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A B S T R A C T

Function-as-a-Service (FaaS) paradigm is increasingly attractive to bring the benefits of serverless computing
to the edge of the network, besides traditional Cloud data centers. However, FaaS adoption in the emerging
Cloud-to-Edge Continuum is challenging, mostly due to geographical distribution and heterogeneous resource
availability. This emerging landscape calls for effective strategies to trade off low latency at the edge of the
network with Cloud resource richness, taking into account the needs of different functions and users.

In this paper, we present QoS-aware offloading policies for serverless functions running in the Cloud-to-
Edge continuum. We consider heterogeneous functions and service classes, and aim to maximize utility given
a monetary budget for resource usage. Specifically, we introduce a two-level approach, where (i) FaaS nodes
rely on a randomized policy to schedule every incoming request according to a set of probability values, and
(ii) periodically, a linear programming model is solved to determine the probabilities to use for scheduling.
We show by extensive simulation that our approach outperforms alternative approaches in terms of generated
utility across multiple scenarios. Moreover, we demonstrate that our solution is computationally efficient
and can be adopted in large-scale systems. We also demonstrate the functionality of our approach through
a proof-of-concept experiment on an open-source FaaS framework.
1. Introduction

The Function-as-a-Service (FaaS) paradigm allows developers to
deploy modular code units (i.e., functions), written in the programming
language of their choice, and execute them on demand in a serverless
fashion, without the need of provisioning and managing the underlying
computing infrastructure. It is up to the FaaS provider to provision
the necessary computing resources anytime a function is invoked. This
is usually done by creating a software container in a node of the
provider’s infrastructure, providing an ephemeral, isolated environ-
ment to execute an instance of the function. Compared to traditional
approaches, FaaS enables faster and seamless elasticity, as a large
number of function instances can be spawned when necessary to cope
with load peaks. Moreover, users are only billed for the actual amount
of computing resources used to execute their functions (e.g., CPU time,
memory), eliminating costs associated with idle periods.

The popularity of FaaS has been consistently growing within the
Cloud ecosystem, with all the major Cloud providers now offering FaaS
services (e.g., AWS Lambda, Google Cloud Functions, Azure Functions).
The rapid proliferation of computational resources out of Cloud data
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centers, in the Cloud-to-Edge continuum, has naturally led to a grow-
ing interest in adopting FaaS at the edge of the network [1–3]. By
doing so, developers can leverage the benefits of serverless functions
for geographically distributed, pervasive and possibly latency-sensitive
applications. However, the adoption of FaaS in the continuum poses
several challenges [4], mostly related to limited and heterogeneous
resource availability, bandwidth-constrained and less reliable network
connectivity, privacy, and security concerns.

The research community has started investigating specific solutions
to ease the adoption and improve the performance of FaaS in the Cloud-
to-Edge continuum. Novel frameworks have been proposed that better
suit Edge environments, often exploiting lightweight function sand-
boxing mechanisms instead of OS-level virtualization (e.g., Faasm [5]
and Sledge [6], which rely on software-fault isolation), or decen-
tralized architectures to overcome the limitations of Cloud-oriented
frameworks (e.g., Colony [7], Serverledge [8], both designed for the
continuum). Although these frameworks significantly reduce the gap
towards seamless adoption of FaaS at the edge of the network, various
key challenges remain about how to optimally allocate and schedule the
limited computing resources available in the continuum, while meeting
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Quality of Service (QoS) requirements given by users. Indeed, despite
initial efforts in this direction (e.g., [9–12]), we still lack strategies to
effectively enjoy both the low latency of Edge and the resource richness
of Cloud, taking into account the needs of different functions and users.
In particular, function offloading provides a fundamental mechanism
to Edge nodes to forward some of the incoming invocation requests to
(likely) more powerful yet possibly distant nodes. However, devising a
policy to properly decide when, where, and which requests should be
offloaded remains an open research topic.

