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Abstract

We define a class of Markovian parallel dynamics for spin systems on general interac-
tion graphs. In this dynamics, beside the usual set of parameters Jxy, the strength of
the interaction between the spins σx and σy, and λx, the external field at site x, there
is an inertial parameter q measuring the tendency of the system to remain locally
in the same state. This dynamics is reversible with an explicitly defined stationary
measure. For suitable choices of parameter this invariant measure concentrates on
the ground states of the Hamiltonian. This implies that this dynamics can be used
to solve, heuristically, difficult problems in the context of combinatorial optimization.
We also study the dynamics on Z2 with homogeneous interaction and external field
and with arbitrary boundary conditions. We prove that for certain values of the pa-
rameters the stationary measure is close to the related Gibbs measure. Hence our
dynamics may be a good tool to sample from Gibbs measure by means of a parallel
algorithm. Moreover we show how the parameters allow to interpolate between spin
systems defined on different regular lattices.

1 Introduction

We introduce a class of parallel dynamics to study spin systems on arbitrary graphs G =
(V,E) with general interaction given by

H(σ) = −
∑

e={x,y}∈E
Jxyσxσy − 2

∑

x∈V
λxσx

with Jxy and λx in R, and σ ∈ {−1,+1}V configuration on G. We called them shaken
dynamics. The main feature of these dynamics is that the interaction is divided into two
parts acting alternatively. They are reversible and we control explicitly the invariant meas-
ure π(σ) - see (1) below. However shaken dynamics share with irreversible dynamics the
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asymmetric interaction, retaining some possible advantages. This class of shaken dynamics
includes and generalizes parallel dynamics (PCA) defined in previous papers. We present
here consequences and application of this generalized definition also related to discrete
optimization problems. Even if the convergence to equilibrium of the shaken dynamics is
not analyzed in this paper, a preliminary comparison is discussed both from a theoretical
and numerical point of view.

Parallel Markovian dynamics on spin systems, often introduced in terms of Probabilistic
Cellular Automata (PCA), have been the object of deep investigations in the past decades.
The first attempts at studying PCA in the context of Equilibrium Statistical Mechanics
date back to [10], where various features of the infinite-volume limit have been investigated,
in particular its space-time Gibbsian nature. Also in more recent times the interest on PCA
remained on. We just mention here some references, especially in order to recall that the
determination of the stationary measure can be non trivial. Examples of infinite volume
PCA whose invariant measures are not Gibbsian are given in [8]. In [14] explicit conditions
for the existence of reversible and ergodic PCA are provided. In [5] it has been proven that,
in general, the stationary measure defined by a local PCA may have nothing in common
with the Gibbs measure, giving rise to stable checkerboard configurations.

One of the main reasons of interest on PCA is related to their numerical applications.
Indeed, parallelization could, at least in principle, speed up MCMC dynamics. Even though
until a few years ago parallel computing was expensive and tricky, we have now powerful
and cheap parallel architectures, for instance based on GPU or even FPGA.

In the past, several approaches have been proposed to exploit the capabilities of parallel
architecture to simulate statistical mechanics lattice models in an effective way and to apply
Monte Carlo methods to solve discrete Optimization Problems. However, these methods
are strongly tied to the particular architecture used for the simulation and make use of
the similarities between the structure of the graph and the structure of the hardware in
use. The literature on the topic is quite vast, especially in the computer engineering and
applied physics communities. Some attention, though, should be paid to the theoretical
foundation of these methods. Indeed, the control of the stochastic dynamics, or at least
of its stationary measure, seems to be a minimal requirement in order to develop random
algorithms in combinatorial optimization. For the Markov Chain that we describe here we
are able to control the stationary measure. Moreover the algorithm is natively parallel and
is not bound to any particular architecture or graph structure. Therefore its performances
are likely to benefit from the development of parallel computing often driven by applications
not necessarily linked to academic research.

It is reasonable to think that updating all the spins at every single step, parallel dynamics
exhibit a faster convergence to equilibrium compared to single spin flip dynamics. Actually,
parallelization can drastically change the relaxation time. In some particular cases of
dynamics updating all the spins at every step, rigorous results are available. One of
the main examples is given by the Swendsen-Wang (SW) dynamics where a polynomial
relaxation time in the size of the problem is proven [11]. However, SW dynamics is a
cluster dynamics which is not really parallel in the sense that its probability transition
kernel can not be factorized as P (σ, τ) =

∏
x∈Λ P (τx|σ) for σ, τ ∈ {−1,+1}Λ. There

are other examples of fast mixing parallel dynamics, see for instance [7] where a parallel
irreversible dynamics is defined for the 2d Ising model and fast mixing is proven in the low
temperature regime and [9] for results on the mixing time in the high temperature regime.
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In some cases the acceleration of convergence to equilibrium is related to irreversibility (see
for instance [13]). However general and ultimate results on the effects of parallelization
and/or irreversibility on the convergence to equilibrium are still an open problem.

The shaken dynamics introduced in this paper contains a class of PCA on spin systems,
introduced in previous papers [6, 7, 15, 18], characterized by the presence of an inertial
term preventing the simultaneous update of a too large set of spins. The spin at each
site x is updated with an heat-bath rule according to the local field hx(σ) given by the
configuration at its nearest neighbors plus a self-interaction term tuned by an inertial
parameter q > 0. More precisely this means that the transition probability can be written
in terms of a doubled Hamiltonian

P (σ, τ) =
e−H(σ,τ)

∑
τ ′ e
−H(σ,τ ′)

with H(σ, τ) =
∑

x hx(σ)τx.

When the local field is computed considering the contribution of all the nearest neighbors
it is possible to verify that the resulting dynamics is reversible with stationary measure
given by

π(σ) =

∑
τ e
−H(σ,τ)

∑
σ′,τ ′ e

−H(σ′,τ ′)
. (1)

If only a subset of the nearest neighbors of the site is considered, for instance the spins
in a predefined direction, the dynamics becomes irreversible. The results on its mixing
properties are quite interesting: irreversibility can drastically change the mobility of the
dynamics, supporting mixing. In general, however, the explicit computation of the sta-
tionary measure is highly nontrivial also on regular graphs.

The idea bearing to the dynamics introduced in this paper is the following: we define a
two-step update alternating the direction of the nearest neighbors defining the local field
hx(σ). The dynamics defined in this way is reversible but has many features in common
with the irreversible dynamics introduced in [15, 7]. In particular the result cited above
on the fast mixing of the 2d Ising model at low temperature, was obtained in [7] under the
hypothesis of periodic boundary conditions. This was a crucial ingredient to prove that
π(σ) was the invariant measure of the irreversible dynamics. For the shaken dynamics
discussed here reversibility holds and it allows to identify π(σ) given in (1) as stationary
measure also for non periodic boundary conditions. The results obtained in [7] could be
extended to the shaken dynamics in a straightforward manner. We believe that this general
class of shaken dynamics provides a set of tools useful in numerical simulations.

