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ABSTRACT: Theoretical modeling of plasmonic phenomena is of
fundamental importance for rationalizing experimental measure-
ments. Despite the great success of classical continuum modeling,
recent technological advances allowing for the fabrication of
structures defined at the atomic level require to be modeled
through atomistic approaches. From a computational point of view,
the latter approaches are generally associated with high computa-
tional costs, which have substantially hampered their extensive use.
In this work, we report on a computationally fast formulation of a
classical, fully atomistic approach, able to accurately describe both
metal nanoparticles and graphene-like nanostructures composed of
roughly 1 million atoms and characterized by structural defects.

1. INTRODUCTION
Nanoplasmonics is an emerging field that has significantly
developed in the last decade.1,2 Free-electron nanomaterials,
such as metal nanoaggregates or graphene, are characterized by
the rise of surface plasmons, i.e., coherent oscillations of the
conduction electrons that are induced by external radiation.3

One of the peculiarities of such materials is that their plasmon
resonance frequency (PRF) can be tuned as a function of
nanostructure’s shape, size, and supramolecular structure.4−7

In the particular case of graphene, PRF can also be tuned
through electrical gating and chemical doping, which modify
the Fermi energy level; such a peculiarity is exploited in many
diverse applications, as well as in the technological field.8

As a matter of fact, small-size graphene-based nanostructures
(with a typical dimension lower than 5 nm) do not
experimentally exhibit the same plasmonic properties as large
structures;9 therefore, only the latter are actually exploited in
real applications. Moreover, the typical size of metal nano-
particles exploited in many applications (as, for instance,
surface-enhanced Raman scatteringSERS) is of several tens
of nanometers.10 The necessity of treating large structures
strongly limits the applicability of full quantum mechanical
(QM) descriptions, which are totally impracticable for real-size
systems. For this reason, plasmonic structures are generally
simulated by resorting to classical approaches,11−20 and in
particular through continuum models that describe plasmonic
materials as a function of their frequency-dependent complex
permittivity function.21−27

Continuum models have played a fundamental role in the
study of nanostructured plasmonic systems, thanks to the
excellent compromise between accuracy and low computa-
tional cost.11−17,28,29 However, recent technological advances

in the manufacturing of nanostructured materials have exposed
their limitations. In fact, it is nowadays possible to achieve fine
structural control, down to the atomic limit, and in such cases,
the strong approximation on which continuum approaches are
based is not justified.10 Therefore, alternative approaches are
required, and a promising solution is to resort to fully
atomistic, yet classical, models, which combine a fine structural
resolution of the nanostructure at the atomic level, with a
reasonable computational cost.11−20

In addition, atomistic modeling permits the treatment of
structural defects, doping, and in general of local structural
anisotropies, which cannot be described by a continuum
approach and which can tune the plasmonic properties of the
whole structure. Geometrical strain and subnanometer
junctions, for instance, occurring in tip-enhanced Raman
scattering (TERS), are two examples of geometrical aniso-
tropies that need atomistic approaches to be reliably modeled.
However, the greater level of detail obtained by atomistic
models is usually accompanied by higher computational costs,
which have hampered so far their massive use in the modeling
of plasmonic phenomena, that are mainly due to the fact that
computationally tractable structures are much smaller in size
than those experimentally studied.
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As stated above, to enhance the applicability of atomistic
modeling toward realistic nanoplasmonic materials, it is crucial
to increase the size of treatable structures up to those that are
routinely experimentally investigated, which are usually
composed of few million atoms. To address such a problem,
in this paper, we propose for the first time a holistic fully
atomistic, yet classical, ω-fluctuating charges (ωFQ) ap-
proach,28−30 which is remarkably able to treat at the same
time and with the same level of accuracy three-dimensional
(3D) plasmonic systems (metal nanostructures) and two-
dimensional (2D) materials.
The novel approach is formulated analogously with the most

widely used approaches based on implicit descriptions (e.g.,
boundary element method (BEM)25,31), thus proposing for the
first time a fully atomistic treatment of the same physical
features (including the potential extension to interband
transitions). In addition, we demonstrate for the first time
the uniqueness and existence of the solution to the ωFQ
problem, which is a fundamental prerequisite for any
consistent physical model. In fact, it allows to exploit state-
of-the-art numerical methods to solve the ωFQ problem, with
a significant reduction in the computational timings and also in
memory requirements. Last, but not least, the present
reformulation and the consequent implementation allow the
first fully atomistic, yet classical, calculations of the plasmonic
properties of structures composed of ∼1 million atoms, also
bearing structural defects, which significantly affect their
plasmonic response.
In ωFQ, each atom of the nanosubstrate is endowed with a

charge, the value of which depends on the external frequency
ω and is determined by solving a complex-valued linear
system.28−30 The charge exchange between atoms is governed
by the Drude mechanism and is limited to nearest neighbors
by applying a Fermi-like damping function, which recovers the
typical behavior of quantum tunneling, that is crucial to
reproduce the charge flow in subnanometer junctions. In
previous works, we demonstrated that ωFQ is able to almost
perfectly reproduce reference ab initio, continuum, and
experimental data for metal nanoparticles28,30 and graphene-
based nanostructures.29

The manuscript is organized as follows. In the next section,
we briefly recap the fundamentals of ωFQ and present a novel
approach that treats the plasmonic properties of metal
nanoparticles and graphene-based nanostructures within a
unified framework. We then apply the new algorithms to
selected 2D and 3D nanostructures of sizes up to hundreds of
nanometers and constituted by roughly one million atoms. A
brief summary and an overview of future developments end the
manuscript.

2. METHODS

2.1. ωFQ: A Unified Approach for 2D and 3D
Plasmonic Nanostructures. ωFQ is a fully atomistic,
classical model that describes the response of metal nano-
particles or graphene-based nanostructures to the external
electric field E.28 Each atom of the system is endowed with a
charge, and charge exchange between different atoms is
governed by the Drude mechanism of conduction32 and
modulated by quantum tunneling.28 The key equation for
solving the charges q reads

∑ ∑ ∑ω− + = −
= =

≠
=
≠

i

k
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where Vi
ext is the electric potential acting on the ith charge

associated with the external electric field oscillating at
frequency ω, Dij is the charge−charge interaction kernel, and
Kij
tot is a matrix accounting for both Drude and tunneling

mechanisms.
More in detail, the linear system in eq 1 describes the

response of a set of N complex-valued charges qj under the
effect of an external monochromatic uniform electric field of
frequency ω polarized along the k̂ direction, with k̂ = x ̂, y ̂, z.̂
The associated potential Vext on each atom, entering the right-
hand side of eq 1, is defined as