In this paper, we present a novel approach to compute QoS-aware
offloading policies for serverless functions running in the Cloud-to-Edge
continuum. Our approach considers heterogeneous functions and ser-
vice classes, each associated with different performance requirements
and a measure of their utility as perceived by users. Our approach is
designed to maximize the utility generated over time, given a monetary
budget for resource usage. We propose a two-level scheme to achieve
this goal. First, we adopt a randomized approach to schedule every
incoming request, possibly deciding to offload it to the Cloud or to
neighboring Edge nodes according to a set of offloading probability
values for every function and service class. Second, in order to opti-
mize the overall utility and ensure that QoS requirements of different
functions and user classes are met, we periodically recompute the
offloading probabilities by solving a suitable optimization problem
which takes the form of a simple and efficient linear programming
(LP) model. This model takes into account current resource availability,
expected workload, and QoS requirements for different functions and
user classes.

Our key contributions can be summarized as follows:

• We present an approach to serverless function offloading in
the Cloud-to-Edge continuum, which considers heterogeneous
functions and QoS classes (Sections 3–4). To this end, we rely
on a two-level scheme, where (i) each FaaS node runs a low-
overhead randomized policy to schedule every incoming request
(Section 5.1), parameterized by given offloading probabilities;
(ii) on a larger time-scale, the probabilities in use by each FaaS
node are optimized and updated.

• We formulate the problem of determining the offloading prob-
abilities for each FaaS node, function and service class as an
efficient linear programming problem (Sections 5.2–5.3), where
we maximize the expected utility generated by each FaaS node,
accounting for constraints on resource capacity and monetary
cost. We also integrate various strategies to estimate cold start oc-
currence (Section 5.4) and to deal with limited memory capacity
of FaaS nodes (Section 5.5) in the LP formulation.

• We evaluate our approach through extensive simulations and
compare it with alternative approaches (Section 6). Our results
show that our QoS-aware offloading policy consistently outper-
forms baselines in terms of generated utility and Cloud usage costs
across multiple and different scenarios. Moreover, we demon-
strate that our solution is computationally efficient and can be
adopted in large-scale systems with limited overhead.

• We present a proof-of-concept implementation of the QoS-aware
policy in Serverledge [8], an open-source FaaS framework pro-
posed by our group, and demonstrate its applicability through
prototype experiments (Section 7).

2. Related work

The increasing popularity of FaaS has attracted significant interest
from the research community over the last years, as surveyed in [13–
15]. Recently, we observed a surge of interest related to running server-
less functions beyond traditional Cloud data centers [1,2], bringing
functions closer to devices thanks to the emerging Cloud-to-Edge con-
2

tinuum (e.g., to handle IoT workloads [3]). However, adopting the FaaS
paradigm at the edge of the network poses new or renewed challenges,
mainly due to resource limitations and geographic distribution [4].

In this section, we narrow our attention to research efforts that
explicitly cope with FaaS deployment and execution in the Cloud-to-
Edge continuum. We first give an overview of the approaches to ease
FaaS adoption in this computing environments, and then focus on the
issues associated with function offloading.

2.1. FaaS in the Cloud-to-Edge continuum

Adopting FaaS is currently possible through commercial Cloud offer-
ings (e.g., AWS Lambda) or open-source frameworks (e.g., OpenWhisk,
OpenFaaS, KNative) that can be installed in on-premises infrastructures.
However, when targeting geographically distributed environments for
FaaS deployment, there is still little or no support from Cloud providers
(e.g., AWS offers Lambda@Edge, which has some restrictions com-
pared to AWS Lambda though) to properly exploit computing resources
in the Cloud-to-Edge continuum. Similarly, the most popular open-
source frameworks have been explicitly designed with clustered or
Cloud-based deployments in mind, often relying on centralized sched-
ulers or gateway components. For these reasons, researchers have
recently proposed novel frameworks (e.g., [5–8,16,17]) to overcome
these shortcomings.

Colony [7] is a framework for FaaS in the Cloud-Edge continuum,
especially targeting parallel computations. Colony lets nodes process
data on their resources, while also offering their computing capacity to
the rest of the infrastructure. Differently from most the existing FaaS
frameworks, Colony can transparently convert the logic of complex
user-given functions into task-based workflows backing on task-based
programming models. The generated workflows are then executed
over the infrastructure, possibly offloading tasks both horizontally and
vertically.

Serverledge [8] is an open-source FaaS framework developed within
our group, which relies on a decentralized design to run serverless func-
tions in Cloud-to-Edge environments. Similarly to Colony, Serverledge
has built-in support for function offloading, both from Edge to Cloud
and within Edge neighborhoods. Serverledge relies on Docker contain-
ers for function execution.