In [6] the convergence, in the thermodynamical limit, of π(σ) to the Gibbs measure with
HamiltonianH(σ) has been proven in the case λ = 0 in the high temperature regime (under
Dobrushin conditions and q sufficiently large). Similar results, in the low temperature
regime, are harder to obtain. In [18] the case Z2 is discussed, again in the case of no
external field. As shown in [1] this measure π(σ) enables us to play with the geometry of the
system and, considering different limits for the parameters appearing in the Hamiltonian,
to compare the properties of spin systems defined on different lattices. Embedding the state
space into a doubled space of pairs of configurations, with the doubled HamiltonianH(σ, τ),
the interaction graph becomes a doubled bipartite graph and when the self-interaction
parameter q tends to zero or tends to infinity, the interaction graph changes, cutting the
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corresponding edge or collapsing the two extremal vertices respectively. Starting from the
Ising model on Z2 we identified in [1] the critical line of this class of systems parameterized
by q. In the limit q →∞ the measure π converges in total variation to the Gibbs measure
corresponding to the HamiltonianH(σ) := H(σ, σ). In this paper we analyze these systems
from a dynamical point of view defining an easy and effective way to sample them with
the shaken dynamics. We extend the result of the convergence of π to the Gibbs measure
and the geometrical interplay among different regular lattices is applied not only starting
from Z2.

The paper is organized as follows. In Section 2 we define the shaken dynamics on a general
graph and state the main result. In Section 3 we consider the particular case of Z2 with
homogeneous interaction. In Section 4 we generalize the definition of shaken dynamics and
in Section 5 we present an application of the shaken dynamics to optimization problems
constructing a class of parallel MCMC. In Section 6 we give the proofs of the results while
Section 7 is devoted to final remarks and possible applications of the shaken dynamics to
tidal dissipative effects in planetary systems.

2 The shaken dynamics on a general graph

Let G = (V,E) be a finite weighted graph and XV = {−1, 1}V be the set of spin config-
urations on V . We consider the nearest neighbor interaction between spins given by the
Ising Hamiltonian in the general form:

H(σ) = −
∑

e={x,y}∈E
Jxyσxσy − 2

∑

x∈V
λxσx (2)

=
∑

x

∑

y

1

2
Jxy1{x,y}∈Eσxσy − 2

∑

x∈V
λxσx = −〈1

2
J σ + 2λ, σ〉

where the weight Jxy ∈ R associated to the edge {x, y}, represents the interaction, and can
be written in compact form as a symmetric matrix J and we denote by 〈·, ·〉 the scalar
product. The vector λ = {λx}x∈V is an external field, possibly non constant.

We introduce a class of bipartite weighted graphs Gb = (V b, Eb) doubling the interaction
graph G. The idea is to duplicate the vertex set into two identical copies, V (1) and V (2),
representing the two parts of the vertex set of the bipartite graph. For each x ∈ V we
denote by x(1), x(2) the vertices corresponding to x ∈ V in V (1) and in V (2) respectively.
The edges between x(1) and x(2) are all present, for any x ∈ V . On the other hand the
edges between x(1) and y(2), with x 6= y, or between y(1) and x(2), can be present only if
{x, y} ∈ E. Exactly one edge among the two possibilities (x(1), y(2)) and (y(1), x(2)) is in
Eb if {x, y} ∈ E. This means that for any graph G there are many doubling graphs Gb.
Note that similar doubling graphs have already been introduced in literature for different
purposes (see [14]). More precisely:

Definition 2.1 A bipartite weighed graph Gb = (V b, Eb) is the doubling graph of G =
(V,E) if

- the vertex set V b = V (1) ∪ V (2) where the two parts V (1) and V (2) are two identical
copies of V ;

- for any x ∈ V the edge (x(1), x(2)) ∈ Eb with weight q and we call it a self-
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Figure 1: Il grafo non diretto

by considering two subsequent updating defined as follows:

P 1!2(�,�0) :=
e�H(�,�0)

�!
Z �

with
�!
Z � =

X

⇣2XV

e�H(�,⇣) (9)

P 2!1(�0, ⌧) :=
e�H(⌧,�0)

 �
Z �0

with
 �
Z �0 =

X

⇣2XV

e�H(⇣,�0) (10)

P sh(�, ⌧) =
X

�02XV

P 1!2(�,�0)P 2!1(�0, ⌧) =
X

�02XV

e�H(�,�0)

�!
Z �

e�H(⌧,�0)

 �
Z �0

(11)

2.3 Results

We first state our result in the general context.

On XV we can consider the Gibbs measure ⇡G(�) = e��H(�)

ZG and also the measure

⇡(�) =

�!
Z �

Z
with

�!
Z � :=

X

⌧

e��H(�,⌧) and Z :=
X

�,⌧

e��H(�,⌧)

For q large we expect that these two measures are close to each other (see later Theorem
** in the case of ⇤ 2 Z2). Indeed in the limit q !1 the graph Gp, collapses to the graph
G, at least in terms of random cluster model.

The measure ⇡(�) turns out to be the marginal of the Gibbs measure on the space XV p

with hamiltonian (8).

More precisely the following theorem holds.

Theorem 2.1 The stationary measure of the shaken dynamics is ⇡(�) and reversibility
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Figure 2: Il grafo diretto

holds. This stationary measure is the marginal of the Gibbs measure on the space XV p of
pairs of configurations � := (�1,�2) defined by:

⇡2(�) :=
1

Z
e�H(�1,�2) (12)

The shaken dynamics on XV corresponds to an alternate dynamics on Gp in the following
sense

P sh(�1, ⌧1) =
X

⌧22{�1,+1}V 2

P alt(�,⌧ ) (13)

with

P alt(�,⌧ ) =
e�H(�1,⌧2)

�!
Z �1

e�H(⌧1,⌧2)

 �
Z ⌧2

(14)

the stationary measure of P alt is

⇡2(�, ⌧) :=
1

Z
e�H(�,⌧)

that is the Gibbs measure on the space XV p of pairs of configurations. This dynamics is in
general non reversible.

In the case of ⇤ 2 Z2 the graph Gp is the hexagonal graph, i.e., the space of pairs of
configurations with interaction given by H(�, ⌧) can be represented as the configuration
space XH for the Ising model on an hexagonal lattice H. The shaken dynamics defined in
(11) is the marginal of the alternate dynamics on the hexagonal lattice.

Hereafter we remain in ⇤ 2 Z2 and we set B = ;, i.e., we consider the standard periodic
boundary conditions and we denote by ⇡⇤ ⌘ ⇡⇤,; =

�!
Z �
Z the invariant measure of the

shaken dynamics in the case B = ;. Note that, in this case,
�!
Z � =

 �
Z � = Z� (see [?, ?]).

