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Abstract 

Interactions between colorectal cancer (CRC) cells and the noncancerous cells in the tumor microenvironment (TME) 
induce mechanisms for the escape of tumor cells from immune attack. Hepcidin, a peptide that controls immune cell 
functions, is overproduced by CRC cells. This study aimed to evaluate whether hepcidin acts as a regulator of anti-
tumor immunity in CRC. Hepcidin silencing in CRC cells was followed by enhanced TNF-driven caspase-dependent 
cleavage of GSDM E and death. Mice engrafted with hepcidin-deficient CT26 cells developed fewer and smaller 
tumors than control mice as a result of the action of tumor-infiltrating CD8+ T lymphocytes and were protected 
from the development of tumors in a vaccination model and exhibited long-lasting tumor protection. Additionally, 
hepcidin deficiency enhanced the response of mice bearing CT26-derived tumors to anti-PD-1 therapy. These results 
suggest that targeting hepcidin in CRC cells enhances the production of TNF thereby triggering a caspase/GSDM 
E-driven lytic cell death with the downstream effect of boosting a robust immune response against tumor antigens.
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To the editor:

Interactions between colorectal cancer (CRC) cells and 
the noncancerous cells in the tumor microenvironment 
(TME) induce mechanisms for the escape of tumor cells 
from immune attack [1]. We and others have recently 
shown that CRC cells produce high levels of hepcidin, 

a peptide hormone that acts as an anti-microbial factor 
and regulator of iron homeostasis through the hepcidin-
ferroportin (FPN1) axis [2–4]. Hepcidin induces regula-
tory molecules in monocytes and suppresses the function 
of inflammatory macrophages [5, 6], raising the possi-
bility that CRC cell-derived hepcidin can contribute to 
generating a TME that promotes the escape of neoplas-
tic cells from immune attack. This study aimed to assess 
whether hepcidin is a negative regulator of anti-cancer 
immunity in CRC.

Hepcidin silencing triggered HCT116 cell death and this 
was prevented by exogenous hepcidin (Fig. S1A, Fig. 1A). 
Hepcidin-deficient cells showed enhanced SYTOX green 
uptake, secretion of HMGB1 (Fig. 1B, C), and cleavage of 
gasdermin (GSDM) E (Fig. 1D, Fig. S1B). GSDM E silenc-
ing in HCT116 cells reduced the rate of hepcidin-defi-
cient cell death (Fig. 1E; Fig. S1C, D). GSDM E is silenced 
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in various tumor cell types due to high methylation of the 
GSDM E promoter region [7]. Hepcidin silencing did not 
kill the GSDM E-deficient SW480 and AGS cells unless 
these cells were treated with decitabine, a cytosine analog 
that acts as a DNA methyltransferase inhibitor to enhance 
GSDM E expression (Fig. S1E-H).

GSDM-mediated cell death is triggered by caspases [8, 
9]. Hepcidin silencing increased caspase 8 and caspase 
3 activation (Fig. S1I, J). Qvad, a pan-caspase inhibitor, 
blocked hepcidin silencing-driven GSDM E cleavage (Fig. 
S1K).

A gene array showed that hepcidin silencing changed 
TNF-α signaling-related gene expression. Specifi-
cally, hepcidin-silenced cells had enhanced TNF-α lev-
els (Fig.  1F), a finding that was confirmed by ELISA 
of extracts of HCT116 cells and primary CRC tissues 
(Fig. 1G; Fig. S2A). Neutralization of endogenous TNF-α 
in hepcidin-silenced HCT116 cells reduced caspase 8 
activation (Fig. S2B), GSDM E cleavage (Fig. 1H), and the 
rate of cell death (Fig. 1I). Consistently, TNF-α enhanced 
caspase 8 activation (Fig. S2C), GSDM E cleavage (Fig. 
S2D), and induction of death in HCT116 cells (Fig. S2E).

