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Abstract. We exhibit a new proof, relying on bivariant theory, that the
nilpotent cone is rationally smooth. Our approach enables us to prove a
slightly more general statement.
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1. Introduction

In [2] Borho and MacPherson proved that the nilpotent cone is a rational
homology manifold. The proof relies on the celebrated Decomposition Theorem
by Beilinson, Bernstein, Deligne and Gabber [1] and on the Springer’s theory
of Weyl group representations (see [2] and the references therein).

The aim of this paper is to present a new proof, in our opinion con-
ceptually very simple, based on the bivariant theory founded by Fulton and
MacPherson in [4]. Actually, our approach enables us to prove a slightly more
general statement (see Remark 2.4 below). By bivariant theory we intend the
topological bivariant homology theory with coefficients in a Noetherian commu-
tative ring with identity A [4, pp. 32, 83 and p. 86, Corollary 7.3.4].

That the nilpotent cone is a rational homology manifold can be seen as
an easy consequence of a characterization of homology manifolds we recently
proved in [3, Theorem 6.1]: given a resolution of singularities π : ˜N → N of a
quasi-projective variety N , then N is a homology manifold if and only if there
exists a bivariant class of degree one for π. A bivariant class of degree one for
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π is an element η ∈ H0( ˜N π→ N ) such that the induced Gysin homomorphism
η0 : H0( ˜N ) → H0(N ) sends 1

˜N to 1N .

2. The Main Result

Theorem 2.1. Let π′ : g̃ → g be a projective morphism between complex quasi-
projective nonsingular varieties of the same dimension. Assume that π′ is
generically finite, of degree δ. Let N ⊂ g be a closed irreducible subvariety.
Consider the induced fibre square diagram:

˜N
π

��

� � �� g̃

π′

��N � � i �� g,

where ˜N := N ×g g̃. If ˜N is irreducible and nonsingular and π is birational,
then N is an A-homology manifold for every Noetherian commutative ring
with identity A for which δ is a unit.

Proof. Since π′ : g̃ → g is a projective morphism between complex quasi-
projective nonsingular varieties of the same dimension, it is a local complete
intersection morphism of relative codimension 0 [4, p. 130]. Let

θ′ ∈ H0(g̃ π′
→ g) ∼= HomDb

c(g)
(Rπ′∗Ag̃,Ag)

be the orientation class of π′ [4, p. 131]. Let θ′
0 : H0(g̃) → H0(g) be the

induced Gysin map. It is clear that θ′
0(1g̃) = δ · 1g ∈ H0(g), where δ is the

degree of π′. Therefore, if we denote by

θ := i∗θ′ ∈ H0( ˜N π→ N ) ∼= HomDb
c(N )(Rπ∗A˜N ,AN )

the pull-back of θ′, then δ−1 · θ is a bivariant class of degree one for π [3, 2.
Notations, (ii)]. At this point, our claim follows by [3, Theorem 6.1]. For the
Reader’s convenience, let us briefly summarize the argument.

Since δ−1 · θ is a bivariant class of degree one for π, it follows that
(

δ−1 · θ
) ◦ π∗ = idAN in Db

c(N ), i.e. that δ−1 · θ is a section of the pull-back
π∗ : AN → Rπ∗A˜N [3, Remark 2.1, (i)]. Hence, AN is a direct summand of
Rf∗A˜N in Db

c(N ) [3, Lemma 3.2] and so we have a decomposition

Rf∗A˜N
∼= AN ⊕ K. (1)

Now, set ν = dim ˜N = dim N and let [ ˜N ] ∈ H2ν( ˜N ) be the fundamental class
of ˜N . We have:

[ ˜N ] ∈ H2ν( ˜N ) ∼= H−2ν( ˜N → pt.) ∼= Hom
Db

c(
˜N )

(A
˜N [ν],D

(

A
˜N [ν]

)

),

where D denotes Verdier dual. Therefore, [ ˜N ] corresponds to a morphism

A
˜N [ν] → D

(

A
˜N [ν]

)

, (2)
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whose induced map in hypercohomology is nothing but the duality morphism

D
˜N : x ∈ H•( ˜N ) → x ∩ [ ˜N ] ∈ H2ν−•( ˜N ). (3)

If we assume that ˜N is nonsingular (actually it suffices that ˜N is an A-
homology manifold), the morphisms (2) and (3) are isomorphisms. The first
one induces an isomorphism

Rπ∗A˜N [ν] → D
(

Rπ∗A˜N [ν]
)

,

which in turn, via decomposition (1), induces two projections

AN [ν] → D (AN [ν]) , K[ν] → D (K[ν]) . (4)

Making explicit the isomorphism induced in cohomology and homology by (1),
one may prove [3, Corollary 5.1] that D

˜N is the direct sum of P1 and P2, where

P1 : H•(N ) → H2ν−•(N ) and P2 : H(K[ν]) → H(D (K[ν]))

are the maps induced in hypercohomology by the projections (4). It follows
that P1 is an isomorphism, because so is D

˜N , and this holds true when restrict-
ing to every open subset U of N . For instance (see also [3, Corollary 5.1]), if
˜U = π−1(U), the vanishing of the morphism H

•(KU [ν]) → H2ν−•(U) derives
from projection formula [4, p. 26, G4, (ii)]:

π∗([˜U ] ∩ λ∗w) = π∗(δ
−1θ∗[U ] ∩ λ∗w) = δ−1(θ∗λ∗w) ∩ [U ] = 0, ∀w ∈ H

•(KU [ν]),

where λ∗ is the morphism induced in hypercohomology by KU [ν] → Rπ∗A ˜U [ν].
Therefore, we have AN [ν] ∼= D (AN [ν]), which is equivalent to say that

N is an A-homology manifold. �

Remark 2.2. Observe that, as a scheme, ˜N could also be nonreduced, but
what matters is that, for the usual topology, it is a nonsingular variety [4, p.
32, 3.1.1].

Corollary 2.3. The nilpotent cone is a rational homology manifold.

Proof. Let π : ˜N → N be the Springer resolution of the nilpotent cone N .
It extends to a generically finite projective morphism π′ : g̃ → g, known as
the Grothendieck simultaneous resolution, between complex quasi-projective
nonsingular varieties of the same dimension [2, p. 49]. Therefore, Theorem 2.1
applies. �

Remark 2.4. If the Grothendieck simultaneous resolution π′ : g̃ → g has de-
gree δ, by Theorem 2.1 we deduce that the nilpotent cone N is an A-homology
manifold for every Noetherian commutative ring with identity A for which δ
is a unit. For instance, for the variety N of nilpotent matrices in GL(n,C),
we have δ = n!. Therefore, in this case, N is also a Zh-homology manifold for
every integer h relatively prime with n! in Z.
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Università di Roma “Tor Vergata”
Via della Ricerca Scientifica
00133 Rome
Italy

e-mail: digennar@axp.mat.uniroma2.it

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nilpotent Cone and Bivariant Theory Page 5 of 5   223 

Davide Franco and Carmine Sessa
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
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