aorta at three different condi-
tions, i.e., constricted, basal and 
relaxed. Bottom: correspond-
ing functions RS = RS(pS) and 
CS = CS(pS) , obtained through 
Eqs. (1) and (27)
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(Kornet et al., 1998), also considering different contrac-
tion and relaxation states of SMCs (Bank et al., 1995; Li, 
2018).

Additional results on the tissue constitutive relationship 
derived from Eq. (17) and the performance of the surro-
gate modeling approach based on Eq. (27) are provided 
in Appendix B. High-fidelity results for the calibration of 
the surrogate modeling approach are obtained throughout 
this study from FEA with pmax = 250mmHg and np = 10.

Chemo-biology. Model parameters governing arte-
rial chemo-biological response (i.e., molecular diffusion 
and reaction kinetics, as well as how molecular pathways 
affect vascular tone) are listed in Table 2, chosen from well-
established literature references. In particular, since values 
of molecular basal concentrations and productions rates are 
closely related, authors decided to set values for NO (i.e., 
Cb
NO

 and Pb
NO

 ) on the basis of literature evidence, while the 
corresponding ROS values are obtained in order to satisfy 
the steady-state and homogeneous version of mass balance 
equations (22), leading to:

The chemo-biological response of the local model alone is 
analyzed in following Results’ Sect. 3.1.

Pathological alterations. Two pathological alterations of 
the local vessel model will be considered, also highlighted 
in Fig. 2f: 

	 1.	 a calcification in the media layer that covers approxi-
mately one-third of its total extension This is modeled 
by considering a strain-energy density function within 
the calcified sub-region defined via a 3-term quasi-
incompressible Yeoh model. Material constants are 
taken from literature ( c1 = 302 kPa, c2 = −228 kPa, 
and c3 = 261 kPa, see Buckler et al. (2022)). Moreo-
ver, diffusivity of molecular species within the calci-
fied sub-region is considered negligible, (Tzafriri et al., 
2017).

	12.	 endothelial dysfunction. This is simulated through 
a reduced sensibility of endothelial cells to shear 
stresses. To this aim, the endothelial production rate 
of NO in Eq. (24b) is re-defined as: 

 where �dys represents a damage-like variable asso-
ciated with endothelial dysfunction, taking val-
ues �dys ∈ [0, 1] with �dys = 0 representing a sound 
endothelium (i.e., responsive to shear stresses 

(28)

Cb
ROS

=
1

KRNS

(
Pb
NO

Cb
NO

− �NO

)
, Pb

ROS
= KRNSC

b
ROS

Cb
NO

.

(29)PNO,e → Pdys
NO,e = Pb

NO + (1 − �dys)
Rmax
NO PO2

Km + PO2

(�̄s − �̄s,b) ,

variations) and �dys = 1 a fully damaged (unrespon-
sive) endothelium. In particular, two values of dysfunc-
tion will be considered, that is �dys = 0.5 for the mild 
endothelial dysfunction, and �dys = 0.9 for the severe 
one.

2.4.2 � Global model specialization

The case study addresses an idealized portion of the car-
diovascular system with three non-branching segments, 
see Fig. 5. The cardiovascular global model consists of an 
upstream artery ( s = 1 ), the central arterial segment ( s = 2 ), 
and downstream branching capillaries ( s = 3 ). The chemo-
mechano-biological coupling is applied exclusively to the 
central vessel segment, which is focused in this work. Hence, 
resistance and compliance of the upstream and downstream 
segments (i.e., R1 , R3 , C1 , C3 ) are assumed to be constant, 
while the ones of the segment of interest (i.e., R2 = RS and 
C2 = CS ) are obtained from the arterial cross-section local 
model.

Once that functions RS(pS) and CS(pS) are available from 
the local model analyses, the cardiovascular global model 
can be solved. From Eq. (2) and considering boundary con-
ditions Q+

1
= Qh(th) and P−

3
= Pout = const , a set of three 

ordinary differential equations in the fast time scale th is 
obtained: 

where y = y(th) collects the unknown pressures across 
the different segments and b = b(th) flux forcing terms, 
resulting:

Moreover, B1 = B1(y) and B2 = B2(y) describe the connec-
tivity of the system and read:

 with pS = (P+
S
+ P−

S
)∕2 . Due to network topology, it results 

P−
1
= P+

S
 and P−

S
= P+

3
.

The global model solution is sought within the physical 
time interval [t, t + nhTh] . However, the initial conditions at 
th = t are unknown. To address this issue, the solving time 

(30a)B1

dy

dth
+ B2y = b ,

(30b)y(th) =

⎛⎜⎜⎝

P+
1

P+
S

P+
3

⎞⎟⎟⎠
, b(th) =

⎛⎜⎜⎝

Qh(th)

0

Pout∕R3

⎞⎟⎟⎠
.