Since hepcidin activates Stat3 [2] and Stat3 represses 
TNF-α transcription in immune cells [10], we evaluated 
whether TNF-α induction in hepcidin-deficient CRC 
cells relies on Stat3 inactivation. Hepcidin silencing in 
HCT116 cells reduced Stat3 phosphorylation (Fig. S2F). 
The gene array showed that hepcidin-silenced HCT116 

cells had reduced levels of several Stat3 signaling-related 
genes (Fig. S2G). Knockdown of Stat3 in HCT116 cells 
prevented the hepcidin-mediated inhibition of TNF-α 
expression (Fig. S2H, I), confirming the involvement of 
STAT3 in the hepcidin-induced TNF-α reduction. Stimu-
lation of STAT3-deficient cells with hepcidin increased 
TNF-α expression, suggesting that, in the absence of 
STAT3, hepcidin can activate further pathways regulat-
ing TNF-α expression.

In line with human data, hepcidin silencing in mouse 
CT26 cells enhanced cleavage of GSDM E and death 
(Fig. S3A, B). Then, we examined whether cancer cell-
derived hepcidin controls the in vivo anti-cancer immune 
response. Tumors induced by grafting BALB/c mice with 
CT26 cells transfected with hepcidin siRNA grew signifi-
cantly less than tumors expressing hepcidin (Fig. 1J). The 
microenvironment of hepcidin-silenced CT26-derived 
tumors had higher percentages of CD8+ T cells and of 
granzyme B- or perforin-positive CD8+ T lymphocytes, 
while the fractions of both CD3+ CD8− T cells and NK 
cells were unchanged (Fig.  1K and Fig. S3C, D). Deple-
tion of CD8+ T cells (Fig. S3E) abrogated the inhibitory 
effect of hepcidin silencing on the volume of CT26-
derived tumors (Fig. 1L).

Next, we assessed whether hepcidin deficiency pro-
motes an activated immunogenic cell death. For this 
purpose, mice were injected subcutaneously in the left 
flank with control or hepcidin-silenced CT26 cells and 

Fig. 1 A Representative dot-plots showing the percentages of AV- and/or PI-positive HCT116 cells either left untreated or transfected with a control 
or hepcidin siRNA for 48 h in the presence or absence of exogenous hepcidin (HAMP) (1000 ng/mL). One of 5 separate experiments in which similar 
results were obtained is shown. B, C SYTOX green uptake and levels of HMGB1 in the culture supernatants of HCT116 cells either left untreated 
or transfected with a control or hepcidin siRNA (25 nmol/L) for 48 h. Data are expressed as mean ± SD of three experiments. ****p < 0,0001. D 
Representative Western blots showing the full length (F-L) and cleaved (N-T) GSDM E and β-actin in HCT116 cells either left untreated or transfected 
with a control or hepcidin siRNA (25 nmol/L) for 48 h. E Histograms showing the percentages of AV- and/or PI-positive HCT116 cells transfected 
with either a hepcidin siRNA (25 nmol/L) or co-transfected with control siRNA/hepcidin siRNA (25 nmol/L) plus GSDM-E siRNA (5 nmol/L) for 48 h. 
Data are expressed as mean ± SD of all experiments. Hepcidin siRNA vs hepcidin siRNA plus GASDM-E siRNA, **p < 0.01; ****p < 0,0001. F Heat map 
showing microarray-based differential expression, log2 (fold change) of TNF-related genes in HCT116 transfected with a control or hepcidin siRNA 
(25 nmol/L) for 48 h. G Histograms showing the levels of TNF protein in HCT116 either left untreated or transfected with a control or hepcidin siRNA 
(25 nmol/L) for 48 h; ****p < 0,0001. H Representative Western blots showing F-L GSDM E, N-T GSDM E, and β-actin. One of 4 separate experiments 
in which similar results were obtained is shown. I Histograms showing the percentages of AV- and/or PI- positive HCT116; data are expressed 
as mean ± SD of all experiments. *p < 0,05. J Representative images and relative graphs showing the volume of CT26-derived tumors in BALB/c 
mice. CT26 cells were transfected with either a control siRNA or hepcidin siRNA (25 nmol/L) for 36 h and subcutaneously injected into the left flank 
of mice (1 ×  106 per mouse) (day 0). Tumor growth was monitored until sacrifice (day 13). Each point in the graph represents the value of the tumor 
volume in each mouse. **p < 0,01. K Representative dot-plots showing the percentages of CD3+ CD8+ and CD3+ CD8− cells from CT26-derived 
tumors. One of 2 experiments in which 8 mice per group were analyzed is shown. L Representative images and the relative graph showing 
the volume of CT26-derived tumors. CT26 were transfected with either a control siRNA or hepcidin siRNA (25 nmol/L) for 36 h and subcutaneously 
injected into the left flank of BALB/c mice (1 ×  106 per mouse) (day 0). CD8+ cell depletion was made with intraperitoneal injection of α-CD8 (100 µg 
per mouse). Tumor growth was monitored until sacrifice (day 13). Each point in the graph represents the value of tumor volume in each mouse. 
**p < 0,01. M Tumor incidence following injection of CT26 or TS/A cells in mice that were previously vaccinated with hepcidin siRNA-transfected 
CT26 cells. Mitomycin-treated cells were injured at the same of vaccination as a positive control. N The percentage of mice free of tumors at day 
26 after the vaccination protocol as described in L and injected again into the right flank with CT26. O Representative images and the relative 
graph showing the volume of CT26-derived tumors in BALB/c mice injected with CT26 cells transfected with either a control or hepcidin siRNA 
(25 nmol/L) for 36 h and then subcutaneously injected into the left flank. PD-1 blockade was made with intraperitoneal injection of α-PD-1 (100 µg 
per mouse). Each point in the graph represents the value of tumor volume in each mouse; *p < 0,05; ***p < 0.001