Designed for scalable and high performance remote function execu-
tion, 𝑓uncX [17] is a distributed FaaS framework that decouples cloud-
based management functionality from edge-hosted function execution,
supporting multiple runtime environments. Compared to Colony and
Serverledge, management and scheduling duties remain in the Cloud.

Some systems (e.g., [5,6]) focus on the integration of lightweight
function sandboxing mechanisms to better suit resource-constrained
deployments. Faasm [5] is an open-source research prototype that in-
troduced Faaslets, an isolation mechanism for high-performance server-
less computing. Faaslets isolate the memory of executed functions
using software-fault isolation (SFI), as provided by WebAssembly, while
allowing memory regions to be shared between functions in the same
address space. Based on Faaslets, Faasm significantly reduces the ini-
tialization time and memory footprint of function sandboxes, compared
to container-based approaches. Moreover, Faasm has built-in support
for function chaining and state management. Faasm runs using multiple
worker nodes, which can schedule and offload requests horizontally to
other workers. However, it does not explicitly consider geographically
distributed nodes.

Similarly, Sledge [6,18] is another FaaS framework specifically
designed for Edge environments, also exploiting SFI and WebAssembly-
based runtime environments for lightweight isolation. Sledge can or-
chestrate and schedule the execution of function compositions through
QoS-aware policies. However, to the best of our knowledge, Sledge
only targets single-node deployments and lacks the ability to exploit
additional hosts in the Cloud or in the continuum. The same limitation
affects tinyFaaS [16], a research prototype that relies on traditional
Docker containers for function isolation, but – to reduce overheads –
relies on static container pools, which must be configured upfront for

each function.



Future Generation Computer Systems 156 (2024) 1–15G. Russo Russo et al.

-

m

2.2. FaaS scheduling and offloading

The limited and possibly heterogeneous availability of computa-
tional resources in Edge environments requires careful planning of
resource allocation to multiple functions and users, especially in pres-
ence of QoS requirements to meet. As such, several solutions have been
proposed to place and manage serverless functions and applications at
the edge of the network, also considering the integration with Cloud
serverless services and platforms.

Strategies to schedule function execution across heterogeneous and
possibly resource-constrained Edge servers have been considered in
a number of works (e.g., [19–25]). They investigate optimal func-
tion placement with the goal of minimizing the completion time of
serverless applications under the trade-off between processing time
and communication overhead. For example, Deng et al. [22] propose
a proactive algorithm to split the data traffic between Edge nodes.
Schedulix [20] comprises a greedy algorithm to determine both the
order and placement of functions in a hybrid public–private cloud.
Costless [21] can fuse multiple functions to form a single function
appropriately for cost reduction before placing it on Edge and Cloud
nodes. NEPTUNE [23] exploits Mixed Integer Programming to dynam-
ically place latency-constrained functions on Edge nodes according
to users’ locations, by avoiding their saturation and exploiting GPUs
if available. Model-driven resource management algorithms based on
queueing theory have also been proposed, for example, in LaSS [24]
to determine the placement of each function and to auto-scale the
allocated resources in response to workload dynamics. Peri et al. [25]
propose a two-level scheduling approach, where the first level deter-
mines whether to schedule in a public Cloud or private Edge according
to a simple cost-based heuristic, while the second level makes place-
ment decisions on Edge nodes with the overall goal to satisfy both
application and system requirements.

Ascigil et al. [26] consider the more general problem of resource al-
location for serverless functions running in an Edge-Cloud environment
and propose centralized and decentralized optimization approaches.
The scenario they consider is similar to the one targeted in this work,
with multiple functions and groups of users. However, they assume
that containers for function execution are statically provisioned in the
infrastructure, rather than being created and terminated dynamically,
and thus do not cope with cold starts. Instead, we define a system model
based on the behavior of the most popular FaaS frameworks, including
the issues related to dynamic container management.