5

(b)

Figure 1: An undirected graph (a) and a possible choice for the related directed graph (b)

interaction edge;

- if {x, y} ∈ E then one, and only one, between the two edges {x(1), y(2)} and {y(1), x(2)}
is in Eb. We call this kind of edge an interaction edge.

To construct a doubling graph starting from the interaction graph G = (V,E), define a
new oriented graph Go = (V,Eo) simply orienting the edges in an arbitrary way. Using
the oriented edges the set Eb is constructed as follows. For any x ∈ V we have the self-
interaction edge (x(1), x(2)) ∈ Eb with weight w(x(1), x(2)) = q and for x 6= y ∈ V we have
(x(1), y(2)) ∈ Eb if and only if (x, y) ∈ Eo with weight w(x(1), y(2)) = Jxy.

Note that the edges in Eb are not oriented. However, by construction, the graph is bipartite,
so that for any e = {x, y} ∈ Eb we have x ∈ V (1), y ∈ V (2) or viceversa and so we consider
in the definition the natural order in the edges in Eb by setting e = (e(1), e(2)) with
e(1) ∈ V (1), e(2) ∈ V (2). For this reason we can use the oriented edges in Eo in order to
define Eb.

We will sometimes omit the superscripts (1) and (2) and we will always consider (x, y) the
ordered pair with x ∈ V (1), y ∈ V (2), and {x, y} the unordered pair with x, y ∈ V b.

Definition 2.2 The pair Hamiltonian H(σ(1), σ(2)) is the doubling of the Hamiltonian
(2) with interaction graph G if there exists a doubling graph Gb = (V b, Eb) of G such
that H(σ), defined on the spin configurations σ ≡ (σ(1), σ(2)) ∈ XV b = {−1, 1}V b, can be
written as

H(σ) = −
∑

{x,y}∈Eb
w(x, y)σxσy −

∑

x∈V b
λxσx (3)

with w(x, y) = q if {x, y} is a self interaction edge and w(x, y) = Jxy otherwise and with
λx(1) = λx(2) = λx.
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Figure 3: Il grafo bipartito

8

Figure 2: The doubling of the graph of Fig. 1(a) obtained from the directed graph of
Fig. 1(b)

In a more explicit way we can write

H(σ) ≡ H(σ(1), σ(2))

= −
∑

{x(1),y(2)}∈Eb
Jxyσ

(1)
x σ(2)

y −
∑

x∈V

(
qσ(1)

x · σ(2)
x + λx(σ(1)

x + σ(2)
x )
)

= −
∑

x∈V

(
σ(1)
x h2→1

x (σ(2)) + λxσ
(2)
x

)

= −
∑

x∈V

(
σ(2)
x h1→2

x (σ(1)) + λxσ
(1)
x

)

(4)

with
h2→1
x (σ(2)) =

∑

y∈V :{x(1),y(2)}∈Eb

(
Jxyσ

(2)
y

)
+ qσ(2)

x + λx

and
h1→2
x (σ(1)) =

∑

y∈V :{y(1),x(2)}∈Eb

(
Jxyσ

(1)
y

)
+ qσ(1)

x + λx

By defining J o the matrix of oriented interaction, i.e., J oxy = Jxy1(x,y)∈Eo , and its trans-
posed J oT corresponding to the opposite orientation, we can write

h2→1
x (σ(2)) = (J oσ(2))x + qσ(2)

x + λx

h1→2
x (σ(1)) = (J oTσ(1))x + qσ(1)

x + λx
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and

H(σ(1), σ(2)) = −〈σ(1),J oσ(2)〉+ q〈σ(1), σ(2)〉+ 〈λ, σ(1)〉+ 〈λ, σ(2)〉
= −〈J oTσ(1), σ(2)〉+ q〈σ(1), σ(2)〉+ 〈λ, σ(1)〉+ 〈λ, σ(2)〉

If we consider the case σ(1) = σ(2) = σ, i.e., σ(1)
x = σ

(2)
x for any x ∈ V , then we have

H(σ) ≡ H(σ, σ) = H(σ)− q|V |. Indeed we have immediately J = J o + J oT .
We construct now the shaken dynamics on the state space XV by considering two subse-
quent updating defined as follows:

P 1→2(σ, σ′) :=
e−H(σ,σ′)

−→
Z σ

=
∏

x∈V

eh
1→2
x (σ)σ′x

2 coshh1→2
x (σ)

with
−→
Z σ =

∑

ζ∈XV
e−H(σ,ζ) (5)

P 2→1(σ′, τ) :=
e−H(τ,σ′)

←−
Z σ′

=
∏

x∈V

eh
2→1
x (τ)σ′x

2 coshh2→1
x (τ)

with
←−
Z σ′ =

∑

ζ∈XV
e−H(ζ,σ′) (6)

P sh(σ, τ) =
∑

σ′∈XV
P 1→2(σ, σ′)P 2→1(σ′, τ) =

∑

σ′∈XV

e−H(σ,σ′)

−→
Z σ

e−H(τ,σ′)

←−
Z σ′

(7)

We state the result on the shaken dynamics in this general context.

Theorem 2.3 The stationary measure of the shaken dynamics is

π(σ) =

−→
Z σ

Z
with

−→
Z σ :=

∑

τ

e−H(σ,τ) and Z :=
∑

σ,τ

e−H(σ,τ) (8)

and reversibility holds. This stationary measure is the marginal of the Gibbs measure on
the space XV b of pairs of configurations σ := (σ(1), σ(2)) defined by:

πb(σ) :=
1

Z
e−H(σ). (9)

The shaken dynamics on XV corresponds to an alternate dynamics on Gb in the following
sense

P sh(σ(1), τ (1)) =
∑

τ (2)∈{−1,+1}V (2)

P alt(σ,τ ) (10)

with

P alt(σ,τ ) =
e−H(σ(1),τ (2))

−→
Z σ(1)

e−H(τ (1),τ (2))

←−
Z τ (2)

(11)

the stationary measure of P alt is πb(σ). This dynamics is in general non reversible.

3 Example: the shaken dynamics on Z2

Let Λ be a two-dimensional L × L square lattice in Z2 and let BΛ denote the set of all
nearest neighbors in Λ with periodic boundary conditions.

7



q

J

J

Λ1

Λ2

Figure 3: The doubling graph of Z2 represented in the figure turns out to be a hexagonal
lattice.