= = − =V V E k i Nr( ) , 1 ,...,i i
k

i
ext ext

0 (2)

where E0
k is the intensity of the electric field along the k

direction, ri is the position of the ith charge, and ki is the
component of ri along the k̂-axis, i.e., ki = ri ·k̂. The matrix D
on the left-hand side of eq 1 describes the electrostatic
interaction between the charges, and it is defined in the
standard formulation of the FQ force field exploited for
treating molecular systems.33,34 To avoid the so-called
“polarization catastrophe”,11 instead of point charge, we use
spherical Gaussian charge distributions of widths di and dj to
describe ωFQ charges. The D elements then read28,35−37
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where rij = |ri − rj| is the distance between charges ith and jth,
erf is the error function, and ηi is the atomic chemical hardness
of the ith atom.35,38 Gaussian widths di and dj are chosen for
each atom by imposing that the limit for ri → rj corresponds to
the diagonal element of the matrix, i.e.,
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The D matrix can be formally seen as an overlap matrix defined
in the scalar product weighted by the

r
1 function. Therefore, it

is symmetric positive definite (SPD).35 The Ktot matrix in eq 1
reads

ω

τ ω
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(5)

where n0 is the electron density, τ is a frictionlike constant due
to scattering events, and ij is an effective area dividing atoms
i and j. f is a Fermi-like damping function, defined as
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in which rij
0 is the equilibrium distance between atoms i and j,

while d and s are parameters ruling the shape of the damping
function. Ktot is a frequency-dependent symmetric complex-
valued matrix, and it can be interpreted as a “dynamic”
response matrix, whereas the D matrix describes the “static”
response. It is worth noticing the expression of Ktot can be
associated with two alternative response regimes. When f(rij)
goes to zero, the purely Drude conductive regime is recovered;
as rij increases, the electron transfer decreases exponentially,
thus leading to the typical tunneling mechanism.28 The
diagonal elements of Ktot do not enter eq 1, but the notation
can be simplified by imposing Kii

tot = 0 for all i = 1,...,N and
extending the summations over k and j in eq 1 to all N atoms
of the system.
The electron density n0, that appears in eq 5, is a specific

property of the chemical composition of the plasmonic
substrate and of the shape of the system. In a general 3D

system, n0 can be expressed as = σ τ
*n

m0
/0 , where σ0 is the static

conductance of the material, while m* is its effective electron
mass, which can be approximated to 1 for metal nano-
particles.39 However, in the case of graphene-based materials,
such as graphene sheets or carbon nanotubes, the effective
electron mass needs to be taken into account.29 In graphene-
based materials, m* can be expressed as

π* =m
n

vF

2D

(7)

where n2D is the 2D electron density of the system and vF is the
Fermi velocity.8 The latter is related to the Fermi energy εF

through expression = εvF m
2 F

0
, where m0 is the electron rest

mass.8 The 2D electron density n2D can be calculated from n0
as n2D = n0·a0, with a0 being the Bohr radius.29 Then, the 2D
electron density can be calculated as the ratio of the number of
atoms N and the surface of the system S, i.e.,

α=n
N
S2D (8)

where α is a parameter (<1) that selects the fraction of π
electrons that are involved in the studied plasmonic
excitation.29 We note that such a parameter is uniquely
determined by the value of εF, which can be directly recovered
from experimental conditions.40

Let us analyze the mathematical properties of the ωFQ
linear system defined in eq 1. We first notice that in eq 5 the
complex frequency-dependent ratio describing the Drude
model can be gathered
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where K̅tot is a symmetric real-valued matrix. The frequency-
dependent complex factor w(ω) is always nonzero, so we can
take it out from eq 1
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At this point, we can introduce the following notation
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and eq 10 can be expressed in vector notation as

ω− =zA I q R( ( ) ) (14)

where I is the N-dimensional identity matrix. It can be noted
that eq 14 is fully equivalent to eq 1, but this time A is a real-
valued frequency-independent nonsymmetric matrix, of which
the diagonal elements are shifted by a complex quantity.
Moreover, the A matrix defined in eq 11 can be rewritten as
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By introducing a diagonal matrix Pil = (∑k=1
N K̅ik

tot) δil, where δil
is the Kronecker delta, we can write
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and plugging the definition into eq 15 we obtain

= ̅ −A K P D( )tot (17)

Therefore, the A matrix can be formulated as the product of
two real-valued symmetric matrices since K̅tot and D are
symmetric and P is diagonal. However, A is a nonsymmetric
matrix because D and K̅tot − P, in general, do not commute.
Nevertheless, the following equality holds

= ̅ − = [ ̅ − ] =DA D K P D K P D D A D( ) ( ) T Ttot tot
(18)

where T indicates the transposition operator. Recalling that D
is an SPD matrix,35 we can define the D-inner product as

∀ ∈ ⟨ ⟩ = ⟨ ⟩x y x y Dx y, , ,N
D (19)

where ⟨·,·⟩ is the standard Euclidean inner product. From eqs
18 and 19, it can be demonstrated that A is self-adjoint with
respect to the D-inner product, i.e.,

⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩

= ⟨ ⟩

Ax y DAx y A Dx y Dx Ay

x Ay

, , , ,

,

T
D

D (20)

Equation 20 allows us to conclude that even if A is a
nonsymmetric matrix, it is self-adjoint with respect to the inner
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product induced by the SPD matrix D; therefore, A is
diagonalizable with real eigenvalues.
As a final remark, the alternative expression of the A matrix

in eq 17 allows us to derive another property of the matrix
itself. In fact, K̅tot − P is such that each row (or column) sums
up to zero; therefore, it is a singular matrix. By this, the matrix
A is also singular.
Nevertheless, the existence and uniqueness of the linear

system solution in eq 14 are guaranteed through the diagonal
shift of the coefficient matrix with the complex scalar z(ω)
defined in eq 12, which is nonzero when ω ≠ 0. However,
numerical instabilities in the solution of the linear system can
arise when ω approaches zero because A is close to singular.
2.2. Preconditioning of the ωFQ Linear System. To

model the optical spectra of plasmonic substrates, eq 1, or
equivalently eq 14, needs to be solved for a certain number of
frequencies ω. This can be effectively achieved by resorting to
efficient methods to solve the dense nonsymmetric complex
linear system. This point is crucial, especially when the
dimensionality of the system increases. Direct techniques of
solution (e.g., based on factorization of the coefficient matrix)
are to be avoided because they are inefficient both in terms of
storage demand and computational cost, which scales as N3.
Thus, matrix-free iterative techniques, which in our imple-
mentation scale as N2, are a promising alternative. In particular,
such approaches can be implemented without necessarily
storing in memory the whole matrix A − z(ω) I but in terms of
matrix−vector products that can efficiently be computed in a
parallel environment.
The convergence of iterative techniques can be accelerated

(i.e., the number of iterations to reach the solution can be
reduced) by exploiting a preconditioner ω( ) that, for our
specific problem, is defined such that ω ω≈ − zA I( ) ( ( ) ).
The linear system in eq 14 can be transformed by applying the
preconditioner to the left and/or the right of the coefficient
matrix. Thus, we can define a lef t-preconditioned linear system
as

