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Abstract: Parkinson’s Disease and Adductor-type Spasmodic Dysphonia are two neurological dis-
orders that greatly decrease the quality of life of millions of patients worldwide. Despite this great
diffusion, the related diagnoses are often performed empirically, while it could be relevant to count
on objective measurable biomarkers, among which researchers have been considering features related
to voice impairment that can be useful indicators but that can sometimes lead to confusion. Therefore,
here, our purpose was aimed at developing a robust Machine Learning approach for multi-class
classification based on 6373 voice features extracted from a convenient voice dataset made of the
sustained vowel/e/ and an ad hoc selected Italian sentence, performed by 111 healthy subjects,
51 Parkinson’s disease patients, and 60 dysphonic patients. Correlation, Information Gain, Gain
Ratio, and Genetic Algorithm-based methodologies were compared for feature selection, to build
subsets analyzed by means of Naïve Bayes, Random Forest, and Multi-Layer Perceptron classifiers,
trained with a 10-fold cross-validation. As a result, spectral, cepstral, prosodic, and voicing-related
features were assessed as the most relevant, the Genetic Algorithm performed as the most effective
feature selector, while the adopted classifiers performed similarly. In particular, a Genetic Algorithm
+ Naïve Bayes approach brought one of the highest accuracies in multi-class voice analysis, being
95.70% for a sustained vowel and 99.46% for a sentence.

Keywords: Parkinson; dysphonia; voice; features; machine learning; classifier; AI

1. Introduction

Voice analysis has being evolving as a promising approach within the automatic
assessment of a number of different pathologies due to non-invasiveness, ease of use,
and the anytime anywhere accessibility of voice recording systems [1]. In particular,
voice analysis can provide detection of some pathologies by measuring the deviation
of selected acoustic parameters, becoming clinical biomarkers, with respect to healthy
baselines [2], those pathologies including neurological diseases [3–5]. In particular, patients
with Parkinson’s Disease (PD) can manifest as a vocal tremor and speech difficulties in
the early stage of disease [6], and subjects suffering from Adductor Spasmodic Dysphonia
(ASD) can present with vocal cords spasming on the physiologic voice emission.

Objective diagnoses of these diseases are relevant to design appropriate treatment
strategies, despite the currently adopted empirical-based methodologies that can suffer
from subjectivity, being potentially biased by the knowhow of the examiner, and potentially
suffering from inter- and intra-rater reliability issues. Within this frame, one of the most
adopted rater scales for assessing the PD severity is the perceptual-based Unified Parkin-
son’s Disease Rating Scale [7], whilst for ASD the diagnosis relies on perceptual evaluation
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performed by ear by a voice analyst or phoniatrician. Even though the performances of
specialist analysts enhance inter-analyst agreement, analysts often dispute each other’s
findings when rating symptom severity and importance [8].

PD and ASD can cause changes in voice quality, usually qualified as inducing hoarse-
ness, strain, and reduced vocal control, as well as a rough and/or “wet” quality associated
to the vocal emission. These shared symptoms, along with a subjective and unpredictable
manifestation and severity of symptoms, make it difficult to differentiate between the
two conditions based solely on vocal characteristics. Accurate PD and ASD diagnoses
require expertise from healthcare professionals, such as neurologists and otolaryngologists.
However, considering that currently there is a lack of widely accepted objective measures or
biomarkers specific to one or the other disease, clinicians often act empirically, evaluating
multiple factors that include, but are not limited to, a detailed medical history, a physical
examination, and a perceptual analysis. With these challenges, a comprehensive evaluation
by medical professionals experienced in both movement disorders and voice disorders is
crucial for accurate diagnosis and monitoring of PD and ASD [9,10].

Conveniently, voice signals, which contain some of the most crucial information for
detecting and/or isolating PD or ASD can be analyzed automatically and non-invasively
by algorithmic means. Artificial Intelligence (AI) voice analysis relies on the extraction of
specific features from the vocal signals, and on the classification performed by means of
Machine Learning (ML) algorithms [5,11–13]. AI-enhanced voice analysis has been used
with promising degrees of success for the identification or even staging of various voice-
impairing pathological conditions, such as pulmonary diseases and COVID-19 [14,15],
tremors and Parkinsonism [16], and even psychological assessments such as emotion
recognition [17–19], and can be employed to perform a multi-class analysis for preliminarily
identifying a patient’s pathology.