In Λ we identify a set B where the value of the spins is frozen throughout the evolution
and that plays the role of boundary conditions. This means that we will consider the state
space XΛ,B = {σ ∈ XΛ : σx = +1 ∀x ∈ B}.
Following the construction of the shaken dynamics of the previous section we can define

H(σ, τ) = −
∑

x∈Λ

[Jσx(τx↑ + τx→) + qσxτx + λ(σx + τx)]

= −
∑

x∈Λ

[Jτx(σx↓ + σx←) + qτxσx + λ(σx + τx)]
(12)

where x↑, x→, x↓, x← are, respectively, the up, right, down, left neighbors of the site x on
the torus (Λ,BΛ), J > 0 is the ferromagnetic interaction, q > 0 is the inertial constant and
λ represents the external field. We can write

H(σ, τ) = −
∑

x∈Λ

σxh
ur(τ)− λ

∑

x∈Λ

τx = −
∑

x∈Λ

τxh
dl(σ)− λ

∑

x∈Λ

σx (13)

where the local up-right field hurx (τ) due to the configuration τ is given by

hurx (τ) =
[
J(τx↑ + τx→) + qτx + λ

]
(14)

and the local down-left field hdlx (σ) due to the configuration σ is given by

hdlx (σ) =
[
J(σx↓ + σx←) + qσx + λ

]
(15)

Define the asymmetric updating rule

P dl(σ, τ) :=
e−H(σ,τ)

−→
Z σ

with
−→
Z σ =

∑

σ′∈XΛ,B

e−H(σ,σ′) (16)

Due to the definition of the pair Hamiltonian, the updating performed by the transition
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probability P dl(σ, τ) is parallel: given a configuration σ, at each site x ∈ Λ the spin τx of
the new configuration τ is chosen with a probability proportional to ehdlx (σ)τx so that

P dl(σ, τ) :=
e−H(σ,τ)

−→
Z σ

=
∏

x∈Λ

eh
dl
x (σ)τx

2 coshhdlx (σ)

We have H(σ, τ) 6= H(τ, σ) and actually, by (13), H(τ, σ) corresponds to the opposite
direction of the interaction for the transition from σ to τ . We define

P ur(σ, τ) :=
e−H(τ,σ)

←−
Z σ

with
←−
Z σ =

∑

σ′∈XΛ,B

e−H(σ′,σ) (17)

Similarly for P ur(σ, τ) with the up-right field hurx (σ) we get

P ur(σ, τ) :=
e−H(τ,σ)

←−
Z σ

=
∏

x∈Λ

eh
ur
x (σ)τx

2 coshhurx (σ)

Note that in the definition of H(σ, τ) = −∑x∈Λ τxh
dl(σ)− λ∑x∈Λ σx the last term could

be canceled obtaining the same value for the transition probability P dl(σ, τ). However we
added it in the pair Hamiltonian for symmetry reasons: in particular the fact that H(τ, σ)
is the correct pair Hamiltonian to define P ur(σ, τ) is due to this symmetry. Note also that

H(σ, σ) = H(σ)− q|Λ|

where we define H(σ) to be the usual Ising Hamiltonian with magnetic field 2λ

H(σ) = −
∑

{x,y}∈BΛ

Jσxσy − 2λ
∑

x∈Λ

σx (18)

We define

P sh(σ, τ) =
∑

σ′∈XΛ,B

P dl(σ, σ′)P ur(σ′, τ) =
∑

σ′∈XΛ,B

e−H(σ,σ′)

−→
Z σ

e−H(τ,σ′)

←−
Z σ′

(19)

Reversing the order of the “down–left” and the “up–right” updating rules one would obtain
the chain with transition probabilities

P sh
′
(σ, τ) =

∑

σ′∈XΛ,B

P ur(σ, σ′)P dl(σ′, τ).

Clearly, by choosing a different orientation instead of down-left and up-right in Z2, a differ-
ent pair Hamiltonian can be obtained with a resulting different graph for the interaction.

In this square case we could have directly used the alternate dynamics, since Z2 is already
a bipartite graph. Indeed we can consider the chessboard splitting of the sites in Λ =
V (1) ∪ V (2), in black and white sites, with |V (1)| = |V (2)| = |V | = |Λ|/2. Black sites
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interact only with white sites and viceversa with the usual Ising Hamiltonian

H(σ) ≡ H(σ(1), σ(2))

= −
∑

x∈V (1)

(
σ(1)
x h2→1

x (σ(2)) + λxσ
(2)
x

)

= −
∑

x∈V (2)

(
σ(2)
x h1→2

x (σ(1)) + λxσ
(1)
x

)
.

By Theorem 2.3 we immediately obtain that the invariant measure of the alternate dy-
namics is the Gibbs measure πG(σ) = e−H(σ)/Z. The idea of alternate dynamics on even
and odd sites is already present in the literature (see [4]).

3.1 Relation with the Gibbs measure

Remaining in Λ ∈ Z2 with J > 0 and B = ∅, i.e. with the standard periodic boundary
conditions, and denoting by πΛ =

−→
Z σ
Z the invariant measure of the shaken dynamics we

have
−→
Z σ =

←−
Z σ = Zσ (see [7, 15]).

We denote by πGΛ the Gibbs measure

πGΛ (σ) =
e−H(σ)

ZG
with ZG =

∑

σ∈XΛ

e−H(σ) (20)

with H(σ) defined in (18) and we define the total variation distance, or L1 distance,
between two arbitrary probability measures µ and ν on XΛ,B as

‖µ− ν‖TV =
1

2

∑

σ∈XΛ,B

|µ(σ)− ν(σ)| (21)

In the following Theorem 3.1 we control the distance between the invariant measure of
the shaken dynamics and the Gibbs measure at low temperature and for q positive and
large. We notice that this theorem is an extension of Theorem 1.2 in [18] to the case of
Hamiltonian with the non zero external field. This result could be extended to the case
B 6= ∅.
Theorem 3.1 Set δ = e−2q, and let δ be such that

lim
|Λ|→∞

δ2|Λ| = 0 (22)

Under the assumption (22), there exists J̄ such that for any J > J̄

lim
|Λ|→∞

‖πΛ − πGΛ‖TV = 0. (23)

3.2 Convergence to equilibrium: a comparison

The efficiency of the shaken dynamics and its convergence to equilibrium will be analyzed
in future papers, both from the theoretical and from the numerical point of view. Actually
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by preliminary simulations it seems that comparing the single spin flip (SSF) dynamics,
the PCA dynamics and the shaken dynamics (Sh) their efficiency depends on the particular
considered regime. We present here, as a remark, a comparison among these three dynamics
in a simple case of “metastable regime”: finite volume Λ with periodic boundary conditions
and low temperature. More precisely let 0 < q < λ < J and consider, for each x ∈ λ, the
local fields

hSSFx (σ) =
[J

2
(σx↑ + σx→ + σx↓ + σx←) + 2λ

]

hPCAx (σ) =
[J

2
(σx↑ + σx→ + σx↓ + σx←) + qσx + λ

]

hdlx (σ) and hurx (σ′) defined in (15) and (14), and the local transition probabilities

p∗x(σ, τ) :=
eβh

∗
x(σ)τx

2 coshβh∗x(σ)
, ∗ = SSF, PCA, dl, ur

we have

PSSF (σ, τ) =
1

|Λ|p
SSF
x (σ, τ), with τy = σy ∀y 6= x

PPCA(σ, τ) =
∏

x∈Λ

pPCAx (σ, τ)

PSh(σ, τ) =
∑

σ′∈XΛ

∏

x∈Λ

pdlx (σ, τ)
∏

x∈Λ

purx (σ, τ).