(30c)

B1(y) =
⎡

⎢

⎢

⎢

⎣

C1 0 0
0 CS(pS) 0
0 0 C3

⎤

⎥

⎥

⎥

⎦

,

B2(y) =
⎡

⎢

⎢

⎢

⎣

R−1
1 − R−1

1 0
−R−1

1 R−1
1 +

(

RS(pS)
)−1 −

(

RS(pS)
)−1

0 −
(

RS(pS)
)−1 (

RS(pS)
)−1 + R−1

3

⎤

⎥

⎥

⎥

⎦

,
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interval is extended with npre fictitious preliminary heart-
beats (prior to t) to ensure a steady-state periodic response 
within the physical time interval. Thus, Eq. (30) is solved 
over the time interval th ∈ [t − npreTh, t + nhTh] with initial 
conditions at tpre = t − npreTh set as y|th=tpre = Pout1 . A back-
ward Euler discretization is adopted in time, leading to an 
implicit system of governing equations to be solved. Prelimi-
nary numerical tests have demonstrated that a steady-state 
periodic response is achieved within the physical time inter-
val when npreTh ≈ 5 s , corresponding to npre ∈ [5, 10] 
depending on the heart frequency.

The chosen solution strategy eliminates the need to 
impose a minimum duration for the physical time interval, 
as a steady-state periodic response is ensured by the ficti-
tious time extension. However, the duration is still limited 
from above to preserve the separation of time scales between 
the slow and fast components. For the subsequent analysis, 
a value of nh = 3 is used.

In numerical applications, the input blood flow Qh is 
introduced to mimic the inflow conditions from the heart 
into the human cardiovascular system. The blood is ejected 
from the heart with a pulsatile flow of frequency fh = 1∕Th . 
The cardiac pulse consists of two phases: an injection phase 
lasting Th∕2 , approximated by a cosine law, and a ventricular 
filling stage, also lasting Th∕2 , modeled using a null blood 
flow condition. It should be noted that the cardiac frequency 
is assumed to be constant in the fast time scale th , but may 
vary with the slow time scale, i.e., fh = fh(t) . In the solu-
tion time interval of the cardiovascular global model, i.e., 
for th ∈ [t, t + nhTh] , the input blood flow Qh = Qh(th) reads: 

(31a)Q
h
(t
h
) =

⎧
⎪⎨⎪⎩

Q
a
(t)

2

�
1 − cos

�
4𝜋f

h
(t)(t

h
− t)

��
if t

h
∈ t +

�
nT

h
, nT

h
+

T
h

2

�
for n ∈ ℕ, n < n

h

0 else

,

where Qa(t) represents the flow rate amplitude, constant in 
the fast time scale th but possibly varying with the slow time 
scale t. The flow rate amplitude is here linked to the cardiac 
frequency fh such to have a constant cardiac output Vh during 
a single heartbeat. Therefore, it results:

The parameter values used in the cardiovascular global 
model are listed in Table 3. Specifically, the values for R1 , 
C1 , R3 , and C3 are chosen to simulate a distensible and large-
caliber upstream vessel for s = 1 and a non-distensible and 
small-caliber downstream segment for s = 3 , (Korakianitis 
and Shi, 2006).

Figure 5 presents results from an exemplary case study, 
illustrating the response of the introduced cardiovascular 
global model. The solution strategy, which includes a ficti-
tious and a physical time interval, is also highlighted. This 
case study focuses on the basal chemo-mechano-biological 
state of the arterial local model, with boundary conditions 
CNO,e = Cb

NO
 and CROS,e = Cb

ROS
 in Eqs. (23). Based on the 

model formulation and parameter settings (see Sect. 2.4.1 
and Table 2), a uniform and basal value of SMCs active 
stretch �a

smc
= �a,b

smc
 is obtained throughout the media layer. 

Therefore, from the solution obtained for the cardiovascu-
lar global model, the basal TAWSS value 𝜏b

s
 in Eq. (24b) 

is computed using Eq. (4) and employed for the following 
numerical studies in Sect. 3.

2.4.3 � Coupling algorithm

In Sect. 2.3, it was emphasized that the coupling between 
the global and local models results in a nonlinear system 

(31b)
∫

Th

0

Qh(t + �h)d�h =
Qa(t)

4fh(t)

↓
=Vh ⇒ Qa(t) = 4fh(t)Vh .

Table 3   Values of parameters 
employed for the cardiovascular 
global model in numerical 
applications, together with 
relevant literature references 
and criteria

Description Parameter Value Ref./Criterion

Resistance of upstream segment R1 0.1mmHg s∕mL Korakianitis and Shi (2006)
Compliance of upstream segment C1 0.5mL∕mmHg  Korakianitis and Shi 

(2006)
Resistance of downstream segment R3 1mmHg s∕mL  Korakianitis and Shi 

(2006)
Compliance of downstream segment C3 0.001mL∕mmHg  Korakianitis and Shi 

(2006)
Basal heart frequency f

b

1
1 beats∕s 60 Beats per minute (bpm)

Cardiac output V
h

5.6min Rusinaru et al. (2021)
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of equations. To solve this system, the Aitken-Steffensen’s 
method is employed, which is an iterative technique for find-
ing the roots of nonlinear functions without requiring the 

use of the function’s derivative (Johnson and Scholz, 1968; 
Păvăloiu, 1995).