This paper aims to explore AI methodologies for voice analysis based on acoustic
features, as clinically relevant biomarkers, for the identification of PD vs. ASD vs. healthy
conditions (gathered by control subjects). From validated PD and ASD vocal data we
extracted a large number of acoustic features to avoid biasing from specific subsets. This is
because, in general, voice analysis for PD detection often relies on some specific prosodic
features like the fundamental frequency (F0), jitter, shimmer, Ssignal-to-noise ratio, or
mel-frequency cepstral coefficients (MFCCs). However, such a subset of features alone
may lead to underestimation and, moreover, there is no consistency or proven performance
boost in using a certain subset with respect to another, as evidenced in a recent review [20].
As such, here, we extracted a large number of features employing a toolbox based on the
INTERSPEECH 2016 feature set [21], which contains a vast amount of low-level descriptors
(average, quartiles, delta coefficients, etc.) of the following domains: energy, spectral,
Cepstrum [22], RASTA (RelAtive SpecTrAl) [23], voicing probability [24], F0, prosody
(jitter, shimmer, Harmonic-to-Noise Ratio (HNR)), auditory loudness. This comprehensive
feature set was algorithmically reduced, comparing several state-of-the-art methodologies
of feature extraction. Then, three different classifiers were trained in order to look for the
best combination.

2. Materials and Methods
2.1. Dataset

Voice recordings were performed in a double-walled, sound-attenuated room at
the Policlinico Tor Vergata (PTV), an affiliate institution of the University of Tor Vergata
(Rome-Italy). A digital audio recorder (ZOOM H5) was connected to a headset dynamic
microphone (model WH20, by Shure Inc., Chicago, IL, USA) positioned 2–3 cm away from
the mouth of the speaker, in a quiet environment with no significant room echo (measurable
reverberation), no machinery noises, and/or any kind of static background, and there were
no other speakers. Voice signals were sampled at 44.1 kHz, 16 bit resolution.

PD participants were a group of 51 PD patients (38 men and 13 women with an average
age of 65 years), and a control group of 51 healthy subjects (HSs) (12 men and 39 women
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with an average age of 63.7). ASD participants included 60 patients affected by ASD (9 men
and 51 women with an average age 60.44 and 64.69 years, respectively), and a group of
60 age- and sex-matched HSs (15 men and 45 women with an average age of 60.73 and
57.76 years, respectively).

Each participant was asked to perform sustained emission of the vowel/e/ and to
read loudly one selected Italian sentence (“Nella casa in riva al mare Maria vide tre cani
bianchi e neri”). Vowel and sentence were repeated three times each, by applying a pitch
considered as “normal” for each participant, i.e., without effort. The Italian sentence was
chosen for its ability to activate the oral cavity while being uttered due to the presence and
alternation of plosive and fricative consonant sounds.

2.2. Features

For each recording, 6373 features were extracted using the OpenSMILE tool (by
Audeering®, Gilching, Germany, [25]) embedding the INTERSPEECH 2016 Computational
Paralinguistics Challenge (ComParE 2016) [25] audio feature set, which contains the vast
majority of relevant domains used in voice analysis, including time/energy, spectrum,
cepstrum [22], RASTA (RelAtive SpecTrAl) [23], prosody, and perceptual features. First,
a forward greedy step-wise filter with a correlation-based feature subset (CFS) evaluator
was applied [26]. It is a supervised method based on the maximum-relevance, minimum-
redundancy principle, computing a merit factor with correlation as a metric according to
the following formula:

MS =
k ∗ r f c√

k + k(k − 1) ∗ r f f

(1)

where k is the number of features in a subset S, r f c is the average correlation between
features and the class label, and r f f is the average correlation between pairs of features in
the subset.

After the CFS, a feature ranker was applied to further reduce the number of features,
employing and comparing the following methods:

• Correlation: the features were ranked according to the value of their cross-correlation
with the class.

• Information Gain (IG): measures the change in entropy, according to Shannon’s defini-
tion, that a given dataset endures when it is the result of a split performed according to
some criterion/threshold on each given feature. It is simply computed as a difference
between post (conditioned) and prior entropy values [27,28].

• Gain Ratio (GR): normalized version of the IG, in order to tackle its potential sensitivity
to the dataset cardinality, according to the following formula:

GainRatio(X) =
IG(X)

−∑n
i=1

N(ti)
Ntot

∗ log2
N(ti)
Ntot

(2)

where IG is the IG for the feature X that presents n different values, and N(t) is the
number of occurrences of the value t. The denominator is defined as “split informa-
tion”. Note that, for continuous features, IG and GR are computed by sorting all
the measured values and creating a corresponding number of splits, with each value
acting as a below/above threshold [29].

• Genetic Algorithm (GA): a GA classifier was used as a wrapper, used on one feature at
a time, to identify the best performing ones. A 10-fold cross-validation was employed
to reduce data selection bias [30].

We started with a large-scale feature extraction (6373 features) rather than using
preselected acoustic features to reduce selection bias and enable a thorough acoustical
exploration of the voices by means of a statistically sound algorithmic reduction. This
was in accordance with the principles behind the “Curse of Dimensionality”, as defined
by Taylor [31], which details how the number of features should ideally be comparable
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to (if not less than) the cardinality of the dataset to avoid overfitting phenomena and loss
of interpretability.