Some works focus on exploiting function offloading (e.g., [7–10,27–
32]), where a FaaS node, after receiving an invocation request, decides
to forward the request to another node instead of serving it. Offloading
can be motivated by a variety of reasons, including resource availabil-
ity, load balancing, energy efficiency, and should be carefully leveraged
to avoid negative impact on QoS. We distinguish between vertical
offloading, where requests are offloaded to nodes at higher levels of
the infrastructure (e.g., from Edge to Cloud), and horizontal offloading,
where requests are offloaded to nodes at the same infrastructure level
(e.g., within the same Edge zone).

Among the frameworks described above, we remark that Colony and
Serverledge support both horizontal and vertical offloading, whereas
Faasm only supports horizontal offloading. Conversely, popular open-
source frameworks for the Cloud (e.g., OpenWhisk, OpenFaaS) have no
native support for offloading, although researchers have built federated
systems on top of them with offloading abilities. For example, horizon-
tal offloading is exploited in DFaaS [27], which relies on an overlay
network to federate a set of OpenFaaS nodes at the Edge. By means of
horizontal offloading, DFaaS manages to balance load among the feder-
ated nodes. A similar scenario is studied by Cicconetti et al. [10], who
propose an Internet Protocol-inspired algorithm to offload invocation
requests within a network of FaaS nodes.

A few works exploit vertical offloading, usually to forward requests
3

from the edge of the network towards the Cloud. For instance, Das (
et al. [9] consider the problem of scheduling the execution of serverless
pipelines either at the Edge or in the Cloud. The proposed approach
allows users to specify latency and cost requirements and determines
where to execute the task based on prediction models of the task
duration. We will compare our policy to this approach, adapting it to
our scenario.

Reinforcement learning has been recently exploited in few works
[28,32] to drive offloading decisions of serverless functions using a
distributed architecture. In [28], a deep reinforcement learning (DRL)
approach for function offloading is proposed, focusing on a scenario
where functions can be offloaded from IoT devices to Edge nodes.
They use DRL to minimize the long-term system latency cost, a metric
computed in terms of function response time and deadline, similar to
the utility metric we will introduce in the following. AttentionFunc [32]
is an approach for distributed function offloading in the Edge-Cloud
continuum. It is based on multi-agent DRL, which determines whether
to execute functions on an Edge node or in the Cloud with the goal to
optimize the function completion time and cost. However, differently
from our approach, these two works do not consider multiple classes
of users and horizontal offloading and evaluate the proposed policy
only by means of simulation. Most importantly, relying on DRL, their
solutions require computationally intensive training for each node in
the system. Instead, we look for a lightweight solution that can be
adopted in large-scale FaaS systems.

A game-theoretic approach to address offloading is presented in
[29], which considers the interaction between self-interested wireless
devices that can reserve communication and computing resources for
latency-sensitive applications, and a FaaS Edge operator that allocates
resources for function execution. The authors consider both the case of
perfect and imperfect information. Another game-theoretic approach
in the form of a Stackelberg game is proposed in [33] to model
the interaction between a profit-maximizing FaaS Edge operator, that
decides the price, resource allocation and set of functions to cache,
and cost-minimizing wireless devices, which decide whether to of-
fload their functions. We observe that these game-theoretic approaches,
although interesting, suffer from the limitation of considering only
vertical offloading and to a single Edge node.

Vertical offloading is also exploited in AuctionWhisk [30], an auction
inspired approach integrated in OpenWhisk, which targets a FaaS
system running in a Fog computing scenario. The proposed approach
relies on auctions where users bid on resources, while FaaS nodes
decide locally which functions to execute and which to offload towards
the Cloud in order to maximize revenue.

UnFaaSener [31] considers a different offload scenario. Instead of
simply offloading requests from a FaaS node to another, UnFaaSener
studies how to offload function execution from a serverless platform
(e.g., Google Cloud Functions) to a traditional VM, to take advantage
of underutilized servers in the user’s infrastructure.

For a comprehensive discussion of task offloading in Edge and Cloud
systems, beyond the specific FaaS domain, we refer interested readers
to [34,35].

3. System architecture

We consider a FaaS system comprising several distributed comput-
ing nodes spread across the Cloud-to-Edge continuum. As depicted in
Fig. 1, each FaaS node is located either in a Cloud data center or within
an Edge zone1 (e.g., an urban area).

Inspired by emerging FaaS frameworks for the Edge (e.g., [5,8,16]),
we assume that each node is capable of autonomously scheduling and
serving function invocation requests, without centralized schedulers or
gateways.