For large inverse temperature β we have p∗x(σ, τ) ∼ 1 if τx is parallel to the local field h∗x(σ).
We call such a local move “along the drift”. On the other hand p∗x(σ, τ) ∼ e−2β|h∗x(σ)| if τx
is anti-parallel to the local field h∗x(σ). We call such a local move “against the drift”.

The SSF dynamics is reversible with Gibbs invariant measure

πGΛ (σ) =
eβ
∑
x h

SSF
x (σ)σx

Z

and the invariant measure of PCA and shaken dynamics is π(σ) given in (8). All these
measures, in the regime of large β, concentrate on the configuration with all positive spins
+1 representing the stable state. The configuration −1 with all spins −1 represents, in
this regime of low temperature, a metastable state. Indeed by considering the first hitting
time τ+1 to +1 starting from −1, for the SSF dynamics we have for any δ > 0 (see for
instance [17], [2]):

lim
β→∞

PSSF−1 (τ+1 > eβ(Γ−δ)) = 1 (24)

with
Γ = 4J`c − 2λ`2c + 2λ(`c − 1)

and critical size `c =
[
J
2λ

]
+ 1, where

[
·
]
denotes the integer part. The typical exit paths

from the metastable state −1 follow a sequence of growing squares and rectangles (quasi
squares) of plus spins up to the critical size `c. Starting from a rectangular droplet of plus
spins a move against the drift is necessary to create a new line, and the line is completed
with subsequent moves along the drift. A similar result holds for the PCA dynamics

11



following the same arguments since again moves along the drift lead to rectangular droplets
of plus spins and parallel updating against the drift has small probability for β large.

A different growth takes place in the case of shaken dynamics. Indeed using a similar
argument as in [7] it is simple to prove that configurations with complete diagonals of plus
spins can be used to construct a competitive way to go from the metastable to the stable
state. Starting from the metastable state we have hdlx (−1) = −2J − q + λ for any x and
so with a probability of order e−2β(2J+q−λ) a spin is flipped in a site x0. In the subsequent
semi-step (up–right interaction) of the dynamics with probability of order one we have plus
spins in the sites x←0 and x↓0. The diagonal containing these sites grows with probability
of order one in the subsequent moves of the shaken dynamics and it is complete after L/2
steps, with L the side of the volume Λ. To destroy a complete diagonal of plus spins a first
move of probability

e−2β(2J−q+λ)

is necessary and every successive erosion has a probability e−2β(λ−q). On the other hand
the probability to construct a new plus diagonal near the first one has a probability

e−2β(2J−q−λ).

Comparing these probabilities, we can obtain the estimate

PShσ (τ+1 < T0) > a

with T0 = e2β[(2J+q−λ)] and a not exponentially small in β, for any starting configuration
σ. Indeed it is sufficient to require that no move of probability asymptotically smaller than
e−2β(2J+q−λ) takes place within T0, a first complete diagonal is formed in the time interval
[0, T0/2] and L − 1 other complete diagonals are formed in the remaining time. We can
conclude that for any δ > 0

lim
β→∞

PSh−1(τ+1 < e2β[(2J+q−λ)+δ]) = 1.

This means that the crossover takes place for the shaken dynamics, typically, within a
time corresponding to the time it takes, for the SSF and PCA, to flip the first spin to +1.
In other words the metastable behavior is no more present in the shaken dynamics (see
Figure 4 for a numerical simulation). The asymmetric nature of the interaction gives the
shaken dynamics a higher mobility with respect to its symmetric counterpart (“standard”
PCA). This is the reason of shorter tunneling times. Note also that this higher mobility
causes a slightly smaller magnetization at equilibrium.

This fact has been highlighted in [15, 16] where a comparison between the symmetric PCA
and an irreversible PCA with totally asymmetric interaction has been performed in the
case λ = 0. In Figure 5 a comparison between the evolution of the magnetization for
a system subject to a symmetric PCA evolution and to shaken dynamics is shown for
the same values of the parameters of [16]. It is clear that, with respect to the tunneling
behavior, the shaken dynamics retains the same features of the irreversible PCA. However,
in the case of the shaken dynamics the control of the invariant measure is more manageable
thanks to reversibility.

On the other hand, with the same choice of parameters, if we compare the time necessary
to reach the stable state +1 starting from a configuration given by a supercritical square of

12



0 5.0×10⁴ 1.0×10⁵

time

-1.0

-0.5

0.0

0.5

1.0
m
(σ
) shaken

PCA

(a) β = 1.3, q = 0.1, λ = 0.15

0 5.0×10⁴ 1.0×10⁵

time

-1.0

-0.5

0.0

0.5

1.0

m
(σ
) shaken

PCA

(b) β = 2.3, q = 0.1, λ = 0.15

0 5.0×10⁴ 1.0×10⁵

time

-1.0

-0.5

0.0

0.5

1.0

m
(σ
) shaken

PCA

(c) β = 3.3, q = 0.1, λ = 0.15

0 5.0×10⁴ 1.0×10⁵

time

-1.0

-0.5

0.0

0.5

1.0

m
(σ
) shaken

PCA

(d) β = 4.0, q = 0.1, λ = 0.15

Figure 4: Comparison of the magnetization over time for PCA and shaken dynamics for
several values of the inverse tempeature β.

plus spins in a see of minuses, the PCA dynamics is more rapid than the shaken dynamics
if J > 2q.

This means that it is not possible to establish, a priori, whether the PCA or the shaken
dynamics is faster, but it is necessary to take into account both the application and the
starting configuration. This will be the subject of further investigations.

3.3 Geometrical discussion

In the shaken dynamics the idea of alternate dynamics is combined with that of the doubling
Hamiltonian. Indeed considering only part of the interaction (for instance down-left first
and then up-right in the case of Λ ∈ Z2 presented at the beginning of the Section) and
introducing the inertial parameter of self interaction q it is possible to interpolate between
different lattice geometries induced by the doubling graph as already discussed in [1].

Indeed the alternate dynamics on the hexagonal lattice makes possible to interpolate be-
tween the square (q → ∞) and the 1-dimensional lattice (q → 0). The interpolation
between lattices induced by the shaken dynamics may be applied in general, and in the
case of planar graphs the results concerning the critical behavior contained in [1] can be
extended, using [3].