2.3. Classifiers

From the feature extraction and selection process, we obtained a total of four datasets
(one for each selection method) per vocal task. With two vocal tasks (vowel/e/ and
sentence), we have a grand total of eight datasets, used to train three classifiers:

• Naïve Bayes (NB).
• Random Forest (RF), with 100 iterations/bags created by sampling with repetition up

to a dimension as big as the original set (100% bags).
• Multi-layer Perceptron (MLP), i.e., a fully connected artificial Neural Network with a

number of hidden layers equal to the number of features + number of classes divided
by two, trained with a learning rate of 0.3 and a momentum of 0.2.

With four selection methods (Correlation, IG, GR, and GA) and three classifiers (NB,
RF, and MLP), there are twelve ML models for each vocal task, so 24 in total. We consid-
ered as the maximum test accuracy the “saturation value”, that is, a value that does not
meaningfully increase on increasing the number of features. For the wrapper method, the
maximum accuracy result was guaranteed since it was the evaluator of the GA. Ten-fold
cross-validation was used in all ML models: this leads to a data split of 90–10, chosen due
to the dataset being limited in dimensions. Using 90% of the data allows us to retain a
consistent (big enough) training set. On the other hand, although the test set consists of
a small number of subjects, the ten cross-validation folds cover the whole dataset, thus
training ten slightly different versions of each classifier, whose results on the test sets
are averaged.

Receiving Operating Characteristic (ROC) curves are also produced, to assess the per-
formance of the model over all its operating range for a given label or class. The Area Under
ROC (AUROC) curve analysis of each class in every ML model developed is computed
and used as a metric to assess the vocal test, classifiers, and feature selection methods.

2.4. Statistics

Statistical evaluation of experimental results is an essential part of the validation of new
ML models. This is to infer if the new ML algorithm, feature selection, or vocal test, can
provide a statistically significant improved performance with respect to others. Due to the
nature of ML algorithms and datasets, we adopted non-parametric statistical methods [32,33].

In order to compare the ML algorithms, vocal tests, and feature selection meth-
ods against each other, we adopted the approaches of Iman and Davenport, Nemenyi,
and Wilcoxon [32,34–36].

For comparing multiple classifiers, vocal tests, and feature selection methods, the
Iman and Davenport test was used, based on Friedman’s approach that is a non-parametric
equivalent of ANOVA. It ranks by performance and tests the significance of multiple results.
The hypothesis to test is that classifiers, vocal tests, or feature selection methods perform
unequally. The null hypothesis that we are trying to reject is that these methods are equally
performing. The Friedman’s statistic is defined as follows:

χ2
F =

12 ∗ N
k ∗ (k + 1)

∗
[
∑

j
R2

j −
k ∗ (k + 1)2

4

]
(3)

distributed according to χ2
F, with k − 1 degrees of freedom, ri

j being the rank of the j-th k
algorithm on the i-th N dataset [32].

Iman and Davenport improved the conservatism of Friedman’s statistic and developed
a better one, defined as:

FF =
(N − 1) ∗ χ2

F
N ∗ (N − 1)− χ2

F
(4)
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which is distributed according to the F-distribution with k – 1 and (k – 1)(N – 1) degrees
of freedom [32,35].

For dual testing, the Wilcoxon Signed Rank Test, the Paired t-test, and Nemenyi’s Test
were used. Nemenyi’s Test was the post hoc test following the Iman and Davenport test if
the null hypothesis is rejected on comparing classifiers against each other. Nemenyi’s test
is defined as a critical difference as follows:

CD = qalpha ∗
√

k(k + 1)
6N

(5)

where alpha is the confidence level, k is the number of models, and N is the number
of measurements. The obtained values of q (that change according to alpha) and k and
are reported in Table 1. When the performances of the two classifiers, two vocal tests,
or two feature selection methods under Friedman’s statistic is larger than this CD, the
performances are significantly different and unequal.

Table 1. Nemenyi’s q-values with alpha = 0.05 and 0.10 according to the number of classifiers (k)
considered in the statistical test.

Number of Classifiers 2 3 4 5 6 7 8 9 10

q0.05 1.96 2.343 2.569 2.728 2.85 2.949 3.031 3.102 3.164
q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.78 2.855 2.92

3. Results

The number of features needed to reach the maximum possible accuracies varied
with respect to the vocal test, feature selection methods, and classifiers (Figure 1). The
feature selection method that was a combination of the Correlation sentence MLP had the
least number of features (52), whereas the Correlation Vowel/e/NB combination had the
most (99).
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Figure 2 illustrates how the best accuracy was obtained using filter feature selection
methods (Correlation, IG, GR). It demonstrates how the 10-fold cross-validation accuracy
stopped increasing eventually while the number of selected features increased.
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Figure 2. Example of accuracy saturation while the number of features for non-wrapper selectors
increases. Graphs show the number of features versus classification accuracy for each multi-class
(PD vs. ASD vs. HS) classification (a) RF classifier with IG selector, vowel/e/; (b) NB classifier with
Correlation selector, vowel/e/; (c) MLP classifier with GR selector, vowel/e/; (d) MLP classifier with
GR selector, sentence.