1 We use the expression ‘‘Edge zone’’ in a broad sense to simplify ter-
inology, possibly referring to different types of computing environments

e.g., Edge, far Edge, Fog), other than the Cloud.
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Fig. 1. System overview.

The FaaS system enables users to invoke multiple serverless func-
tions, likely characterized by heterogeneous resource demands. As each
node can concurrently serve requests for different functions, possibly
coming from multiple users, serverless functions are usually executed
within isolated execution environments. With no loss of generality,
in the following we will assume these environments to be software
containers, as for most existing FaaS frameworks.

Containers are created by the FaaS platform and initialized with
the code and libraries needed for each function. Therefore, each node
maintains a pool of active containers for each function, which is ini-
tially empty. In principle, upon arrival of an invocation request, a new
container is created and added to the pool. In this case, the incoming
request has to wait for the container to be fully initialized before being
served and it is said to experience a cold start, which can introduce
additional delays in the order of hundreds of milliseconds or even
seconds. To limit the occurrence of cold starts, upon the termination
of a function, idle containers are marked as warm and kept in the
pool. When a new request for the function arrives, any available warm
container is reused to serve it. Idle warm containers usually stay in the
pool for a maximum time (e.g., about 10–15 minutes in commercial
Cloud FaaS offerings) or until their resources are reclaimed by the
node.

Clearly, spawning a new container is only possible if enough com-
putational resources (e.g., memory) are available on the node. When
no container is available nor can be created to serve a request, a
node can either discard the request or offload it to another node.
Specifically, Edge nodes are able to offload requests both to the Cloud
(i.e., vertical offloading) or to a neighboring node within the same
Edge zone (i.e., horizontal offloading). For this purpose, we assume
that Edge nodes pick a subset of peers in their same zone, based,
e.g., on network proximity. Peers periodically exchange information on
resource availability (as done, e.g., in [8]). By doing so, the target node
for Edge offloading can be selected through weighted round-robin or
weighted randomization.

Invocation requests are also associated with a service class, char-
acterized by one or more Quality-of-Service (QoS) requirements and
attributed (e.g., maximum response time, priority level). Depending on
the specific application scenario, the service class for each request may
be explicitly set by users or automatically determined by the system
for requests of each user (e.g., based on the subscription level of each
user).
4

4. System model

We introduce the model of the FaaS system we consider in this
section, including the computing infrastructure on which the FaaS
system relies, the offered functions, and the different service classes
with their QoS requirements.

4.1. Faas computing infrastructure

The FaaS system comprises a set of nodes 𝑁 = 𝑁𝐸 ⋃

{𝛺}, where
𝑁𝐸 are Edge nodes and 𝛺 is a ‘‘virtual’’ node that abstracts the whole
Cloud-end of the system as a single node. The assumption of having a
single Cloud node allows us to simplify notation in the following and is
coherent with the black-box view that we usually have of public Cloud
FaaS platforms (e.g., AWS Lambda), whose internals are not exposed
to users.

Each node 𝑢 ∈ 𝑁 is characterized by 𝑀𝑢, that is the amount
of memory available on the node, 𝜎𝑢, a relative speedup factor with
respect to a reference processor, and 𝑐𝑢, a monetary price associated
with function execution. Inspired by the pricing of commercial FaaS
offerings, we assume 𝑐𝑢 to indicate the cost of running a function per
unit of time and per unit of allocated memory.

Furthermore, given any pairs of nodes 𝑢, 𝑣 ∈ 𝑁 , we denote by 𝛿𝑢,𝑣
the network round-trip time (RTT) between 𝑢 and 𝑣, with 𝛿𝑢,𝑢 = 0.
Similarly, we denote by 𝑏𝑢,𝑣 the available network bandwidth for data
transfers between nodes 𝑢 and 𝑣. Based on network proximity, each
Edge node 𝑢 ∈ 𝑁𝐸 picks a set 𝜋𝑢 of neighboring Edge nodes that
can be contacted for request offloading. For instance, in the prototype
we use for implementation (see, Section 7), nodes run the Vivaldi
algorithm [36] to establish a network coordinate system and evaluate
proximity.2

4.2. Functions and response time model

The set of functions available for execution is denoted as  . Each
function 𝑓 ∈  is characterized by its memory demand 𝑚𝑓 ∈ Z+, which
defines the amount of memory that must be reserved for each instance
of 𝑓 . Moreover, we denote as 𝑑𝑖𝑓 the random variable associated with
the size of the input data provided by users when invoking 𝑓 . Similarly,
𝑑𝑜𝑓 denotes the data size of output returned by 𝑓 .