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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challenged on the right flank 1 week later with wild-
type CT26 cells. Following re-challenging, tumors 
developed in 11/11 control mice and none of those vac-
cinated with hepcidin-silenced cells (Fig. S3F). In con-
trast, the vaccination with hepcidin silenced-CT26 cells 
did not prevent the development of tumors induced by 
TS/A cells, a murine mammary adenocarcinoma cell 
line, which expresses a repertoire of antigens different 
from those of CT26 cells (Fig.  1M and Fig. S3G) [11]. 

Most animals not developing tumors after the chal-
lenge with hepcidin-silenced CT26 cells were protected 
against a second inoculation of CT26 cells (Fig. 1N).

CRC exhibits a low response rate to immunotherapy 
due to the immunosuppressive TEM [12]. Since lytic cell 
death enhances anticancer immunity [13], we assessed 
whether hepcidin-deficient CRC cells responded ade-
quately to immunotherapy. CT26 cells, which are 
microsatellite stable (MSS) and unresponsive to PD-1 

Fig. 2 A, B Representative dot-plots and the corresponding graphs showing the percentages of CD3+ CD8+ and CD3+ CD8− cells producing 
cytokines in CT26-derived tumors taken from BALB/c mice intraperitoneally injected with α-PD-1 or IgG (both 100 µg per mouse). Each point 
in the graph represents the value of each mouse. *p < 0,05; **p < 0.01; ****p < 0.0001
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neuralization [14], were transfected with control or hep-
cidin siRNA and subcutaneously implanted into mice 
that were then treated with a blocking PD1 antibody 
(αPD-1) or control IgG. There was a significant reduc-
tion of the tumor volume and increased fraction of TNF-
expressing CD3+ CD8+ cells in mice engrafted with 
hepcidin-deficient CT26 cells and treated with αPD-1 as 
compared to the other groups (Figs. 1O, 2A, B).

Our results delineate a mechanism by which high 
hepcidin sustains CRC and suggest the use of hepcidin 
inhibitors in the treatment of cancer patients. Although 
such drugs appear to be well-tolerated and safe [15], fur-
ther studies are needed to validate their use in clinical 
settings.
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