In the case of vocal test vowel/e/, the best results were found when classifying by
NB and feature selecting by GA. The 10-fold cross-validation accuracy reached 95.70%.
Furthermore, when doing AUROC analysis for this ML model, it is evident that the PD
class had the highest AUROC (0.997), followed by HSs (0.994), and ASD (0.992). The lowest
results were found when classifying by RF and feature selecting by GR. The 10-fold cross-
validation accuracy reached was 87.10%. In addition, the HSs had the highest AUROC
(0.975), followed by PD (0.974), and ASD (0.961).

Figure 3 shows an example of an obtained ROC curve.
The results from the MLP classifier were relatively lower than NB and better than RF.

Selecting features with GA, the MLP 10-fold cross-validation accuracy reached 93.01%. In
addition, the HSs had the highest AUROC (0.991), followed by PD (0.977), and ASD (0.937).

In the case of vocal test sentence, the best results were found when classifying by NB
and feature selecting by GA. The ML model reached a 99.46% 10-fold cross-validation
accuracy. In addition, by analyzing the ML model’s ROC curves, it is evident that the PD
class had the highest AUROC (1.00), followed by HSs (0.997), and ASD (0.997). The lowest
results were found when classifying by RF and feature selecting by Correlation. The 10-fold
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cross-validation accuracy reached was 87.63%. In addition, PD had the highest AUROC
(0.991), followed by ASD (0.982), and HSs (0.973) (Figure 3). The results from the MLP
classifier were relatively lower than NB and better than RF. Selecting features with GA,
the MLP 10-fold cross-validation accuracy reached 98.39%. In addition, the PD had the
highest AUROC (1.00), followed by HSs (0.981), and ASD (0.986). A further investigation
into a selection of the top performing features, which allowed us to obtain the highest
accuracy, obtained from the GA selection applied to the NB classifier on the sentence task,
is presented in Table 2.
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Table 2. Top performing acoustic features, selected by the GA wrapper towards the NB classifier for
the sentence vocal task. The names are according to the Compare 2016 nomenclature.

Features Group of
LLDS LLD Functionals Group

mfcc_sma_de[3]_upleveltime25 Cepstral MFCC Up-Level Time 25% Temporal

mfcc_sma_de[14]_meanFallingSlope Cepstral MFCC Mean of
Falling Slopes Peaks

audSpec_Rfilt_sma_de[14]_quartile3 Prosodic RASTA-style filtered
auditory spectrum Quartile 3 Percentiles

audSpec_Rfilt_sma_de[3]_quartile3 Prosodic RASTA-style filtered
auditory spectrum Quartile 3 Percentiles

pcm_RMSenergy_sma_de_kurtosis Prosodic RMS Energy Kurtosis Moments
voicingFinalUnclipped_sma_de_centroid Voice Quality Voicing Centroid Temporal

pcm_fftMag_spectralSlope_sma_de_kurtosis Spectral Spectral Slope Kurtosis Moments
logHNR_sma_skewness Voice Quality HNR Skewness Moments

pcm_RMSenergy_sma_de_upleveltime25 Prosodic RMS Energy Up-Level Time 25% Temporal

audSpec_Rfilt_sma[4]_lpc4 Prosodic ZCR Linear Prediction
Coefficient 3 Modulation

pcm_zcr_sma_lpc3 Prosodic ZCR Linear Prediction
Coefficient 4 Modulation

audSpec_Rfilt_sma[12]_segLenStddev Prosodic RASTA-style filtered
auditory spectrum Standard Deviation Moments

pcm_fftMag_spectralEntropy_sma_peakRangeAbs Spectral Spectral Entropy Amplitude Range
of Peaks Peaks

A summary of pathological speech (PD and ASD) detection results for all classifiers
and selectors can be found in Table 3.



Appl. Sci. 2023, 13, 8562 8 of 16

Table 3. Performance metrics for each classifier (NB, RF, MLP) and each feature selection method.
The highest value (lowest for FP—False Positive) for each classifier, with respect to feature selectors,
is stressed in bold. Abbreviations: NB = Naïve Bayes; RF = Random Forest; MLP = Multi-layer Per-
ceptron; Corr. = Correlation feature selection; IG = Information Gain; GR = Gain Ration; GA = Genetic
Algorithm; TP = True Positive; FP = False Positive; MCC = Matthew’s Coefficient; ROC = Receiver-
Operating Curve; PRC = Precision-Recall Curve.