Let us consider a series of time steps t1,… , tN in the slow 
time scale, and assume that the solution of the coupled sys-
tem is known up to step (k − 1) and the solution at step k is 
sought for. Hence, the actual value of TAWSS, denoted as 

Fig. 5   Response of the car-
diovascular model. a Global-
local structure considered 
in numerical applications. b 
Solution strategy for treating 
the unknown initial conditions 
of the system at th = t . c Top: 
Mean blood pressure ps and 
flow rate qs of the upstream 
segment ( s = 1 ), the segment 
of interest ( s = S = 2 ) and the 
downstream vasculature ( s = 3 ). 
Bottom: lumen internal radius 
and shear stresses for the seg-
ment of interest. A uniform and 
basal value of the active stretch 
�a
smc

= �a,b
smc

 (see Fig. 4) is con-
sidered for computing segment 
resistance RS and compliance 
CS . The values of parameters 
are given in Tables 2 and 3 and 
refer to a value for the slow time 
variable equal to t = 0
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𝜏(k)
s

 , is unknown, and �j represents the j-th guess within the 
iterative procedure. By substituting 𝜏s = 𝜏j into Eq. (24b), 
the corresponding guess value Cj of endothelial NO con-
centration can be determined using Eq. (24a). The chemo-
mechano-biological local model is then solved using these 
values.

The computed segment resistance and compliance values 
are passed to the cardiovascular global model, resulting in 
updated TAWSS values denoted as g(�j) , where g(∙) repre-
sents the transfer function of the coupled system. Accord-
ing to the Aitken-Steffensen’s method, the TAWSS guess 
values are updated at each iterative step using the following 
scheme:

until

where tol is the prescribed tolerance on the error meas-
ure err. For the subsequent numerical results, a value of 
tol = 10−3 is chosen. If the error does not decrease over two 
consecutive iteration steps, i.e., if errj+1 > err j , the algo-
rithm is re-initialized by updating the next attempt value as 
�j+1 → (�j+1 + �j)∕2.

It is noteworthy that the iterative scheme in Eq. (32) is 
initialized at each load step k as 𝜏1 = 𝜏(k−1)

s
 , that is through 

(32)�j+1 = �j +

(
g(�j) − �j

)2
g(g(�j)) − 2g(�j) + �j

,

(33)errj =
Cj+1 − Cj

Cb
NO

< tol ⇒ 𝜏(k)
s

= 𝜏j+1 ,

Fig. 6   Flowchart of the global–
local algorithmic procedure. 
Initialization values: 𝜏(0)

s
= 𝜏b

s
 

and y0 = Pout1
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Fig. 7   Chemo-mechano-biological response of the arterial local 
model (Sect.  3.1). Results are obtained for a 2-minute linear-wise 
+50% increase of 𝜏S(t) , represented by red lines, and for a −50% 
decrease, represented by blue lines, relative to the basal state 𝜏S = 𝜏b

S
 . 

The dashed lines indicate the steady-state solutions of Eqs. (22). Top: 
Molecular concentration profiles across the normalized arterial thick-
ness (along line AA’ in Fig. 2) for nitric oxide ( CNO , left) and reactive 

oxygen species ( CROS , right). Middle: Average tissue nitric oxide con-
centration (left) and the corresponding variation in the radius–pres-
sure relationship (right). Bottom: Distribution of smooth muscle cell 
(SMC) active stretches �a

smc
 in the media layer of the arterial cross 

section resulting from the activation of NO-related chemical path-
ways (see Eq. (25)). Parameters’ values are listed in Table 2
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the TAWSS value obtained at the previous converged step (k − 1) . The flowchart of the developed global–local algo-
rithmic procedure is shown in Fig. 6.

3 � Results

Three numerical applications are considered in the 
following.

Fig. 8   Outcomes from the full model showing  the impact of cal-
cification in the local vessel model (Sect.  3.2). Left: Distribution 
of the active stretch �a

smc
 of smooth muscle cells (SMCs) within the 

(healthy) media. Center: normalized variation of NO concentration 
with respect to the basal value ΔNO = CNO∕C

b
NO

− 1 . Right: normal-

ized variation of ROS concentration with respect to the basal value 
ΔROS = CROS∕C

b
ROS

− 1 . All plots are demonstrated in the zero-pres-
sure configuration. The parameters’ values used in the analysis are 
listed in Tables 2 and 3

Fig. 9   Outcomes from the full model showing the impact of calcifica-
tion in the local vessel model (Sect. 3.2). Top: Pressure–radius rela-
tionships (left) and shear stresses over a heartbeat (right) for different 
scenarios: local vessel model without calcification, with calcification 
and vascular tone regulation, and with calcification without vascular 
tone regulation. Continuous lines in the pressure–radius plots depict 
pressure ranges experienced during a heartbeat, while the dashed sec-
tions represent relationships obtained unloading the vessel to zero 
pressure. Dashed lines in the shear stresses plot indicate Time-Aver-

aged Wall Shear Stress (TAWSS). Bottom: Distribution of circum-
ferential tissue stretch �� = (e� ⋅ Ce�)

1∕2 (left) and circumferential 
smooth muscle cells (SMCs) active stress ��,smc = (e�

�
⋅ �smce

�
�
)1∕2 

where e′
�
 is the unit vector derived from the push forward of e� (right). 

These plots illustrate the loaded configuration at Mean Arterial Pres-
sure (MAP) and address the local model without calcification, as well 
as with calcification and vascular tone regulation. The parameters’ 
values used in the analysis are listed in Tables 2 and 3
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3.1 � Local model: vascular tone regulation 
as a chemo‑biological response

This section investigates the response of the chemo-mech-
ano-biological local model alone. In particular, the effects of 
changes in the TAWSS by ±50% in relation to the baseline 
value are investigated, by varying 𝜏S(t) linearly in time over 
a 2-minute interval along the slow time scale t. Referring to 
the flowchart depicted in Fig. 6, the simulations exclusively 
engage the local vessel model. There is no necessity for an 
internal loop on shear stresses, as these are a priori assigned 
and not obtained from the solution of the global cardiovas-
cular model.