ω ω ω[ ] − = [ ]− −zA I q R( ) ( ( ) ) ( )1 1
(21)

or a right-preconditioned linear system as

ω ω ω− [ ] = =−zA I y R y q( ( ) ) ( ) , ( )1
(22)

As it can be easily noticed, the preconditioned linear systems
are formally equivalent to the original linear system, but if the
preconditioner ω( ) is chosen wisely, the convergence rate of
the iterative algorithm can be strongly improved. In this work,
three different preconditioning strategies have been tested
based on the shape of the matrix A − z(ω) I and on the
physical properties of the plasmonic substrate. The results are
amply discussed in Section S1 in the Supporting Information
(SI). In brief, we have exploited (i) a band preconditioner, in
which a certain number of supra- and subdiagonals of the A
matrix are retained, (ii) a symmetric Gauss−Seidel precondi-
tioner,41−43 and (iii) a “nearest-neighbors” preconditioner, in
which only the matrix elements of A − z(ω) I associated with
atoms close in the space are retained. The most promising
approach is the band preconditioner (see the SI). However, it
is strongly dependent on atom indexing in the construction of
the A matrix, and, most importantly, it is not of general
applicability (see Section S1.1.1 in the SI) because it shows
different performance when applied to 2D or 3D systems. We
also notice that even when the number of iterations is reduced,

the additional computational cost required at each step of the
iterative procedure makes the solution of the linear system
much more expensive, in terms of both storage and timing,
with respect to the non-preconditioned system.
For the aforementioned reasons, in the following discussion,

the results obtained by exploiting the non-preconditioned
linear system are reported.

2.3. Comparison with Continuum Approaches. The
atomistic nature of ωFQ emerges from all of the variables that
enter eq 1: charge positions, chemical hardnesses in eq 3,
effective areas in eq 5, and equilibrium distances in eq 6, as
well as electronic features of the material that enter the Drude
model. Such an approach allows us to describe the (macro-
scopic) plasmonic response of the system in terms of
(microscopic) atomistic quantities, regardless of the shape of
the system. Therefore, complex effects associated with surface
roughness and edge effects are automatically considered.
As stated in Section 1, the plasmonic response of complex

systems can be described by resorting to continuum
approaches, such as the boundary element method
(BEM).25,31 There, the material is treated as a continuum
and its electronic properties are synthesized by its frequency-
dependent dielectric permittivity function ε(ω). The plas-
monic response arises as a surface charge density σ(r), which is
computed by solving Maxwell equations, via a reformulation as
a boundary integral equation on the material surface. From the
computational point of view, the latter is discretized in N
surface elements centered at positions ri, with i = 1,...,N. At the
same time, the surface charge density σ(r) is discretized in
terms of N electric charges. The equation for solving the
charges in BEM reads25

σ ϕπ
ε ω ε ω
ε ω ε ω

+
−

+ = − ̅
i
k
jjjjj

y
{
zzzzzI F2

( ) ( )
( ) ( )

out in

out in (23)

where εout and εin are the frequency-dependent complex-valued
dielectric permittivity functions of the outer (usually vacuo)
and inner (the material) regions, respectively, σi = σ(ri) is the
electric charge evaluated on the surface element at position ri,

while ϕ ̅ = ϕ∂
∂i n

r( )i is the surface derivative of the external

potential ϕ at position ri. Moreover, I is the N-dimensional
identity matrix and Fij is the normal derivative of the Green
function, i.e.,

= = ̂ ·∇
| − |

F F r r n
r r

( , )
1

ij i j i
i j

rj
(24)

where n̂i is the normal vector to the surface at point ri.
ωFQ and BEM are genuinely different in terms of

performance and versatility: surface roughness can easily be
taken into account through an atomistic approach, while the
continuum model needs specific treatments such as perturba-
tive expansions.44 Nevertheless, from the purely algebraic point
of view, there are some similarities. First, eqs 14 and 23 have
the same structure. In both cases, charges are obtained by
solving a dense system of linear equations, in which the left-
hand side is written in terms of a nonsymmetric frequency-
independent real-valued matrix [A for ωFQ (see eq 11) and F
for BEM (see eq 24)] with a uniform complex-valued diagonal
shift, which describes the electronic properties of the material
at a specific frequency [z(ω) defined in eq 12 for ωFQ and the
permittivity in eq 23 for BEM]. Moreover, it has been shown
that the F matrix in eq 24 is singular and diagonalizable with
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real eigenvalues,25,45−47 similar to the A matrix in eq 11 (see
Section 2.1 for the proof). Therefore, the same computational
techniques to solve the linear system, which in this paper are
described for the ωFQ approach, can also be exploited for
BEM.

3. RESULTS AND DISCUSSION
To solve the complex-valued ωFQ linear system (see eq 14),
the generalized minimal residual (GMRES) and quasi-
minimum residual (QMR) algorithms (see the Appendix 1)
have been exploited and implemented in a standalone
FORTRAN95 code, named nanoFQ, in a parallel environment
through the OPENMP application programming interface
(API).48 To apply complex GMRES, nanoFQ has been
interfaced with a public domain software developed by Fraysse ́
and co-workers.49 The QMR-from-BiConjugate Gradients
(BCG) algorithm without look-ahead for J-symmetric
matrices50,51 has been implemented from scratch. All
calculations have been performed on a Xeon Gold 5120 (56
cores, 2.2 GHz) cluster node equipped with 128 GB RAM, if
not stated otherwise.
The performance of GMRES and QMR algorithms has been

computationally compared by calculating the number of
iterations (NI) required to converge the solution of the linear
system to a predefined threshold. The 2-norm of the residual
vector has been used as a convergence criterion

ω= − − <z Tr R A I q( ( ) )k k2 2 (25)

where qk is the vector generated at the kth iterative step and T
is a user-defined threshold.
The ωFQ approach has been applied to the prediction of the

optical properties of selected chiral carbon nanotubes (CNTs)
and graphene disks (GDs) (see Figure 1a and b for their

molecular structures). For both systems, different geometries
have been generated by modifying the length L and/or the
diameter dC for CNTs and the diameter dD for GDs. The total
number of atoms in the studied structures varies from 8208 to
49 248. It is worth remarking that due to the cutting procedure
adopted to construct the GDs, dangling bonds possibly
occurring on the edges of the disks may be retained (see
Figure 1b). However, they do not affect the optical properties
of large systems (see Figure S9 in the SI). Thus, they can be
retained without affecting computed properties and the
convergence rate of the two algorithms.
In the following, we study the dependence of NI on

• electronic parameters, such as the relaxation time τ and
the Fermi energy εF that enter eqs 5 and 7, respectively;

• external field frequency ω, which enters eq 14 through
the z(ω) coefficient defined in eq 12;

• geometry of the systems, in particular, the GD diameter
and the CNT length/diameter (see Figure 1a,b); and

• iterative algorithm, i.e., QMR, GMRES, or restarted
GMRES(k) (see the Appendix 1).