Task Classifier Feature
Selection ACC TP

Rate FP Rate Precision Recall F-
Measure MCC ROC

Area
PRC
Area

Vowel/e/

NB

Corr. 91.94% 0.919 0.042 0.92 0.919 0.919 0.88 0.986 0.976

IG 92.47% 0.925 0.038 0.925 0.925 0.924 0.887 0.984 0.974

GR 93.55% 0.935 0.035 0.936 0.935 0.935 0.902 0.985 0.975

GA 95.70% 0.957 0.022 0.957 0.957 0.957 0.935 0.994 0.99

RF

Corr. 87.10% 0.871 0.067 0.872 0.871 0.87 0.806 0.97 0.953

IG 88.17% 0.882 0.061 0.882 0.882 0.881 0.821 0.974 0.959

GR 87.10% 0.871 0.068 0.871 0.871 0.87 0.806 0.97 0.95

GA 93.55% 0.935 0.033 0.936 0.935 0.935 0.903 0.983 0.972

MLP

Corr. 90.32% 0.903 0.05 0.903 0.903 0.902 0.856 0.965 0.944

IG 89.25% 0.892 0.055 0.892 0.892 0.891 0.84 0.966 0.936

GR 88.71% 0.887 0.059 0.887 0.887 0.886 0.831 0.961 0.935

GA 93.01% 0.93 0.036 0.931 0.93 0.93 0.896 0.969 0.949

Sentence

NB

Corr. 93.01% 0.93 0.037 0.93 0.93 0.93 0.894 0.992 0.986

IG 91.94% 0.919 0.042 0.919 0.919 0.919 0.877 0.985 0.966

GR 93.01% 0.93 0.037 0.93 0.93 0.93 0.893 0.989 0.98

GA 99.46% 0.995 0.003 0.995 0.995 0.995 0.992 0.998 0.996

RF

Corr. 87.63% 0.876 0.069 0.88 0.876 0.876 0.813 0.981 0.966

IG 89.78% 0.898 0.056 0.899 0.898 0.898 0.845 0.982 0.969

GR 90.86% 0.909 0.048 0.909 0.909 0.909 0.861 0.982 0.968

GA 96.77% 0.968 0.018 0.969 0.968 0.968 0.951 0.991 0.984

MLP

Corr. 93.01% 0.93 0.037 0.932 0.93 0.93 0.895 0.982 0.969

IG 91.40% 0.914 0.046 0.915 0.914 0.914 0.869 0.98 0.967

GR 91.94% 0.919 0.042 0.92 0.919 0.919 0.878 0.982 0.97

GA 98.39% 0.984 0.009 0.984 0.984 0.984 0.975 0.988 0.978

Figure 4 illustrates the respective acoustic groups of the selected features across all
methods, vocal tests, and classifiers. The groups were spectral, cepstral, prosodic (energy
related), and voice quality [37,38]. Spectral and prosodic groups were dominant across all
feature selection methods whereas cepstral and voice quality groups varied in availability
from one method to another. A further insight was made into the selection of top performing
features by creating a radar chart, displayed in Figure 5. This chart was created using mean
values of the PD and ASD features and normalized to its respective healthy ones. The chart
shows an acoustic signature for both PD and ASD against the healthy voices.
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Table 4 reports the results of the statistical analyses performed on the obtained results
which point out the statistical significance of the differences within classifiers and feature
selectors. In the case of ML algorithms, the Iman and Davenport test was applied and the
performance of classifiers was found to be statistically significant and not equivalent, with
a p-value less than 0.0001. Comparing the classifiers against each other using Nemenyi’s
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Test, the NB’s performance was found to be statistically significantly better than RF with
a p-value less than 0.05. In addition, the NB’s performance was tested using Wilcoxon’s
test against MLP and was found to be statistically significantly better, with a p-value of
0.01. Finally, MLP was tested against RF using Wilcoxon’s and was found to be statistically
significantly better with a p-value between 0.01 and 0.025. In the case of vocal tests, the
Iman and Davenport test was used and the performance of both vocal tests was found to
be statistically significant and not equivalent, with a p-value of 0.01. In addition, the perfor-
mance of the sentence was better than vowel/e/. In the case of feature selection methods,
the Iman and Davenport test was applied and the performance of these methods was found
to be statistically significant and not equivalent, with a p-value of 0.04. Comparing the
feature selection methods head to head, the GA’s performance was found to be better than
that of IG using Nemenyi’s Test, with a p-value less than 0.05. Moreover, the performance
of the GA was better than GR and Correlation using Wilcoxon’s test, with a p-value of
0.05. However, when comparing, the performance of IG with GR, and Correlation with GR
and IG, they were found to be statistically insignificant with p-values larger than 0.2. This
suggests that their performance was similar.