Consider for instance the Ising model on the triangular lattice. On this lattice we divide
the 6 nearest neighbors of each vertex x into two sets, e.g. `(x) left and r(x) right nearest
neighbors of x, and define a shaken dynamics with self interaction q. Hence the doubled
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Figure 5: Comparison of the evolution of the magnetization for a spin system evolving ac-
cording to a shaken dynamics (black) and according to a symmetric PCA (gray). The values
of the parameters are such that both dynamics exhibit the same spontaneous magnetization
and are consistent with those of [16].

Hamiltonian is

H4(σ, τ) = −
∑

x

[ ∑

y∈`(x)

(
Jσyτx

)
+ qσxτx

]
= −

∑

x

[ ∑

y∈r(x)

(
Jτyσx

)
+ qσxτx

]

The corresponding alternate dynamics turns out to be defined on the square lattice (see
Fig. 6) with invariant measure the Gibbs one. In particular the square lattice is regular
when we set J = q. In this case the parameter q can be used to move through different
geometries. The triangular lattice (q → ∞) and the hexagonal lattice (q = 0) can be
derived from the original square lattice just tuning the value of q. A more precise statement
of this interpolation is given by the following

Theorem 3.2 For the shaken dynamics on the triangular lattice the critical equation re-
lating the parameters J and q is given by

1 + tanh3(J) tanh(q) = 3 tanh(J) tanh(q) + 3 tanh2(J) (25)

In the case q = J we obtain the Onsager critical temperature for the square lattice, for
q = 0 we obtain the critical temperature for the hexagonal lattice and in the limit q →∞
we obtain the critical temperature for the triangular lattice.

4 The generalized shaken dynamics

We can generalize the construction of the shaken dynamics. Starting from a symmet-
ric interaction J defining the Hamiltonian H(σ), as in (2), we can define an arbitrary
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Λ1

Λ2

q

J

J

J

Figure 6: Interaction in the pair Hamiltonian for the shaken dynamics on the triangular
lattice. Each spin of configuration σ (living on the solid lattice) interacts with the spin at
the same location and the three spins on its left in τ (living on the dashed lattice). The
red lines show that the pair interaction lives on a square lattice. For q = J this lattice is
homogeneous. As q → ∞ the square lattice collapses onto the triangular lattice. If q = 0
the interaction graph becomes the homogeneous hexagonal lattice.

decomposition of the interaction matrix J in a sum of two matrices with non negative
entries

J = J o + J oT . (26)

This means that every non oriented edge {x, y} with weight Jxy is decomposed in a pair
of oriented edges (x, y) and (y, x) with weight respectively J oxy and J oyx. Call Eo the set
of all these oriented edges and apply the construction presented in Section 2 to construct
the doubling graph by using this set Eo of oriented edges.

We proceed as before defining the doubling Hamiltonian

H(σ(1), σ(2)) = −〈σ(1),J oσ(2)〉+ q〈σ(1), σ(2)〉+ 〈λ, σ(1)〉+ 〈λ, σ(2)〉
= −〈J oTσ(1), σ(2)〉+ q〈σ(1), σ(2)〉+ 〈λ, σ(1)〉+ 〈λ, σ(2)〉.

In the case σ(1) = σ(2) = σ by equation (26) we have again H(σ, σ) = H(σ)− q|V |.
The corresponding alternate dynamics on the state space XV is defined with two subsequent
updating as follows:

P 1→2(σ, σ′) :=
e−H(σ,σ′)

−→
Z σ

, P 2→1(σ′, τ) :=
e−H(τ,σ′)

←−
Z σ′

(27)

and

P sh(σ, τ) =
∑

σ′∈XV
P 1→2(σ, σ′)P 2→1(σ′, τ) =

∑

σ′∈XV

e−H(σ,σ′)

−→
Z σ

e−H(τ,σ′)

←−
Z σ′

(28)

The results obtained in Theorem 2.3 can be immediately extended to this more general
case.

The choice of the shaken dynamics discussed in Section 2 is a particular case of generalized
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shaken dynamics in which J oxyJ oyx = 0 for any pair x, y. In the general case the geomet-
rical discussion of the doubling graph of interaction is much more complicated. Also the
interpolation between different geometries obtained for different values of the parameter
q, as discussed in Section 3, is more involved in this generalized case.

Figure 7: The construction of the doubling graph in the case of the generalized shaken
dynamics.

Another particular choice in this class of generalized shaken dynamics is J o = 1
2J corre-

sponding to the PCA discussed in [6].

5 Application to optimization problems

The shaken dynamics on a general graph, and its generalization, gets the possibility to
look for the minimum of a general Hamiltonian H(σ) defined on {−1,+1}V by means of
a parallel dynamics, by using the following result that could be considered a corollary of
Theorem 2.3. In combinatorial optimization this can be used as a parallel approach to the
Quadratic Unconstrained Binary Optimization (QUBO) i.e., the problem of minimizing a
quadratic polynomial of binary variables (see [?] for a survey).

Theorem 5.1 Given a Hamiltonian H(σ) of the form given in (2) on {−1,+1}V , for
any Hamiltonian H(σ, τ) which is the doubling of H(σ), corresponding to a bipartite graph
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Gb = (V b, Eb), if

q > max
x∈V

{ ∑

y:{x,y}∈Eb
|Jxy|+ |λx|

}
(29)

then the alternate dynamics defined with H(σ, τ) is a parallel algorithm to find configura-
tions σ minimizing H(σ).

To assess the effectiveness of the strategy presented in Theorem 5.1, we put forward some
preliminary tests on a simplified version of the Edwards-Anderson model where the weight
of the edges connecting neighboring sites is set to J = +1 with probability 1

2 and J = −1
with probability 1

2 and where the external field is zero. In this case, setting q > 2 is
sufficient to satisfy the hypotheses of the corollary. We compared the results with those
obtained with a single spin flip heat bath dynamics and considered “grids” with side length
128 and 256. With this setting, the heuristic minima that we obtained with the shaken
dynamics are essentially equivalent to those obtained with the single spin flip dynamics.
However the speed up with respect to the single spin flip dynamics was significant. To be as
fair as possible in this comparison, we renormalized the time of the single spin flip dynamics
with the number of vertices in the graph so to have the same number of “attempted spin
flips”. We observed a speed-up of about 10 times when considering, for both algorithms,
a CPU implementation and up to 200 times when comparing the CPU implementation of
the single spin flip dynamics with a GPU implementation of the shaken dynamics. We
believe these preliminary results to be rather encouraging and we plan to perform a more
thorough investigation of the performances of the shaken dynamics to find the minimizers
of H(σ) in a future work taking into account the considerations concerning the mobility
of the dynamics.