Since we are dealing with iterative procedures, also the
choice of the initial vector q0 (see eq 25) can strongly affect
the NI. Therefore, to compare the different algorithms reliably
and in a reproducible way, we choose q0 = 0 in all cases.

3.1. How Electronic Parameters Affect Plasmonic
Response and Computational Timings? We first analyze
how the number of iterations to achieve convergence depends
on the choice of electronic parameters that enter the definition
of ωFQ model, i.e., the Fermi energy εF (see eq 7) and the
relaxation time τ (see eq 5). The plasmonic response of GD
varies as a function of both τ and εF.

9,29,52,53 To analyze such a
response, we consider the longitudinal absorption cross section
σk, which can be calculated as

∑σ ω πω ω= ·
=c

k
E

q( )
4

Im( ( ))k
i

N
i
k i

k

1 0 (26)

where c is the speed of light, ki is the position of the ith charge
along the k̂-axis, and E0

k is the kth component of the intensity
of the external electric field. Im(qi

k(ω)) is the imaginary part of
the ith charge induced by an external electric field polarized
along the k̂-axis with frequency ω.
It has been shown by some of the present authors29 that

PRFs, i.e., frequencies corresponding to σk maxima, are
independent of τ. In fact, the latter only affects the excitation
peak broadening and amplitude, which scale with τ and

τ
1 ,

respectively.
The dependence of NI on τ and εF has been studied for a

GD with dD = 20 nm (GD20), which is constituted by 11 970
carbon atoms. The full (i.e., nonrestarted) GMRES NI has
been calculated on 200 frequencies in the range between 0.01
and 2.0 eV with a constant step of 0.01 eV. The convergence
threshold T has been fixed to 10−6 a.u. (see eq 25). ωFQ
parameters have been set to those exploited in refs 29 and 53.
The ωFQ linear system has been solved with the GMRES
algorithm using εF = 1.51 eV and τ = 17 000 a.u. We remark
that such τ value is typical of graphene sheets.53 The computed
σX(ω) and NI are reported in Figure 2, where the absorption
cross section has been scaled to make all peaks visible (see
Figure S10 in the SI).
By varying the external field frequency, σX shows a set of

local maxima of different amplitudes. Since all calculations
have been performed with a constant step of 0.01 eV, each
PRF has an intrinsic error of 0.01 eV. Similar errors can also
affect the relative intensity of the local maxima: the absorption
peak is extremely sharp when τ is large; thus, a small variation
in frequency induces a large variation in intensity.
Similar to σX, the NI plot is characterized by a distribution of

local maxima, with the same intrinsic error of PRFs. From an
inspection of Figure 2, a strong correlation between the two
sets of local maximum points is observed, and this is especially
true for the most significant maxima highlighted in Figure 2.
This result is not surprising: from eq 26, it is expected that a
local maximum of σX(ω) is necessarily associated with a local

Figure 1. Graphical depiction of CNT (a) and GD (b) molecular
structures. The CNT length and diameter (L, dC) and the GD
diameter (dD) are also highlighted.
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maximum (in absolute value) of ωFQ point charges. The
charge densities associated with σX(ω) highlighted local
maxima are plotted in Figure 3, and they clearly represent

plasmon modes of increasing order. In fact, the number of
nodes (Nnodes) is always odd for symmetry reasons and
increases as frequency increases.32 Since the iterative
procedure starts from the q0 = 0 vector, when the distance
between the guess and the solution vectors increases, NI
increases.
Moving to the global trend of the NI (see Figure 2), the

required number of iterations is small for the first PRF at
ω = 0.3 eV, and then the NI increases in the middle region of

the spectrum and finally decreases. Two underlying mecha-
nisms may explain this peculiar trend. First, the lowest-order
plasmon modes (e.g., the dipolar one at 0.3 eV) are strongly
localized on the edge of the system (see Figure 3). Therefore, a
small number of large-valued point charges are involved in the
excitation, but most charges are instead close to zero (e.g.,
those placed in the middle of the structure). By this, the guess
vector q0 = 0 a.u. is a satisfactory starting point for the iterative
procedure, and a small number of iterations are sufficient to
obtain the solution vector. This is not true for the highest-
order plasmon modes, which are instead delocalized all over
the system (see Figure 3). In addition, the plasmonic response
intensity (i.e., the point charges absolute value) strongly
decreases when the excitation order increases (see Figure 2,
top) because the number of nodes in the plasmon mode is
larger. This is also evinced by the isovalue used to plot the
densities in Figure 3, which decreases as the PRF increases.
Therefore, the NI in correspondence to the highest-order
plasmon modes tends to decrease. The presence of low-
amplitude local maxima, represented by dashed lines in Figure
2, top panel, can be attributed to numerical artifacts (see
Figure S11 in the SI).
The dependence of NI and σX on τ and εF is reported in

Figures 4 and 5, respectively.

Focusing on the dependence on τ (Figure 4), we see that the
PRF is not affected by this parameter, as it has been already
reported in previous works.29 The main effect of the variation
of τ is the shrinking of the excitation band shape and the
associated increase of intensity. In the energy region between
0.5 and 1.5 eV, NI increases with τ, and new local maxima in
both σX and NI at τ = 680 a.u. arise. These local maxima are
associated with the high-order plasmon resonance modes
identified in Figure 2 and represented in Figure 3.
The most relevant plasmon resonance mode is the dipolar

excitation because it is generally associated with the highest
amplitude and the lowest PRF, which make it the most suitable
for physical applications.10 A smaller value of τ can be adopted
to achieve a reliable description of this excitation. In Figure 6,

Figure 2. Correlation map between GD20 σX(ω) (top plot, red line)
and NI (right plot, blue line) local maxima.

Figure 3. Graphical depiction of GD20 plasmon densities calculated
at PRFs highlighted in Figure 2. The number of nodes (Nnodes) and
the isovalue for each plasmon mode are also reported. Densities are
obtained by superimposing the Gaussian density associated with each
ωFQ point charge. ωFQ charges have been calculated through the
GMRES algorithm by setting εF = 1.51 eV, τ = 170 a.u., and T = 10−6.

Figure 4. GD20 σX (ω) (top) and NI (bottom) as a function of τ
(given in a.u.).
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GD20 σX calculated by setting τ = 17 000 a.u. and τ = 170 a.u.
and εF = 1.51 eV are reported. Clearly, the first plasmon
excitation with PRF = 0.3 eV is the most intense for both τ
values. For τ = 170 a.u., σX is characterized by a single
maximum since the reduction of the relaxation time induces
also a proportional reduction of the plasmon excitation
intensities.29 By this, we can conclude that τ = 170 a.u. can
be chosen to reduce the computational cost of the iterative
procedure since we are mostly interested in the description of
dipolar excitation.
The dependence of NI on εF is reported in Figure 5. We see

that the increase of εF results in a blue shift of the PRF and in
the increase of the absorption intensity. In fact, a higher value
of εF is associated with an increase of n2D (see eq 7) because a

higher fraction of π electrons are involved in the excitation.
The NI shows a similar trend because the global maximum is
blue-shifted and the required number of iterations increases.