Table 4. Results of all statistical inferences. Abbreviations: NB = Naïve Bayes, MLP = Multi-layer
Perceptrion, RF = Random Forest.

Comparison p-Value Test Null Hypothesis Results

NB, MLP, RF <0.0001 Iman and Davenport The performances of all
classifiers are equal

Performances are
unequal

NB-RF <0.05 Nemenyi NB and RF are equal
in performance NB > RF

NB-MLP 0.01 Wilcoxon NB and MLP are equal
in performance NB > MLP

RF-MLP 0.01–0.025 Wilcoxon RF and MLP are equal
in performance MLP > RF

Sentence, vowel/e/ 0.01 Iman and Davenport Sentence and vowel/e/ have
equal performances Sentence performs better

Corr., IG, GR, GA 0.04 Iman and
Davenport test

All feature selection methods are
equal in performance

The performance of all
feature selection methods

is unequal

GA-IG <0.05 Nemenyi test GA and IG are equal
in performance GA > IG

GA-GR 0.05 Wilcoxon test GA and GR are equal
in performance GA > GR

GA-Corr. 0.05 Wilcoxon test GA and Correlation are equal
in performance GA > Correlation

IG-GR >0.20 Wilcoxon test IG and GR are equal
in performance

IG and GR are similar
in performance

Corr.-GR >0.20 Wilcoxon test Correlation and GR are equal
in performance

Correlation and GR are
similar in performance

Corr.-IG >0.20 Wilcoxon test Correlation and IG are equal
in performance

Correlation and IG are
similar in performance

4. Discussion
4.1. Literature Review

Voice features have been interesting subjects for researchers developing ML algorithms
capable of classifying voice-related pathologies.

Within this frame, different databases were specifically adopted. As an example,
Mykyska et al. [39] used The Massachusetts Eye and Ear Infirmary (MEEI) database that con-
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sists of 53 healthy and 657 pathological speakers with different pathologies (e.g., ASD, con-
version dysphonia, erythema, and hyperfunction), with the speaker uttering the vowel/a/.
A second database was used, termed Príncipe de Asturias (PdA), which consists of
239 healthy and 200 pathological speakers with different pathologies (e.g., nodules, polyps,
oedemas, and carcinomas), every speaker uttering the sustained vowel/a/. A third
database was the so-called Czech Parkinsonian Speech Database (PARCZ), which con-
sists of 52 healthy speakers and 57 PD patients who suffer from hypokinetic dysarthria, all
speakers uttering the vowel/a/.

Feature extractions were done on assumed features for phonation, tongue movement,
speech quality, segmental features, spectrum, wavelet decomposition, empirical mode
decomposition, non-linear dynamics, and high level. A non-parametric Mann–Whitney U
test was used for feature selection. Support Vector Machine (SVM) and RF classifiers were
used for binary classification (pathological versus healthy). The accuracy of their results
were 100% (MEEI), 82.1% ± 3.3% PdA, and 67.9% ± 6% (PARCZ), respectively.

Barche et al. [40] used the Saarbruecken Voice Database with 2000+ voice recordings
sampled at 50 kHz, out of which 687 are collected from HSs (428 females and 259 males)
and 1356 are collected from subjects (629 males and 727 females) with voice disorders.
This database contains 71 different voice disorders. Each recording session consists of a
German sentence and vowels of/a/,/i/, and/u. Only vowel vocal tests were used by the
researchers who chose only six diseases from the dataset (spasmodic dysphonia, recurrent
laryngeal nerve palsy, functional dysphonia, and psychogenic dysphonia, laryngitis, and
leukoplakia). For feature extraction, they used the Interspeech Computational Paralin-
guistics Challenge features set (ComParE 2013), Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS), MFCCs, Perceptual Linear Prediction (PLP), Glottal, Intonation, MFCC-
Residual, and MFCC-ZFF (zero frequency filtering). A SVM classifier is used with five-fold
cross-validation and binary classification. The best reported accuracy was 85.2%.

Verde et al. [41] used the Saarbruecken Voice Database. They chose all diseases and
vowel/a/from the vocal tests. The features extracted were F0, jitter, shimmer, HNR, and
MFCC. Feature selection was performed using correlation and IG. For classification they
used SVM, Decision Tree (DT), Bayesian Classification (BC), Logistic Model Tree (LMT),
and Instance-based Learning Algorithms (IBLA). The best reported result was an accuracy
of 85.77% with the SVM binary (pathological versus healthy) classifier.