The obtained results are presented in Fig. 7. The dynam-
ics of NO and ROS concentrations are prominently featured, 
revealing that even after a few minutes, the system has not 
yet reached a steady-state response. This observation is fur-
ther supported by the geometrical dimensions and diffusion 
constants at hand, which provide a rough estimate of the 
transition time toward the steady-state values of approxi-
mately 15min , as given by (ΔIM

S,0
+ ΔA

S,0
)2∕(2DNO) , (Carr, 

2017).
Variations in the concentrations of NO within the arte-

rial tissue give rise to changes in the contraction state of 
SMCs, resulting in substantial alterations in the unloaded 
configurations of arteries and in their pressure–radius 
relationship.

3.2 � Full model: system equilibrium and effect 
of a local alteration

The full framework, encompassing the global–local cou-
pling, is addressed here. Constant global hemodynamic 

input conditions, corresponding to a basal heart frequency 
f b
h
 , are considered. Since nothing changes with the slow 

time scale, the algorithmic procedure in Fig. 6 allows us to 
determine the equilibrium state associated with the balance 
between global flow conditions and local vessel mechanical 
properties.

Outcomes obtained from two local vessel models are 
investigated and compared. The first model replicates the 
original arterial cross section presented in Fig. 2a-c. The 
second one is assumed to host a calcified sub-region in the 
media layer as shown in Fig. 2f and discussed in Sect. 2.4.1.

3.2.1 � Basal and adaptive homeostasis

The model featuring the original cross section without calci-
fications demonstrates an equilibrium state aligning with the 
reference conditions and representing a basal homeostatic 
state. Specifically, the smooth muscle cells (SMCs) exhibit 
a consistent and unchanging active stretch equal to the basal 
value, that is �a

smc
= �a,b

smc
 . Blood flow conditions mirror those 

presented in Fig. 5, maintaining TAWSS at a constant and 
basal level, i.e., 𝜏S = 𝜏b

S
 , for each heartbeat. Consequently, 

NO and ROS are produced at basal levels within the 
intima, resulting in constant distributions CNO = Cb

NO
 and 

CROS = Cb
ROS

 within the arterial wall.
The scenario changes significantly when employing 

the local vessel model with calcifications. As depicted in 
Fig. 8, the active stretch of SMCs across the vessel wall 
shows significant non-uniformity in this new state. Certain 
regions exhibit considerably greater relaxation compared to 
the uniform basal contraction observed in the non-calcified 
scenario. Such variations arise from the altered diffusivity 

Fig. 10   Outcomes from the full model showing the impact of 
increased cardiac frequency (Sect.  3.3). Left: Evolution of the car-
diac frequency along the slow time scale t. Right: Blood flow pro-
files Qh(th) at cardiac frequencies f b

h
 , f a1

h
 and f a2

h
 (as obtained from 

Eq. (31)) depicted relative to the fast time scale interval Δth = th − t̄ . 
Here, t̄  represents time points of 0min , 12min and 26min for the 
basal heart rate (60 bpm), a mild increase (120 bpm), and a severe 
increase (180 pm) in cardiac frequency, respectively
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and production of NO and ROS within the calcifications that 
lead high inhomogeneities in the molecular distributions. 
Concentrations of molecular species vary by approximately 
±30% compared to the non-calcified case.

As demonstrated in Fig. 9, alterations in the mechanical 
properties of the calcified arterial cross section significantly 
affect the pressure–radius relationship of the vessel. Notably, 
these changes stem from localized alterations in stress and 
strain distributions observed between the non-calcified and 
calcified scenarios.

Modifications in vessel pressure–radius mechanics induce 
changes in vessel compliance and resistance. A novel, non-
basal, equilibrium state emerges from the global–local inter-
play. This demonstrates the capability of the computational 
framework in capturing adaptive homeostasis of the sys-
tem. Remarkably, despite no alterations in the global hemo-
dynamic input, the global–local coupling forecasts a 17% 
increase in the systolic-diastolic peak compared to the non-
calcified scenario (see Fig. 9), highlighting the relevance of 
the interplay between local alterations and global hemody-
namic conditions.

3.2.2 � Vascular tone regulation and shear stresses

Figure  9 also shows the pressure–radius relationship 
obtained without considering vascular tone regulation 
and hence maintaining a constant basal active stretch. The 
absence of vascular tone regulation leads to substantial vari-
ations in the vessel’s final mechanical response associated 
with calcifications, resulting in a notable increase in shear 
stresses. Specifically, the increase reaches +55% compared 
to +28% with vascular tone regulation, showcasing the sig-
nificant impact of this regulatory mechanism.

3.3 � Full model: effect of global and local alterations

In this section, the full model is used to simulate the impact 
of heightened blood flow on vascular tone regulation result-
ing from an alteration in heartbeats’ frequency. Three lev-
els of cardiac frequencies are considered: the basal one f b

h
 ; 

a mild increase f a1
h

= 2f b
h
 ; and an intense one f a2

h
= 3f b

h
 . 