6 Proofs of the results

6.1 Proof of Theorem 2.3

We have immediately the detailed balance condition w.r.t. the measure π(σ) indeed

∑

σ′∈XV

e−(H(σ,σ′)+H(τ,σ′))

←−
Z σ′

=
−→
Z σP

sh(σ, τ) =
−→
Z τP

sh(τ, σ) =
∑

σ′∈XV

e−(H(τ,σ′)+H(σ,σ′))

←−
Z σ′

(30)

It is straightforward to prove that πb(σ(1), σ(2)) is the stationary measure of P alt

∑

σ(1),σ(2)

πb(σ(1), σ(2))P alt(σ,τ ) =
∑

σ(1),σ(2)

e−H(σ(1),σ(2))

Z

e−H(σ(1),τ2)

−→
Z σ(1)

e−H(τ (1),τ (2))

←−
Z τ (2)

=
e−H(τ (1),τ (2))

Z
= πb(τ (1), τ (2))

(31)

�

Note that, in general

πb(σ(1), σ(2))P alt(σ,τ ) 6= πb(τ (1), τ (2))P alt(τ ,σ).
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For instance consider the bipartite graphs Kn,n with equal weights on all edges and where,
for all i, (σ

(1)
i , σ

(2)
i ) = (+1,+1) and (τ

(1)
i , τ

(2)
i ) = (+1,−1)

6.2 Proof of Theorem 3.1

To prove Theorem 3.1 it is possible to argue as in the proof of Theorem 1.2 in [18].

In our notation πΛ and πGΛ have the role, respectively, of πPCA and πG used in [18]. Further
let gx(σ) := J(σx↓ + σx←) be the analogue of hi(σ) in [18]. Here we assume λ < 0. The
case λ > 0 can be treated likewise.

Recalling that δ = e−2q, it is possible to write Zσ in the following way:

Zσ =
∑

τ

e−H(σ,τ) =
∑

τ

e−H(σ,σ)e−[H(σ,τ)−H(σ,σ)]

= eq|Λ|e−H(σ)
∑

τ

e
∑
x:σx 6=τx −2gx(σ)σx−2q−2λσx

= eq|Λ|e−H(σ)
∑

I⊂Λ

δ|I|
∏

x∈I
e−2gx(σ)σx−2λσx

= eq|Λ|e−H(σ)
∏

x∈Λ

(1 + δe−2gx(σ)σx−2λσx)

(32)

where the sum over τ has been rewritten as the sum over all subsets I ⊂ Λ such that
τx = −σx if x ∈ I and τx = σx otherwise. The factor eq|Λ| does not depend on σ and
cancels out in the ratio Zσ

Z .

Call f(σ) :=
∏
x∈Λ(1 + δe−2gx(σ)σx−2λσx), w(σ) := e−H(σ)f(σ) = wG(σ)f(σ). Then (32)

can be rewritten as

πΛ(σ) =
w(σ)∑
τ w(τ)

=
wG(σ)f(σ)∑
τ w

G(τ)f(τ)
=

wG(σ)
ZG

f(σ)
∑

τ
wG(τ)
ZG

f(τ)
=
πGΛ (σ)f(σ)

πGΛ (f)

with πGΛ (f) =
∑

σ π
G
Λ (σ)f(σ).

As in [18], using Jensen’s inequality the total variation distance between πΛ and πGΛ can
be bounded as

‖πΛ − πGΛ‖TV ≤
√

πGΛ (f2)

(πGΛ (f))2
− 1 =:

√
(∆(δ)).

To prove the theorem, it will be shown that ∆(δ) = O(δ2|Λ|).

By writing ∆(δ) = elog(πGΛ (f2))−2 log(πGΛ (f)) − 1, the claim follows by showing that the argu-
ment of the exponential divided by |Λ| is analytic in δ and that the first order term of its
expansion in δ cancels out.

In other words the claim follows thanks to the following lemma.

Lemma 6.1 There exists Jc such that, for all J > Jc

1. log(πGΛ (f2))

|Λ| and log(πGΛ (f))

|Λ| are analytic in δ for |δ| < δJ
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2. log(πGΛ (f2))

|Λ| − 2
log(πGΛ (f))

|Λ| = O(δ2)

Proof: The analyticity of log(πGΛ (f2))

|Λ| and log(πGΛ (f))

|Λ| is proven by showing that these quan-
tities can be written as partition functions of an abstract polymer gas. The analyticity is
obtained using standard cluster expansion.

To carry over this task, we will rewrite πGΛ (fk) in terms of standard Peierls contours.
Divide the sites in Λ according to the value of the spins and number of edges of the Peierls
contour left and below the site in the following way:

• Λ−−
−
: {x ∈ Λ : σx = −1 ∧ (σx← = −1, σx↓ = −1)};

• Λ+−
−
: {x ∈ Λ : σx = −1 ∧ ((σx← = +1, σx↓ = −1) ∨ (σx← = −1, σx↓ = +1))};

• Λ+−
+
: {x ∈ Λ : σx = −1 ∧ σx← = +1, σx↓ = +1};

• Λ++
+
: {x ∈ Λ : σx = +1 ∧ (σx← = +1, σx↓ = +1)};

• Λ−+
+
: {x ∈ Λ : σx = +1 ∧ ((σx← = +1, σx↓ = −1) ∨ (σx← = −1, σx↓ = +1))};

• Λ−+
−
: {x ∈ Λ : σx = +1 ∧ (σx← = −1, σx↓ = −1)};

With this notation, f(σ) can be written as

f(σ) = (1 + δe−4J+2λ)|Λ|
∏

x∈Λ +−
−

(1 + δe+2λ)

(1 + δe−4J+2λ)

∏

x∈Λ +−
+

(1 + δe+4J+2λ)

(1 + δe−4J+2λ)

∏

x∈Λ ++
+

(1 + δe−4J−2λ)

(1 + δe−4J+2λ)

∏

x∈Λ−+
+

(1 + δe−2λ)

(1 + δe−4J+2λ)

∏

x∈Λ−+
−

(1 + δe+4J−2λ)

(1 + δe−4J+2λ)

= (1 + δe−4J+2λ)|Λ|ξ̃(σ, λ)

(33)

with

ξ̃(σ, λ) =

[
(1 + δe+2λ)

(1 + δe−4J+2λ)

]
∣∣∣∣Λ +−

−

∣∣∣∣ [(1 + δe+4J+2λ)

(1 + δe−4J+2λ)

]
∣∣∣∣Λ +−

+

∣∣∣∣
[

(1 + δe−4J−2λ)

(1 + δe−4J+2λ)

]
∣∣∣∣Λ ++

+

∣∣∣∣ [ (1 + δe−2λ)

(1 + δe−4J+2λ)

]
∣∣∣∣Λ−+

+

∣∣∣∣ [(1 + δe+4J−2λ)

(1 + δe−4J+2λ)

]
∣∣∣∣Λ−+

−

∣∣∣∣ (34)

For a given a configuration σ ∈ XΛ, we denote by γ(σ) its Peierls contour in the dual
B∗Λ = ∪(x,y)∈BΛ

(x, y)∗

γ(σ) := {(x, y)∗ ∈ B∗Λ : σxσy = −1} (35)