3.2. Computational Demand as a Function of the
System’s Geometry. In this section, we investigate the
dependence of the calculation’s convergence rate on the
geometry of the system. The same CNT and GD structures
investigated in the previous section have been selected, for
which we have varied the characteristic dimensions (see Figure
1a,b).

3.2.1. CNT. Table 1 reports the geometrical parameters of
the selected structures. For each structure, the ωFQ linear

system in eq 14 has been solved for 200 frequencies in the
range between 0.01 and 2.0 eV with a constant step of 0.01 eV,
by setting εF = 1.04 eV and τ = 170 a.u., respectively. First, we
comment on the results obtained by fixing dC = 1.36 nm and
by varying L from 50 to 300 nm (see Table 1, top block). The
data are shown in Figure 7 for both GMRES and QMR
algorithms, in case the external field is aligned along the
transverse (X) or longitudinal (Z) directions. We are then

Figure 5. GD20 σX (top) and NI (bottom) as a function of the Fermi
energy εF (given in eV).

Figure 6. GD20 σX calculated by setting τ = 17 000 a.u. (top) or τ =
170 a.u. (bottom). Local maxima extrapolated from σX are reported as
black sticks.

Table 1. Geometrical Parameters of the Studied CNT
Structures (see Figure 1a for Their Definition)a

L (nm) chiral numbersb dC (nm) number of C atoms

CNT50 50 (8,12) 1.36 8208
CNT100 100 16 416
CNT200 200 32 832
CNT300 300 49 248
CNT1 50 (8,12) 1.36 8208
CNT2 (16,24) 2.77 16 416
CNT3 (24,36) 4.10 24 624
CNT4 (32,48) 5.46 32 832

aThe number of atoms for each structure is also given. bThe relation
between the diameter dC and the chiral numbers (n, m) is

= + +
π

d n m nmb
C

2 2G , where bG is the graphene lattice basis

vector norm, i.e., 0.246 nm.54

Figure 7. Convergence rate dependence on the CNT length L (see
Table 1) as calculated by GMRES (left panel) and QMR (right
panel). Both longitudinal (bottom) and transverse (top) polarizations
of the external field are considered.
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assuming that the two possible transverse directions (X and Y)
provide the same polarization, even if all of the considered
CNTs are chiral. In fact, the differences in the plasmonic
response along the two directions are negligible (see Figure
S12 in the SI). Figure 7, top panel, shows that the NI along the
transverse direction is the same for all systems because the
diameter is kept constant. In the case of longitudinal
polarization, the number of iterative steps increases as the
length of the system increases in the low-energy region of the
spectrum, for both GMRES and QMR. This is due to the fact
that PRFs are red-shifted as L increases, approaching 0 eV (see
Table S2 in the SI), which is an expression of the so-called
lightning rod effect.55−57 The z(ω) factor in eq 12 is therefore
close to 0, and since the A matrix in eq 14 is singular, the
number of iterations increases due to increased ill-condition-
ing.
We now move to comment on the results obtained by

varying the CNT dC, by keeping constant L = 50 nm (see
Table 1, bottom block). Computed GMRES and QMR NI for
such systems are reported in Figure 8. Differently from the

previous case, the NI trend does not show a strong
dependence on dC, for both transverse and longitudinal
directions of the applied electric field. This is related to the
fact that, although PRF energies are red-shifted as dC increases
(along the X direction), the smallest PRF associated with the
dipolar plasmon is far from 0 eV (0.37 eV for CNT4, see Table
S2 in the SI). Therefore, in this case, severe ill-conditioning is
avoided and the NI remains almost constant.
As a final comment, we note that GMRES and QMR provide

almost the same convergence rate. In particular, QMR NI is
usually slightly higher than GMRES, thus confirming what has
been observed in Section 5.1 (see also Figure S8 in the SI).
3.2.2. GD. Let us now focus on the NI calculated for four

different GDs, obtained by varying the dD diameter (see Figure
1b). Geometrical parameters are reported in Table 2. The
ωFQ linear systems have been solved by setting the same
parameters exploited in the case of CNTs, and by imposing

εF = 1.51 eV. In this case, due to symmetry reasons, the
external electric field is polarized along one axis only.
For each structure, NI has been calculated for GMRES and

QMR, and the results are reported in Figure 9. Interestingly,

the NI presents a weak dependence on the dD diameter. In fact,
the largest difference in the number of iterations is about 10
between GD36 and GD20. However, GD36 has almost four
times the atoms of GD20, thus demonstrating the favorable
scalability of the two algorithms. We finally note that also in
this case the PRFs are red-shifted as the size of the system
increases (see Table S2 in the SI).

3.3. Modeling plasmonic properties of real-size
systems. To finally demonstrate the robustness of the
developed iterative methods to solve the ωFQ linear system,
we investigated the plasmonic response of real-size systems,
composed of roughly one million atoms. When dealing with
large-sized structures, two main issues arise. From the
theoretical point of view, the quasi-static approximation on
which ωFQ equations are based could be no longer valid.
From the technical point of view, when the number of atoms
increases, the storage of the ωFQ matrix in physical memory
can rapidly become unfeasible. Such a problem can be handled
by adopting a matrix-free version of the GMRES algorithm,
where the A matrix in eq 14 is not explicitly built. In fact, the
iterative algorithm only requires calculating the matrix−vector
product Ax, which can be performed on the fly during the
execution of the program. This means that at each iterative
step k, the new Krylov basis vector is obtained as

∑ ω= −
=

−zx A I x( ) ( ( ) ) ( )k i
j

N

ij k j
1

1
(27)

where the element (i, j) of the matrix A − z(ω) I is calculated
when required by the algorithm. On the other hand, each

Figure 8. Convergence rate dependence on the CNT diameter dC
(see Table 1) as calculated by GMRES (left panel) and QMR (right
panel). Both longitudinal (bottom) and transverse (top) polarizations
of the external field are reported.

Table 2. Geometrical Parameters for the Studied GDs (see
Figure 1b for Their Definition)a

ID dD (nm) number of C atoms

GD20 20 11 970
GD26 26 20 058
GD32 32 30 788
GD36 36 38 974

aThe number of atoms for each structure is also given.