Alves et al. [42] used data from de novo patients recorded at the “Hospital das Clinicas”
of the Medical School of Sao Paulo University. The database comprised 65 recordings for
vowel/a/and have four groups: control (12 male and 8 female), Reinke’s edema (2 males
and 14 females), vocal nodules (2 males and 13 females), and neurologic diseases (7 males
and 7 females). They used MFCC for feature extraction. For feature selection, they relied on
statistics of the time series (voice segment) to search for a subset with greater discriminating
power. SVM and K-Nearest Neighbors (KNN) were used for classification and cross-
validation was applied. Their highest reported accuracy was 100% in all binary classifiers
that paired the control group with one of the pathologies. In addition, classification
accuracies of 99.08%, 98.86%, and 88.72% were obtained for the pairs Nodule/Neurological,
Edema/Neurological, and Edema/Nodule, respectively. Al-Dhief et al. [43] used the
Saarbruecken Voice Database and selected vowel/a/ recordings. For feature extraction the
calculated MFCC. Classification was done using the Online Sequential Extreme Learning
Machine (OSELM) algorithm. The best reported accuracy was 85%.

Gupta [44] used the Far Eastern Memorial Hospital (FEMH) voice disorder detection
challenge database which includes 50 normal voice samples and 150 samples of common
voice disorders, including vocal nodules, polyps, and cysts (“phonotrauma”), glottis neo-
plasm, and unilateral vocal paralysis. The voice samples are recordings for the speakers
saying the vowel/a/. Feature extraction was done using MFCC. For classification, the
author used the Long Short-Term Memory (LSTM) Recurrent Neural Network. The best
reported result was 22% sensitivity, 97.1% specificity, and 56% unweighted average recall
(UAR) [45]. Pham et al. used the FEMH database. Feature extraction was done using
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MFCC. The ML classifiers used are SVM, RF, KNN, Gradient Boosting (GB), and Ensemble
Learning (EL). The authors applied multi-class classification and the best reported accuracy
was 68.48%.

Forero et al. [46] used a database from a speech therapist comprising two groups of
patients, for a total of 12 speakers with vocal fold nodules, 8 speakers with vocal fold
paralysis, and 11 speakers with normal voices. The vocal task was the sustained vowel/a/.
They used inverse filtering to obtain the glottal signal and then extracted the following
features: F0, jitter, shimmer, closing phase, opening phase, normalized amplitude quotient,
amplitude quotient, closed quotient, open quotient, quasi-open quotient, speed quotient
difference between harmonics H1 and H2, and harmonics richness factor. The classifiers
used are artificial Neural Networks (ANN), SVM, and the Hidden Markov Model (HMM).
The best reported result was 97.2% with multi-class classification [47]. Fang et al. used the
FEMH database. MFCCs were the features extracted. Classifiers used were ANN, SVM,
and GMM. The best reported accuracy was 99.32% in binary classification using ANN on
the MEEI database. Table 5 reports a synoptic overview of the literature review of voice
analysis for multi-pathology detection of dysphonic/neurodegenerative conditions.

A thorough review by Amato et al. [20] details more information regarding existing
public datasets, feature toolboxes, trends in processing solutions, algorithms, and state of
the art, concluding that voice analysis is still hindered by the problem of small and/or
unclean datasets, and that acoustic features are often standardized into selective subsets
that may contain only partial information, thus not allowing an extensive analysis.

Extensive research is done on the detection of PD [4,48–50] or ASD [5,13,51–53] from
voices. Here, we expand our previous research developing a novel multi-class ML approach
to distinguish de novo recordings of PD, ASD, and healthy control subjects using three
different classifiers that inherently handle multi-class classification. This was obtained by
using vigorous testing accuracy optimization, and cross- and statistical validations.

Table 5. Literature review. For more information about each study or dataset, please see the
corresponding reference.

Study Database Pathology Vocal Tasks Feature Domains Feature
Selection Classifier Accuracy

Mekyska et al. [39] MEEI, PdA,
PARCZ

PD, ASD, conversion
dysphonia, erythema,

nodules, polyps,
oedemas, carcinomas

/a/

Phonation, tongue
movement, speech
quality, spectrum,

wavelet, EMD,
non-linear dynamics

Mann–
Whitney U

test
SVM, RF 100%

Barche et al. [40] SVD

Dysphonia (various),
laryngeal nerve
palsy, Laryngitis
and Leukoplakia

/a/, /i/, /u/
eGeMAPS, MFCC,

PLP, Glottal,
Intonation, MFFC

N/A SVM 85.20%

Verde et al. [41]. SVD 71 Pathologies /a/ F0, Jitter, Shimmer,
HNR, MFCC Corr., IG SVM, DT, BC,

LMT, IBLA 85.77%

Alves et al. [42] “Hospital das
Clinicas”