Noting that e−H(σ) = e(2J−2λ)|Λ|e−2J |γ(σ)|+4λ|V+(σ)|, with |V+(σ)| =
∑

x∈Λ 1{σx=+1} is the
number of plus spins in Λ of configuration σ, we have

πGΛ (fk) =
1

ZG
e(2J−2λ)|Λ|(1 + δe−4J+2λ)k|Λ|

∑

σ

[
e−2J |γ(σ)|+4λ|V+(σ)|ξ̃k(σ, λ)

]
(36)
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Setting

ξ(σ, λ) =

[
(1 + δe+2λ)

(1 + δe−4J+2λ)

]
∣∣∣∣Λ +−

−

∣∣∣∣ [(1 + δe+4J+2λ)

(1 + δe−4J+2λ)

]
∣∣∣∣Λ +−

+

∣∣∣∣
[
e+2λ(1 + δe−4J−2λ)

(1 + δe−4J+2λ)

]
∣∣∣∣Λ ++

+

∣∣∣∣ [e+2λ(1 + δe−2λ)

(1 + δe−4J+2λ)

]
∣∣∣∣Λ−+

+

∣∣∣∣ [e+2λ(1 + δe+4J−2λ)

(1 + δe−4J+2λ)

]
∣∣∣∣Λ−+

−

∣∣∣∣
(37)

allows us to write, for k ∈ {1, 2},
∑

σ

[
e−2J |γ(σ)|+4λ|V+(σ)|ξ̃k(σ, λ)

]
=
∑

σ

[
e−2J |γ(σ)|

(
e+2λ|V+(σ)|

)2−k
ξk(σ, λ)

]
(38)

A straightforward computation yields ξk(σ, λ) ≤ ξk(σ, 0) and then

∑

σ

[
e−2J |γ(σ)|

(
e+2λ|V+(σ)|

)2−k
ξk(σ, λ)

]
≤
∑

σ

e−2J |γ(σ)|ξk(σ, 0) = 2
∑

γ

e−2J |γ|ξk(γ, 0)

where ξk(γ, 0) coincides with ξIk(Γ) in the proof of Lemma 2.3 in [18], with
∣∣∣Λ+−

−

∣∣∣+
∣∣∣Λ−+

+

∣∣∣ =

|l1(Γ)| and
∣∣∣Λ+−

+

∣∣∣+
∣∣∣Λ−+

−

∣∣∣ = |l2(Γ)|.

This implies that the proof can be concluded following the same steps as in [18]. �

6.3 Proof of Theorem 3.2

This is an application of Theorem 1.1 in [3] holding for a finite planar, non degenerate and
doubly periodic weighted graph G = (V,E). Denote by E(G) the set of all even subgraphs
of G, that is, those subgraphs where the degree of each vertex is even. Further call E0(G)
the set of even subgraphs of the lattice winding an even number of times around each
direction of the torus and E1(G) = E(G) \ E0(G). Then the critical curve relating the
parameters J and q of the Hamiltonian is the solution of the equation

∑

γ∈E0(G)

∏

e∈γ
tanh Je =

∑

γ∈E1(G)

∏

e∈γ
tanh Je. (39)

The square lattice induced by the shaken dynamics on the triangular lattice, with Je = q
for the self–interaction edges and Je = J for the other edges, satisfies the hypotheses of
this theorem and can be obtained by periodically repeating the elementary cell of Figure 8.

A direct application of (39) yields the claim. �

6.4 Proof of Theorem 5.1

Let H(σ) be a Hamiltonian of the form given in (2) and let H(σ, τ) be its doubling.

The invariant measure πb of the alternate dynamics P alt defined on the bipartite graph Gb
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Figure 8: The elementary cell (a) for the shaken interaction on the triangular lattice and
the corresponding even subgraphs. Subgraphs (a) and (h) wind around the torus an even
number of times and are, therefore, in E0 whereas the remaining subgraphs are in E1.

with Hamiltonian H(σ, τ) is identified in Theorem 2.3:

πb(σ) :=
1

Z
e−H(σ).

At very low temperature, this measure concentrates on the set of configurations minimizing
the Hamiltonian H(σ, τ). If the following condition is satisfied

min
σ,τ

H(σ, τ) = min
σ
H(σ, σ) (40)

the parallel algorithm provided by the alternate dynamics may be used to find configura-
tions minimizing H(σ), since minσH(σ, σ) = minσH(σ)− q|V |.
Equation (40) can be verified by contradiction. Assume that there exists a pair configura-
tion (σ̄, τ̄) such that

min
σ,τ

H(σ, τ) = H(σ̄, τ̄)

and σ̄ 6= τ̄ at least in a vertex x ∈ V . If the parameter q satisfies condition (29), a spin
flip at vertex x leads to a lower value for the doubling Hamiltonian, contradicting the
hypothesis that the pair (σ̄, τ̄) is the minimizer of H(σ, τ). �

7 Conclusions and open problems

We briefly conclude our paper with some general comments and open problems.

With the shaken dynamics we have constructed a reversible parallel dynamics and we
control its invariant measure with arbitrary boundary conditions. The advantages of the
shaken dynamics can be summarized as follows:
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- The shaken prescription can be applied to general interaction graphs. This allows to
construct parallel algorithms to tackle a large class of optimization problems.

- The shaken prescription, modifying suitably the parameters appearing in the doubled
Hamiltonian, allows to compare the spin systems defined on different geometries. In
particular, when q → 0, the system tends to a geometry with a different dimension.

- The dynamics can be interpreted as a model for systems in which some kind of
interaction alternates its direction on short timescale. See below for an example
referring to the tidal dissipation.

An open problem concerns the estimate of the mixing time for the shaken dynamics. In
this regard, it is interesting to investigate the role of the parameter q when studying decay
of metastable states in the low temperature regime. This could lead to detailed estimates
of the mixing time and it will be the subject of further investigation.

As noted by an anonymous referee, the shaken dynamics could be extended in order to con-
sider spin systems with more general summable interactions, not necessarily limited to two
or one body terms. This could have important applications in combinatorial optimization
problems such as set covering problem.

The construction of the shaken dynamics and, in particular, of its generalization, is not
a unique prescription. This freedom in the definition of the oriented graph defining the
dynamics and in the choice of the parameters involved could be usefully exploited in ap-
plications to speed up the dynamics.

Finally we want to outline that the presence of an alternate interaction suggests that the
shaken dynamics, with B 6= ∅ and q large, could be a good model to take into account
the effects of Earth’s tides in geodynamics and other tidal dissipative phenomena in Solar
System. We assume that the inner structure of the Earth and of the satellites of the major
planets may be described in terms of constraints that can be randomly broken, with a
probability depending on the state of the nearest neighbors of each constraint. Tidal effects
could give a dependence of this breaking probability on an alternate direction, related to the
tidal state and to the related tidal currents. This geological and astronomical application
will be developed in forthcoming papers.
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