Figure 9. Convergence rate dependence on the GD diameter dD (see
Table 2), as calculated by using GMRES (left panel) and QMR (right
panel).
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matrix element has to be calculated from scratch; therefore, the
on-the-fly version of GMRES would require larger computa-
tional time, without affecting the number of iterations.
Nevertheless, the on-the-fly matrix−vector product can be
efficiently calculated in a parallel environment and memory
requirements are negligible with respect to the standard
GMRES procedure because only the iterative vectors should be
kept in memory during the solution procedure.
To showcase the performance of GMRES when applied to

large systems, we have selected three structures composed of
roughly 1 million atoms: a carbon nanotube −CNT1M−, a
graphene disk −GD1M−, and a sodium nanorod −NR1M−
(see Table S11 given in the SI, for geometrical parameters).
The latter is genuinely different from the other two structures
and has been selected to further demonstrate the reliability of
the method to study the optical properties of metal
nanostructures.
For each of the constructed structures, the longitudinal

absorption cross sections and the NI have been calculated. It
has been shown in Section 5.2 that the convergence criterion
based on the 2-norm of the residual vector (see eq 25) is not
size-independent. The root-mean-squared error (RMSE) (see
eq 35) has been computed at each iterative step, and it has
been compared with a threshold T, to check the convergence.
In particular, we have set T = 10−5, which according to Section
5.2 is a good and size-independent compromise between
accuracy and computational cost.
3.3.1. CNT1M. The calculations on CNT1M have been

performed by applying an external field along the transverse
and longitudinal directions, at 35 different frequencies in the
range between 0.005 and 0.45 eV, by setting τ = 170 a.u. and
εF = 1.03 eV. The longitudinal absorption cross sections and
the NI are reported in Figure 10. The transverse PRF is placed

at about 0.38 eV, which is close to the value for CNT4, which
has the same diameter (see Table 1). The longitudinal PRF is
instead placed at 0.02 eV, which is smaller than the value for
CNT300, which has a length of 300 nm. This is not surprising
because the PRF is red-shifted as the length of the system
increases. The required number of iterations as a function of
the external field frequency is reported in Figure 10. We note

that the maximum number of iterations is 80, which is lower
than what we have obtained for CNT300 (see Section 3.2).
This is due to the larger convergence threshold chosen for the
iterative procedure; overall, a mean value of about 30 iterations
is sufficient to reach the convergence. Since the number of
iterations is modest, restarted GMRES has not been
considered for such large systems. Moving on to discuss the
computational time, our implementation permits to calculate
about 4 matrix−vector products per hour, thus resulting in a
total time of about 487 h.

3.3.2. GD1M. The ωFQ linear system has been solved for
GD1M with an external field polarization vector lying on the
GD plane (X), at 15 different frequencies in the range between
0.05 and 0.19 eV with a constant step of 0.01 eV. We set
τ = 170 a.u. and εF = 1.84 eV. The computed σX and NI are
reported in Figure 11. The transverse dipolar PRF for this

system occurs at 0.12 eV, which is smaller than the values for
the smallest GDs studied in the previous sections. The
required number of iterations to reach convergence is about 30
for each external field frequency, i.e., smaller than what is
required by GDs described in Section 3.2. As it has been stated
for CNT, this is mainly due to the setting of a larger RMSE
threshold.

3.3.3. NR1M. Finally, we have calculated the plasmonic
response of the NR1M system. This is a 3D nanostructure;
therefore, a general expression of the Ktot matrix in terms of the
3D electron density n0 (see eq 5) needs to be exploited. All
calculations have been performed with ωFQ parameters for
sodium reported in previous work.28 The linear system in eq
14 has been solved for 24 frequencies in the range between 0.9
and 1.8 eV (unevenly distributed) with an external field aligned
along the longitudinal (Z) direction. As for CNT1M and
GD1M, the RMSE threshold was set to 10−5. The computed
σZ and the corresponding NI are reported in Figure 12.
The longitudinal PRF is placed at about 1.43 eV, which is

blue-shifted with respect to the longitudinal PRF of CNT1M,
due to the fact that the electronic properties of the two
materials are different. As for the previously studied carbon-
based system, the value of the longitudinal PRF is red-shifted
with respect to smaller sodium nanorods reported in previous
work.28 This is once again due to the lighting rod effect
discussed above. Similar to previous cases, a mean value of
about 30 iterations is sufficient to reach convergence.

Figure 10. CNT1M σk(ω) (solid red line) and NI (blue dots). Both
longitudinal (k = Z, bottom) and transverse (k = X, top) polarizations
of the external field are reported. GMRES algorithm: RMSE = 10−5.

Figure 11. GD1M σX(ω) (solid red line) and NI (blue dots).
GMRES algorithm: RMSE = 10−5.
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Accounting for Structural Defects. As the last example, we
focus on a peculiar feature of ωFQ, i.e., its ability to model
nanostructures with structural defects. These studies are
possible due to the atomistic nature of our model; in fact,
such kind of information cannot clearly be extracted by
modeling the structure by means of continuum approaches.
In Figure 13a and b, ωFQ is applied to a set of graphene

disks, which have been created by introducing 100 holes with
radius r in the GD1M system and in particular by removing all
carbon atoms within a distance smaller than r from a given

carbon atom. The hole radius r has been set to five different
values in the range between 0.2 and 5 nm. For each of these
structures, the ωFQ linear system has been solved with an
external field polarized along the X-axis, at 15 different
frequencies in the range between 0.05 and 0.19 eV with a
constant step of 0.01 eV. The relaxation time (τ) has been set
to 170 a.u., while the Fermi energy has been adjusted so to
impose the same electron density of the defect-free GD1M
structure (see eq 8). Note that our model can be applied to
any kind (and number) of defects; here, we show this
particular case as a proof of concept.
The absorption cross sections along the X direction for each

structure are reported in Figure 13a. The results are strongly
affected by the value of the radius of the holes: in fact, by
increasing it, the absorption maximum red-shifts and its
intensity decreases. The red shift may be explained by focusing
on the plasmon density calculated at the plasmon resonance
frequency (see Figure 13b). In fact, when the radius of the
holes is small (r = 0.2 nm), the plasmon density retains a
dipolar nature. By contrast, for larger radii (r = 5.0 nm), the
overall dipolar nature of the plasmon is no more evident
because other local dipoles appear on the edges of each hole.
Also, in the structures with the largest holes, more and more
atoms are removed from the initial structure. As a
consequence, the intensity of the absorption peak decreases
by increasing the radius of the defects.

Figure 12. NR1M longitudinal σZ(ω) (solid red line) and NI (blue
dots). GMRES algorithm: RMSE = 10−5.