Reinke’s Edema,
vocal nodules,

neurologic diseases
/a/ MFCC Statistics SVM, KNN 100%

Al-Dhief et al. [43] SVD 71 Pathologies /a/ MFCC N/A OSELM 85%

Gupta [45] FEMH
Vocal nodules, poylps,
cysts, glottis neoplasm,

unilateral vocal paralysis
/a/ MFCC N/A LSTM 56% UAR

Pham et al. [44] FEMH
Vocal nodules, polyps,
cysts, glottis neoplasm,

unilateral vocal paralysis
/a/ MFCC N/A SVM, RF,

KNN, GB, EL 68.48%

Forero et al. [47] Speech therapist Nodules and
vocal paralysis /a/ F0, jitter, shimmer N/A ANN, SVM,

HMM 97.20%

Hemmerling
et al. [49] SVD 71 Pathologies /a/, /i/, /u/ Various (28) + PCA N/A RF,

Clustering 100%

Fang et al. [46] FEMH
Vocal nodules, polyps,
cysts, glottis neoplasm,

unilateral vocal paralysis
/a/ MFCC N/A

ANN,
SVMM,
GMM

99.32%

Ours Custom (Tor
Vergata) PD, ASD /e/+ sentence Compare 2016 (6373) Corr., IG,

GR, GA NB, RF, MLP 99.46%
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4.2. Comments

In this study, we objectively detected PD, ASD, and HSs by means of advanced
voice analysis based on ML, from our “de novo” dataset. Although we performed multi-
class classification, we were able to achieve accuracies among the highest reported in the
literature in the field of multiple pathologies using binary or multi-class classification, with
NB providing the highest accuracy, and GA feature selection providing the best performing
features. Feature selection played an instrumental role in achieving higher accuracies. It
was also noteworthy to examine the acoustic groups that the selected features belong to,
which points out how spectral, cepstral, prosodic, and voicing-related acoustic features are
especially relevant for the detection and distinction of PD and ASD.

As evidenced by the aforementioned literature review and by Amato et al. [20], re-
search works on voice classification differ in pathologies, languages, datasets, vocal tests,
feature extraction and selection, accuracy, model validation, and statistical validation.
Most importantly, they differ on whether the classification is binary or multi-class. Binary
approaches will only classify whether the voice is pathological or healthy, making the
ML model the least generalized and non-specific to any disease [39–43,45,46,49]. On the
other hand, a multi-class approach is able to classify the nature and/or the severity of
the pathology in the voice and, although requiring more data, it enables a more thorough
analysis of voice impairment and its causes and evolutions.

Regarding the types of voice pathologies, some researchers used databases including a
large number of pathologies [41,43,49]. This made the classification challenging, especially
when the data are skewed towards certain pathologies, making generalization harder. We
limited ourselves to two voice pathologies using a balance of data between ASD and PD
to reduce bias and improve generalization. This is evident in the high true negative in
our ML models. Furthermore, most researchers are re-using similar data, which limits the
discovery of new patterns in the selected neurological diseases [39–41,43–47,49], whereas
in our method we used de novo balanced data. Moreover, researchers used limited pre-
selected features to extract, which narrows the investigation into the data and reduces data
insights [41–47,49]. Whereas in our method we started from the complete 6373 feature set
and then performed feature selection to find the most relevant and top performing features.
In addition, some researchers did not validate their results [39,43–45], whereas we applied
10-fold cross validation to all of our models. Other researchers did not statistically validate
the significance of their results [39–47,49] whereas we preferred adopting statistical tests to
find significance across the vocal test, classifiers, and feature selection methods.

5. Conclusions

Several neurologic diseases are characterized by speech impairment that consistently
worsens the quality of life of patients. The use of advanced voice analysis based on ML
techniques in order to detect patients with PD and ASD would represent an advance in
the field. In this study, we objectively detected and distinguished HSs from patients with
PD and ASD by using multi-class classification based on a robust statistically validated
approach. We focused on de novo balanced data, which were analyzed through feature
extraction and selection processes. By applying this robust method, we reached a high
ranking of 99.46% with a 10-fold cross-validation accuracy, using the NB classifier, GA
feature selection, and sentence vocal test. Moreover, we explored the acoustic groups of
the high performing data and observed the dominance of spectral and prosodic features.
Exploring the top performing features further, we discovered an acoustic signature for
PD and ASD compared to healthy voices. We consider our method to offer the advantage
of ease access and thus it would help clinicians in improving clinical diagnosis also by
expanding accessibility to a worldwide scale. Further research could be implemented
by adding balanced data of additional voice disorders to further generalize the AI tool
across multiple “dysphonia”. Moreover, additional thorough statistical means exist for
assessing the significance of the obtained results: the usage of the DeLong test for AUROC
is especially relevant and will be considered for future works. Our research was performed
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using a vocal task based on connected speech and it was limited to Italian-speaking people.
However, the vowel/e/ vocal test can be collated in the future with other similar research.
Correlation with GR and IG was found to be statistically insignificant with p-value larger
than 0.2, meaning they had a similar performance.
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