The cardiac frequency varies along the slow time scale t 
within 60 min and follows the piecewise linear law shown 
in Fig. 10, where blood flow profiles respecting Eq. (31) are 
also shown for the three levels of cardiac frequencies.

The plot in Fig. 11 illustrates the changes in hemody-
namic conditions within the segment of interest across 

Fig. 11   Outcomes from the 
full model showing the impact 
of increased cardiac frequency 
(Sect. 3.3). Temporal variations 
of hemodynamic outcomes 
within the segment of interest 
(see Fig. 10), depicted relative 
to the fast time scale interval 
Δth = th − t̄ . Here, t̄  represents 
time points of 0min , 12min and 
26min for the basal heart rate, 
a mild increase, and a severe 
increase in cardiac frequency, 
respectively. Results refer to: a 
blood pressure pS ; b blood flow 
qS ; c vessel resistance RS ; and 
d vessel compliance CS . The 
parameters’ values used in the 
analysis are listed in Tables 2 
and 3
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the three different frequencies in the fast time scale th . As 
depicted in Fig. 11a and b, the intensified heartbeat rate 
leads to a noteworthy surge in both blood pressure and blood 
flow. Notably, the proposed multiscale framework predicts 
distinct values of segment resistance and compliance for 
each frequency level (Figs. 11c,d), with high blood pressure 
triggering a substantial reduction in their values.

The reason behind this outcome is clear when examin-
ing Fig. 12, which demonstrates the system’s adaptation 
in the slow time scale t. As the heartbeat rate increases, it 
leads to a subsequent rise in mean blood pressure (Fig. 12a) 
and, consequently, an expansion of the vessel radius at the 
average pressure (Fig. 12b). The decrease in vessel resist-
ance can be directly attributed to the obtained lumen area 

Fig. 12   Outcomes from the 
full model showing the impact 
of increased cardiac frequency 
(Sect. 3.3). Temporal variations 
of chemo-mechano-biological 
outcomes within the segment of 
interest (see Fig. 10), depicted 
relative to the slow time scale 
t. Results refer to: a the average 
pressure during a cardiac cycle; 
b the internal radius ri

S
 in the 

loaded configuration at average 
pressure and in the unloaded 
configuration; c endothelial 
nitric oxide (NO) concentration 
CNO,e and average concentration 
within tissue domain; d average 
concentration of reactive oxy-
gen species (ROS) within tissue 
domain. The parameters’ values 
used in the analysis are listed in 
Tables 2 and 3

Fig. 13   Outcomes from the 
full model showing the impact 
of increased cardiac frequency 
and endothelial dysfunc-
tion (Sect. 3.3.1). Temporal 
variations of internal radius 
ri
S
 (left) and shear stresses �S 

(right) within the segment of 
interest. The results are shown 
relative to the fast time scale 
interval Δth = th − t̄ , where t̄  
represents time points of 0min , 
12min , and 26min for the basal 
heart rate, a mild increase, and 
a severe increase in cardiac 
frequency, respectively. The 
parameters’ values used in the 
analysis are listed in Tables 2 
and 3
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enlargement from Eq. (1), while the decrease in compliance 
arises from the nonlinear stiffening of the tissue, as evident 
from the slope of the pressure–radius curves at high pres-
sures in Fig. 7.

The chemo-biological response of the local model is 
activated by the altered flow conditions, as emphasized in 
Figs. 12c and 12d. These figures illustrate the progression 
of endothelial production of NO, along with the subse-
quent variations in average NO and ROS concentrations. 

Consequently, the increased levels of NO lead to the active 
dilation of SMCs, as evidenced by the increase in the 
unloaded radius illustrated in Fig. 12b. The effect and under-
lying rationale of this mechanism are further explored in the 
next Sect. 3.3.1, where a comparative analysis is conducted.

Fig. 14   Outcomes from the 
full model showing the impact 
of increased cardiac frequency 
and endothelial dysfunc-
tion (Sect. 3.3.1). Temporal 
variations of chemo-mechano-
biological outcomes within the 
segment of interest. Results, 
depicted relative to the slow 
time scale t, refer to: a endothe-
lial nitric oxide (NO) concen-
tration CNO,e ; b average active 
stretch �a

smc
 within the domain 

of the media layer in the tissue; 
c internal radius ri

S
 in the loaded 

configuration at the average 
pressure within the cardiac 
cycles; d time-averaged wall 
shear stresses TAWSS 𝜏s . The 
parameters’ values used in the 
analysis are listed in Tables 2 
and 3

Fig. 15   Outcomes from the 
full model showing the impact 
of increased cardiac frequency 
and endothelial dysfunction 
(Sect. 3.3.1). Relationship 
between blood pressure pS 
and internal radius ri

S
 from the 

unloaded configuration up to the 
average pressure within cardiac 
cycles. The parameters’ values 
used in the analysis are listed in 
Tables 2 and 3
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3.3.1 � Cardiovascular response and endothelial dysfunction

The predicted cardiovascular response of a vessel segment 
equipped with a responsive endothelium is contrasted with 
the response observed in the presence of mild and severe 
endothelial dysfunction, as introduced in Sect. 2.4.1.