Figure 13. (a) GD1M σX(ω) as a function of hole radius (r, in nm). GMRES algorithm: RMSE = 10−5. (b) Graphical depiction of the plasmon
density for r = 0.2 nm (left) and r = 5.0 nm (right). Isovalue: 0.005.
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4. CONCLUSIONS

In this paper, we have discussed how to substantially increase
the applicability of classical, fully atomistic approaches to the
calculation of the plasmonic properties of real-size nanostruc-
tures (carbon nanotubes, graphene-based materials, and metal
nanoparticles). In particular, we have proposed a unified
model, specified for the recently developed fully atomistic
ωFQ approach, which is able to accurately describe both 2D
and 3D systems with similar accuracy. By taking advantage of
the new formalism, the existence and uniqueness of the ωFQ
solution have been demonstrated, allowing for the inves-
tigation of the performances of different state-of-the-art
numerical techniques to reach the solution. The novel
formulation also permits a significant decrease in computa-
tional demand. Thus, the calculation of the plasmonic
properties of structures constituted by 1 million atoms has
become possible, remarkably also for systems with structural
defects.
The implemented iterative procedures are characterized by

three main bottlenecks, and possible solutions will be
investigated in future work. On the one hand, the number of
matrix−vector products needed to build approximate solutions
to the linear system is associated with the computational
complexity of O(N2). Linear scaling in matrix−vector products
might be achieved through the fast multipole method
(FMM),58−61 a numerical technique that can be adopted to
build an approximation to the long-range electrostatic forces,
which has already been applied to plasmonic substrates.16 In
addition, we have tested different preconditioning strategies of
the ωFQ linear system62−64 without obtaining a significant
improvement in terms of both memory requirements and
computational time. Such an extension will allow affording
systems even larger than those studied in this work. However,
in this case, the quasi-static approximation on which ωFQ
relies may be no longer valid. Therefore, retardation effects
would need to be included in the model, similar to what has
already been proposed for continuum approaches.26,65

Finally, to study the plasmonic properties of a given
nanostructure along a specific spectral region, the ωFQ linear
system can be solved independently for each frequency.
However, a change in frequency only affects the uniform
diagonal shift of the coefficient matrix in eq 14. Therefore, the
shift-invariance property of the Krylov subspaces may be
exploited by resorting to the so-called subspace recycling
techniques.66,67

To conclude, and to give the reader a further roadmap for
the development and application of ωFQ, it appears to have
high potentialities to describe surface-enhanced spectroscopies,
either based on graphene-based substrates or metal nano-
particles.10,68 To this end, ωFQ needs to be coupled with a
quantum Hamiltonian describing the adsorbed molecules, in a
QM/MM fashion.13−17 Also, to accurately describe d-electron
metals, such as silver and gold, ωFQ might need to be
extended to treat interband contributions, e.g., by adding
atomic polarizabilities similar to what is done in QM/MM
approaches.36,69,70

■ APPENDIX

5.1. Solution strategies
One of the most powerful techniques to solve a linear system
Ax = b (with a generic matrix A) of order N is to resort to
Krylov subspace iterative methods.71,72 The idea behind this

family of methods is to build an approximate solution to the
linear system at step m in the m-dimensional affine subspace

+x A r( , )m0 0 , where A r( , )m 0 is the Krylov subspace
defined as

= { } = −−A r r Ar A r r b Ax( , ) span , ,..., ,m
m

0 0 0
1

0 0 0
(28)

where r0 is the residual associated with the initial guess x0.
There are many algorithms that fall into the Krylov methods

family, and different taxonomies have been proposed.73−75

Such methods are exploited to solve large linear systems arising
in different fields of computational chemistry.21,23,76,77

In this work, two different Krylov-based iterative methods
have been tested for the solution of eq 14, namely, the
Generalized Minimum RESidual algorithm (GMRES)78 and
the quasi-minimal residual (QMR) method.79

5.1.1. GMRES. It is a general approach to nonsymmetric
linear systems.78 At each step m, an approximate solution of
the linear system is obtained as

= +x x V ym m m0 (29)

where Vm is an orthonormal basis of the m-dimensional Krylov
space A r( , )m 0 . The vector ym is determined such that the 2-
norm of the residual rm = b − Axm is minimal over m. The
orthonormal basis of m is obtained via the Arnoldi process,80

and the orthogonal projection of A onto m leads to an upper
Hessenberg matrix Hm = Vm

†AVm.
81 Therefore, the least-

squares problem can be efficiently solved through QR
factorization of Hm.

81 The QR decomposition of Hm can be
updated cheaply on each iteration, but at each step, a new
vector must be stored, so the memory cost is not constant
during the iterative procedure.81

To reduce the memory required by GMRES, the so-called
“restarted” GMRES algorithm has been developed, also known
as GMRES(k).78,82 There, the iterative procedure is stopped
after k steps, and the GMRES algorithm is restarted using the
last iterative vector xk as the new initial guess vector from
which the Krylov subspace is built once again. By this, no more
than k vectors are stored in memory at the same time;
however, the algorithm is expected to converge more slowly
than standard GMRES.82

5.1.2. QMR. Similar to GMRES, QMR has been developed
for solving nonsymmetric linear systems. In this case, the
coupled two-term Lanczos algorithm is adopted to generate
two Krylov spaces A p( , )m 0 and A q( , )m

T
0 , where p0 and q0

are two initial vectors.83 At each step, an approximate solution
to the complex-valued linear system is defined as

= +x x P ym m m0 (30)

which is similar to what is done by GMRES (see eq 29). In
fact, Pm is the basis set of the Krylov space A p( , )m 0 , while
the ym vector is associated with an approximate 2-norm of the
residual.83 In the QMR formalism, the residual rm = b − Axm
can be written as

= −r M f N y( )m m m m m (31)

where the matrices Mm and Nm and the vector fm are obtained
through the basis sets previously defined.83 In QMR, the vector
ym is chosen to minimize the quantity in parenthesis in eq 31.
In other words, ym is the solution of the least-squares problem
minym∥fm − Nmym∥. Such a procedure yields a “quasi-
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minimization” of the residual; therefore, it is expected to
converge more slowly than GMRES. On the other hand, at
each step, a fixed number of vectors need to be calculated;
thus, memory requirements are constant along the whole
iterative procedure.
Note that we have considered the QMR algorithm because a

simplified version has been proposed by Freund and Nachtigal
in the case of J-symmetric coefficient matrices, i.e., such that
ATJ = JA for an SPD matrix J.51 This property, which we have
demonstrated for the ωFQ matrix in Section 2.1 (with J = D),
allows us to simplify the Lanczos process by choosing the
starting vectors such that q0 = Jp0. In this way, the
computational effort to compute the basis sets of the involved
Krylov space is reduced because the calculation of the matrix−
vector product ATx is not needed. As a final remark, in this
work, the Krylov iterative methods have been applied without
resorting to preconditioning techniques (see Section 2.2).
5.2. Dependence of the Convergence Rate on Algorithm
Parameters
We now move to consider the technical parameters associated
with the iterative procedure and how they affect the
convergence rate. We first study the performance of GMRES-
(k) (see Section 5.1), by taking as a reference system the
CNT300 structure (see Table 2) and exploiting the same
parameters used above for CNTs for solving the ωFQ linear
system. The iterative procedure has been performed by varying
k (between 20 and 80) and by keeping the threshold fixed to T
= 10−6. Computed NI are reported in Figure 14, together with