Figure 13 shows the corresponding variations in the 
internal radius in the fast time scale th across the three dif-
ferent cardiac frequencies. Notably, the impact of endothe-
lial dysfunction on radius variations is evident. The most 
significant changes occur when transitioning from mild to 
severe disease levels and from mild to intense increase in 
cardiac frequency. These alterations in vessel radii have 
a direct effect on shear stresses, as also shown in Fig. 13. 
While shear stress values increase dramatically with cardiac 
frequency in the presence of severe endothelial dysfunction, 
the rise is only moderate or minor when endothelial func-
tioning is better.

These outcomes are further illustrated in Fig. 14, which 
highlights the local effect of endothelial dysfunction on the 
chemo-mechano-biological adaptation of the cardiovascular 
system related to an increase in cardiac frequency along with 
the slow time scale t. The increase in NO production with 
cardiac frequency is high for a responsive (intact) endothe-
lium and decreases with the severity of endothelial dys-
function (Fig. 14a). Thus, the increase of the average active 
stretch in the tissue (Fig. 14b) and of the internal radius 
at mean pressure (Fig. 14c) associated with an increase of 
the cardiac frequency are highly affected by endothelial 
dysfunctions. Overall, severe levels of dysfunction lead 
to circa 50% increase in TAWSS, while chemo-biological 
responsiveness reduces this increment to approximately 25% 
(see Fig. 14d). The effects of the chemo-mechano-biologi-
cal coupling are also depicted in Fig. 15, which illustrates 
the resulting radius–pressure relationship (up to the mean 
pressure obtained during the corresponding cardiac cycles) 
for the different investigated cases. Hence, this case study 
highlights the model capability in capturing the complex 
adaptive processes behind the regulation of the homeostatic 
equilibrium state in cardiovascular biomechanics, as affected 
by both global and local alterations.

4 � Conclusion

In this study, a computational model has been presented, 
which integrates chemo-mechano-biological pathways with 
cardiovascular biomechanics to investigate the regulation 
of vascular tone. By bridging the gap between global hemo-
dynamics, local chemo-biological pathways, and arterial 
biomechanics, insights on the complex interplay between 
mechanical and biochemical factors in vascular tone regula-
tion are achieved.

The findings highlight the critical role of vascular tone 
in maintaining cardiovascular homeostasis and its impact 
on overall circulatory function. Through the integration 
of detailed finite element analyses and reduced-order 
modeling of global hemodynamics, the ability to capture 
the intricate behaviors of arterial tissues in response to 
mechanical stimuli is demonstrated. By incorporating the 
diffusion–reaction mechanisms regulated by local hemo-
dynamic conditions, the model offers insights into the 
molecular pathways involved in the regulation of smooth 
muscle cell contraction and relaxation.

The model’s response has demonstrated its capability 
to accurately represent the mechanical behavior of tissues 
and vascular segments and its variation with vascular tone 
(see Fig. 4). Additionally, the obtained values of NO con-
centration in the different case studies align well with the 
average values reported both in vivo (Sena et al., 2018) 
and in vitro (Hall and Garthwaite, 2009). As regards the 
global–local coupling, values of compliance and resist-
ance of vascular segments obtained from finite element 
simulations at the local scale agree with the established 
literature and in vivo data (Korakianitis and Shi, 2006; 
Tossas-Betancourt et al., 2020; Kornet et al., 1998; Bank 
et al., 1995), demonstrating the effective transfer of infor-
mation between global and local problems.

Simulation results obtained from the computational 
framework shed light on the effects of both local and 
global alterations on vascular tone adaptation. These 
alterations induce changes in local flow conditions and 
mechanical stimuli, thereby affecting chemo-biological 
pathways. Consequently, adjustments in vascular tone 
significantly impact wall shear stresses and intramural 
stresses and strains. These findings are crucial for com-
prehending cardiovascular responses to multifactorial 
stimuli and incorporating the role of adaptive homeosta-
sis in in silico biomechanics frameworks (Davies, 2016). 
Prospectively, they hold promise for enhancing diagnostic 
and therapeutic strategies for cardiovascular diseases.

4.1 � Context of use and clinical significance

The developed simulation framework has highlighted the 
pivotal role of vascular tone regulation in the reliability of 
WSS predictions—a crucial aspect increasingly acknowl-
edged as a reliable risk indicator in diverse cardiovascu-
lar pathologies (Gallo et al., 2016; Mazzi et al., 2022). 
Current computations of WSS-related indices typically 
assume vascular segments to be passive structures. How-
ever, integrating their active behavior, especially consid-
ering local vessel features like intramural calcifications, 
could significantly enhance their long-term predictive 
accuracy.
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Endothelial dysfunction is closely associated with vari-
ous cardiovascular pathologies such as atherosclerosis, 
hypertension, and diabetes (Marti et al., 2012). Yet, clari-
fying the mechanistic link between endothelial dysfunc-
tion and these pathologies warrants further investigation. 
In this regard, the proposed computational model serves 
as an effective tool, offering novel quantitative insights 
into the escalation of wall shear stress associated with 
endothelial dysfunction.

Furthermore, the model’s ability to characterize ROS 
concentrations within arterial tissues, dependent on NO 
production, presents a crucial avenue. Disrupted redox 
homeostasis can have detrimental effects on cells by dis-
rupting signaling pathways or causing oxidative damage 
to essential biomolecules like proteins, lipids, and nucleic 
acids (Marti et al., 2012; Lacolley et al., 2017). Although 
numerous additional chemical pathways should be incor-
porated for a thorough characterization, future advance-
ments hold the promise of a more comprehensive under-
standing of oxidative stress within biomechanical models 
of cardiovascular structures. This includes, for instance, 
understanding how oxidative stress influences cell–cell 
signaling pathways related to hypertension-induced ves-
sel remodeling (Green et al., 2017; Wilstein et al., 2018).

Overall, this model could serve as a foundation to vali-
date whether the incorporation of chemo-biological path-
ways in vascular tone regulation enhances the efficacy 
of in silico biomechanical models as predictive tools for 
assessing cardiovascular pathologies in clinical settings. 
However, several challenges and opportunities for future 
research remain.

4.2 � Limitations and future works

Enhancements in the description of molecular biology and 
biomechanics at various scales would significantly bolster 
the predictive capabilities of the model. Section 3.2 demon-
strates the framework’s capacity to correlate vascular tone 
regulatory mechanisms with detailed local histological and 
geometrical properties, such as the distribution of calcifi-
cations. Integrating patient-specific data could yield vari-
ous applications, assessing whether incorporating chemo-
biological pathways in vascular tone regulation improves 
the predictive efficacy of in silico biomechanical models for 
evaluating cardiovascular pathologies in clinical settings. 
The model’s multiscale approach and use of the finite ele-
ment method at the local level render it readily adaptable.

However, the cross-correlation between model parameters 
(and uncertainties) is instrumental to highlight possible non-
linearities and predict responses in a patient-specific set-
ting. To this end, an extensive (global) sensitivity analysis 
would be necessary (Hamdia et al., 2019), possibly adopting 

techniques based on model order reduction and/or surrogate 
modeling (Urrea-Quintero et al., 2021).

Moreover, for more realistic applications, there is a need 
to expand the local model from 2D to 3D, as well as to 
encompass multiple active segments within the cardiovas-
cular tree. This expansion may introduce additional compu-
tational costs, yet it is important to note that the procedure 
remains cost-effective within the current framework. The 
most resource-intensive simulation, associated with the case 
study involving varying cardiac frequencies, takes approxi-
mately 10 min on a standard PC laptop (Intel Core i7, 16 GB 
RAM). The remaining case studies require at most 1-2 min 
per simulation. Consequently, scalability remains achiev-
able even when dealing with several segments of interest, 
especially considering that each segment can be run in par-
allel. Coupling between different segments occurs solely at 
the global cardiovascular level, which incurs minimal costs, 
even when managing numerous segments.

Further exploration into the roles of additional bio-
chemical factors, signaling pathways, nervous system, and 
baroreceptors in vascular tone regulation is essential for a 
more comprehensive understanding of this intricate pro-
cess. When incorporating mechanisms through which the 
cardiovascular system adapts to varying metabolic needs, 
the proposed approach might contribute to the study of 
pathologies related to inadequate blood supply to tissues 
during increased demand, such as during physical exercise. 
However,  although physical exercise leads to an increase in 
cardiac frequency, Sect. 3.3 provides only a partial represen-
tation of this phenomenon. A comprehensive understand-
ing demands an investigation that integrates the autonomic 
nervous system, hormonal mechanisms, and variations in 
peripheral resistance (Green et al., 2017).

Additionally, Sect. 3.3.1 simulates endothelial dysfunc-
tion by reducing the sensitivity of endothelial cells to shear 
stress. However, this represents just one aspect of the disor-
der, which can stem from various sources leading to reduced 
bioavailability of endothelium-derived relaxing factors—be 
it impaired production capabilities or increased production 
of contracting factors (Marti et al., 2012), as well as altered 
transport of macromolecules to and from the tissues and 
blood (Ray et al., 2023).

Moreover, the present paper neglects contraction dynam-
ics of actin-myosin bridges. In fact, active contraction of 
SMCs follows an increased cytosolic concentration of Ca2+ 
that initiates a change in the chemical state of myosin and 
leads to phosphorylation of myosin heads and attachment 
to actin. The major effect of this chain of events can be 
modeled by introducing a functional dependency on the 
actin-myosin state of SMCs stiffness and maximum stress 
[parameters Csmc and Pmax

smc
 in Eq. (16)]. Such an effect would 

not change the main outcomes analyzed in this work and is 
therefore not included for the sake of the model’s parsimony. 
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However, the developed framework is readily generalizable 
to account for more refined descriptions, see e.g., Zulliger 
et al. (2004); Stålhand et al. (2011); Murtada et al. (2017). 
In fact, while calcium dynamics often interact with NO path-
ways and other signaling molecules in various diseases, in 
some specific pathological conditions, alterations in calcium 
signaling within smooth muscle cells might be more prom-
inent than direct involvement of NO pathways in disease 
manifestation (such as Calcium Channelopathies).

Furthermore, the current model would benefit from more 
refined fluid–structure interaction (FSI) approaches to better 
capture the dynamic interactions between blood flow and 
arterial wall mechanics. The inclusion of more sophisticated 
FSI techniques would provide a more accurate representa-
tion of the complex fluid–structure interactions occurring 
within the arterial system. In addition, the presented com-
putational model focuses on specific arterial segments and 
does not account for the complexity of arterial tree branches. 
The extension of the model to include a more comprehen-
sive representation of the arterial network, including the 
branching geometry and heterogeneity of different arterial 
segments, would enhance its realism and applicability to a 
wider range of physiological scenarios.