the corresponding results obtained with the full GMRES
(F.G.) algorithm (i.e., nonrestarted). For X and Y polar-
izations, the reduction of the Krylov subspace does not affect
the NI behavior. By contrast, for Z polarization, GMRES(k)
and F.G. procedures yield different NI trends in the region
between 0 and 0.2 eV. In fact, GMRES(k) requires a larger
number of iterations than F.G. version to reach convergence,
independently of the dimension of the Krylov subspace k. This
is once again due to singularities arising when PRF approaches
0 eV, which yield ill-conditioning that is exacerbated in the
restarted version of the algorithm. Such an explanation is

corroborated by the evidence that the number of iterations
required to reach convergence decreases by increasing the
dimension of the Krylov subspace k. For each k, we also notice
that GMRES(k) is almost as efficient as the F.G. procedure in
the remaining part of the spectrum. Therefore, in case the PRF
is far from 0 eV, the same results can be obtained by a cheaper
iterative procedure in terms of memory requirements because a
smaller number of Krylov basis vectors have to be stored to
build up the solution vector.
Another quantity that can strongly affect the NI is the

threshold T defined in eq 25, which in all previous calculations
has been fixed to 10−6. We notice however that T is
independent of the size of the system. Therefore, we can
expect that the mean precision of the iterative solution,
averaged for each charge, is higher when the number of atoms
increases. In fact, eq 25 can be rewritten as

∑ ω∥ ∥ = [ − − ] <
=

R z Tr A I q(( ( ) ) )k
i

N

i k i2
1

2

(32)

If we assume that the absolute error is the same for each point
charge, i.e., Ri − ((A − z(ω)I)qk)i = δq, and we plug this
approximation in eq 32, we obtain

δ δ∥ ∥ ≈ < ⇒ <N q T q
T
N

rk 2 (33)

Therefore, for a given threshold T, the absolute error on each
charge decreases when the number of atoms N increases.
To obtain a size-independent estimate of the accuracy of the

iterative solution over all of the ωFQ charges, we can introduce
the following definition of the root-mean-squared error
(RMSE)

ω
=

− − z
N

x
R A I x

RMSE ( )
( ( ) )

k
k 2

(34)

Then, we can define a new convergence criterion as

ω< ⇒ − − < ·T z N Tx R A I xRMSE ( ) ( ( ) )k k 2
(35)

We can now investigate the accuracy of the iterative solution
by adopting different RMSE thresholds. As a precision
measure, we consider the longitudinal absorption cross section
σX calculated for a set of GDs (GD20, GD26, GD32, GD36 in
Table 2) applying an electric field with a polarization vector
lying on the molecular plane. The linear system has been
solved with both GMRES and a direct procedure, i.e., an LU
factorization of the coefficient matrix.81 For each selected
RMSE value, the σX relative error between GMRES and LU
factorization averaged over all of the considered frequencies
(0.0−2.0 eV, with a step of 0.1 eV) has been calculated, and
the results are graphically depicted in Figure 15. An
approximate upper bound of the intrinsic precision associated
with the factorization algorithm is also plotted (see Section S3
in the SI).
It can be seen that the accuracy of the iterative solution for

the different systems is almost constant for a specific RMSE
value. In particular, by imposing RMSE ≤ 10−4, the correct
order of magnitude obtained by the LU solution can be
recovered by the iterative procedure, i.e., the relative error is
≤10−1. To further demonstrate that the RMSE criterion is
effectively size-independent, we performed the same analysis

Figure 14. CNT300 NI dependence on the dimension of the Krylov
subspace k as calculated by (k). The full GMRES (F.G.) values are
also shown. Both longitudinal (bottom) and transverse (top) external
fields are considered.
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discussed above also for the CNT case (see Figure S15 in the
SI).
We finally move to discuss the computational time required

by the different choices of the RMSE value. In particular, such
an analysis has been performed on the four GDs reported in
Table 2. The computational time required to solve the ωFQ
linear system for 20 frequencies in the range between 0.0 and
2.0 eV with a step of 0.1 eV is given in Figure 16 (raw data can

be found in Tables S3−S6 in the SI). Both direct solution (LU
factorization, see Section S2 in the SI) and the full GMRES
algorithm with different choices of RMSE have been
considered. Notice that we are showing the computer time
required by the solution of the ωFQ linear system. This means
that the coefficient matrix A (eq 11) and right-hand side (eq
13) construction are not taken into account to allow for a
direct comparison with the factorization algorithm. All

calculations have been performed on a Xeon Gold 5120 (56
cores, 2.2 GHz) cluster node equipped with 256 GB RAM.
In Figure 16, the average computational time is reported

(top, left panel) together with the time required to solve the
ωFQ linear system for three selected frequencies, i.e., 0.1
(lower bound) and 0.7 and 2.0 eV (upper bound). ω = 0.7 eV
has been chosen because it corresponds to the maximum
number of iterations required by full GMRES to converge (see
also Figure 9). Figure 16 clearly shows that the direct solution
through LU factorization and the GMRES iterative procedure
intrinsically differ in terms of scaling with the dimension of the
linear system (i.e., the number of atoms). In fact, the former
has a complexity of O(N3), while the latter scales as O(N2).
Such a difference is highlighted by the computational times in
Figure 16: the increase of the computational time for the direct
solution (gray line) is larger with respect to the iterative
procedure when the number of atoms increases, independently
of the RMSE value exploited in the GMRES algorithm. Also,
we note that, differently from the LU-based algorithm, the
computational time required by the iterative method is not
constant across the frequency range. This can be explained by
the fact that the number of iterations required to converge to
the solution depends on the external frequency (see also Figure
9). Finally, we remark that even at 0.7 eV GMRES is more
efficient than the inversion algorithm. In particular, a good
compromise between accuracy and computational efficiency
can be reached by using RMSE = 10−5, for which the
computational time of the inversion solution can be reduced
by a factor of 10 for the largest studied structure.
The computational time analysis has been performed also

for the QMR algorithm (see Section S2 and Tables S7−S10 in
the SI). From an inspection of the numerical results, it emerges
that, for a given RMSE, QMR requires roughly twice the
computational time than GMRES. In fact, as it has been shown
above, GMRES and QMR need a similar number of iterations
to converge; however, for each iteration, GMRES performs a
single matrix−vector product, while QMR computes two
matrix−vector products (one with the coefficient matrix, and
one with the D matrix defined in eq 3). Therefore, although
the computational and memory costs of GMRES are not fixed
during the iterative procedure, it outperforms QMR because of
the lower number of matrix−vector products that are needed
to build the Krylov subspace.

Figure 15. Average relative errors for GD20, GD26, GD32, and GD36 (see Table 1) of the GMRES iterative solution with respect to LU
factorization of the coefficient matrix at different choices of the RMSE introduced in eq 35. Dashed lines indicate an approximate upper bound of
the intrinsic precision associated with the inversion algorithm.

Figure 16. Computational time required to solve the ωFQ linear
system as a function of the number of atoms in GD structures.
Average (top, left), ω = 0.1 eV (top, right), ω = 0.7 eV (bottom, left),
and ω = 2.0 eV (bottom, right).
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