Finally, the limited number of arterial segments consid-
ered in the global cardiovascular model hinders depicting 
complex wave reflections and diverse blood flow distribu-
tion between organs. A more comprehensive model with 
additional segments and diverse branches could enhance the 
range of applications of present framework (Quarteroni et al., 
2016). Moreover, the scope of the model could be expanded 
to include distributed 1D network models for cardiovascular 

biomechanics. Incorporating such network models would ena-
ble the study of hemodynamic effects and chemo-biological 
interactions in a broader context, considering the interplay 
between different arterial segments and their collective impact 
on global cardiovascular function. In fact, 0D cardiovascular 
models offer insights into overall hemodynamics but struggle 
to capture detailed phenomena like spatial variations in param-
eters such as pulse wave velocity (PWV) along the arterial tree.

Despite these limitations, the presented computational 
model serves as a valuable tool for advancing our understand-
ing of vascular tone regulation and its implications for cardio-
vascular health since coupling, for the first time, a plethora of 
multi-factorial mechanisms at different time and length scales. 
Continued research in this field will deepen our knowledge 
and open new avenues for exploring the interplay between 
mechanical and biochemical factors in vascular physiology.

Fig. 16   Left: circumferential stress–strain relationship in the media 
layer for a displacement-driven uniaxial test in the circumferential 
direction (with fixed axial stretch and radial stretch from the incom-
pressibility condition). Results are obtained with different values of 
active stretches �a

smc
 , and considering the mechanism of inelastic col-

lagen straightening (with �c = 0.15 , continuous lines) or not (with 
�c = 0 , dashed lines). Right: relationship between pressure pS and 

lumen area AS at different levels of SMC active stretch �a
smc

 (imposed 
uniformly within the media layer). Numerical outcomes from finite-
element simulations of the local model mechanics (symbols) are com-
pared with the interpolated responses fitted via Eq. (27) (continuous 
lines, best-fit values of parameters in Table 4). Value of parameters, if 
not differently specified, are given in Table 2

Table 4   Best-fit values of parameters for the surrogate model 
A
S
= A

S
(p

S
) in Eq. (27) for different values of SMC active stretch �a

smc

a ( cm2) b (−) c (mmHg) d (cm2)

�a
smc

= 0.59 1.483 2.696 95.625 0.306
�a
smc

= 0.75 1.749 1.669 73.509 0.273
�a
smc

= 1 2.864 0.274 17.008 −0.476

�a
smc

= 1.3 3.463 0.013 0.748 −0.765
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Appendix A: Generation of arterial 
cross‑section geometry

In a Cartesian system parametrized in coordinates (x, y) and 
denoting by �(x, y) = arctan(y∕x) , domain ΩM,0 of the media 
layer is built as the region comprised between the intima layer 
ΣI,0 , described as:

and the media-adventitia boundary, reading:

Analogously, domain ΩA,0 for the adventitia layer is built as 
the region comprised between the media-adventitia bound-
ary ΣM,0 and the outer adventitia layer:

Here Ri
s,0

 is the mean reference internal radius, ΔIM
s,0

 the mean 
intima-media thickness, and ΔA

s,0
 the mean adventitia thick-

ness. Moreover, �∗ , �∗ and �∗ are shape-governing parameters 
introduced to deviate from a perfectly cylindrical geometry 
(with ∗= I,M,A ). For obtaining the cross-section geometry 
employed in numerical applications, the following values 
are adopted: �I = �M = �A = 1∕4 �I = 4 , �M = �A = 3 , �I = 0 
�M = �∕3 and �A = �∕6.

Appendix B: Additional results on arterial 
local model

The obtained stress–strain relationship obtained from Eq. 
(17) in the media layer is reported in Fig. 16. Results refer 
to a displacement-driven uniaxial test in the circumferential 
direction, with fixed axial stretch and radial stretch from 
the incompressibility condition. Different values of active 
stretches �a

smc
 are considered, and the effect of inelastic col-

lagen straightening is also investigated.
The effectiveness of the surrogate modeling approach for 

the description of the relationship between pressure pS and 
lumen area AS from finite-element simulations of the local 
model mechanics is investigated in Fig. 16. The response 
is obtained for different levels of SMC active stretch �a

smc
 

(imposed uniformly within the media layer), and the 

(A.1)
ΣI,0 =

{
(x, y) s.t. x

2 + y
2 =

(
RI(x, y)

)2
with

RI(x, y) = R
i

s,0
+ ΔIM

s,0
�I cos

(
�
I
�(x, y) − �

I

)
= 0

}
,

(A.2)

ΣM,0 =
{

(x, y) s.t. x2 + y2 =
(

RM(x, y)
)2 with RM(x, y)

= RI(x, y) + ΔIM
s,0
[

1 + �M cos
(

�M�(x, y) − �M
)]

= 0
}

.

(A.3)

ΣA,0 =
{

(x, y) s.t. x2 + y2 =
(

RA(x, y)
)2 with RA(x, y)

= RM(x, y) + ΔA
s,0
[

1 + �A cos
(

�A�(x, y) − �A
)]

= 0
}

.

corresponding best-fit values of parameters are reported in 
Table 4. 
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