We denote as 𝑇 𝑢
𝑓 the random variable associated with the execution

time of 𝑓 on a computing node 𝑢. Similarly, 𝐼𝑢𝑓 denotes the time
required to initialize a new container for 𝑓 on 𝑢 (i.e., the cold start
delay). When the reference to the node is not ambiguous, we will
simply write 𝑇𝑓 and 𝐼𝑓 to improve readability.

Accordingly, for a node 𝑢, the response time of locally served
requests 𝑅𝑢

𝑓 can be formulated as follows:

𝑅𝑢
𝑓 = 𝑇 𝑢

𝑓 + �̂�𝑢𝑓 𝐼
𝑢
𝑓 (1)

where �̂�𝑢𝑓 is the probability of a cold start of function 𝑓 to occur on
node 𝑢.

For requests offloaded to another node 𝑣, the response time 𝑅𝑢,𝑣
𝑓

accounts also for the network delay between 𝑢 and 𝑣 as well as the
time required to transfer user-given input to the destination node. The
response time can be expressed as follows:

𝑅𝑢,𝑣
𝑓 = 𝑇 𝑣

𝑓 + �̂�𝑣𝑓 𝐼
𝑣
𝑓 + 𝛿𝑢,𝑣 +

𝑑𝑖𝑓 + 𝑑𝑜𝑓
𝑏𝑢,𝑣

(2)

where the term 𝛿𝑢,𝑣 accounts for the communication delay, and
𝑑𝑖𝑓+𝑑

𝑜
𝑓

𝑏𝑢,𝑣
is the data transfer time.

2 It is worth noting that, although the presented model treats infrastructure
parameters as constant, as explained in the next sections, our approach
periodically refreshes such parameters at run-time to compute an updated
offloading policy. Therefore, our approach can cope with dynamic working
conditions (e.g., varying resource prices or network latencies).
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4.3. Service classes

Function invocation requests specify, along with the function 𝑓 ∈ 
o be executed, an associated service class. The set of available service
lasses is denoted as . Each class 𝜅 ∈  is characterized by:

• 𝑅𝑚𝑎𝑥
𝜅 ∈ R+, maximum desired response time. In our context,

response time represents the interval between the time a request
first reaches any FaaS node and the time a response is sent to the
invoking client.

• 𝑢𝜅 ∈ R+
0 , utility generated by successfully serving a request. We

consider a request to be successfully served if (i) the function code
is executed on any node and (ii) the response time of the request
does not exceed the maximum response time 𝑅𝑚𝑎𝑥

𝜅 .
• 𝜙𝜅 ∈ R+

0 , utility penalty paid in case of a request is served by
the system and the response time exceeds the maximum response
time 𝑅𝑚𝑎𝑥

𝜅 .

For every function–class pair (𝑓, 𝜅), we denote as 𝜆𝑓,𝜅 the (mea-
sured) average arrival rate of requests for 𝑓 in class 𝜅.

5. QoS-aware offloading policy

According to the system description given in Section 3, when an
Edge node receives a new request of class 𝜅 for a function 𝑓 , the
scheduler component of the node has to make a decision regarding
the execution and possible offloading of the request. Specifically, the
following actions are available to the scheduler:

(1) local execution of the function (L, for short);
(2) offloading to the Cloud (C);
(3) offloading to a neighbor Edge node (E);
(4) discarding the request (D).

Actually, some of the actions above may not be eligible for some
requests. Indeed, local execution is only possible if the node has com-
putational resources for it (i.e., a warm container or enough memory
to launch a new one). Moreover, we do not allow the scheduler to
offload a request more than once, to prevent long ‘‘offloading chains’’
and ping-pong effects.

We recall that each request generates some utility, if it is completed
within the associated maximum response time. The amount of gen-
erated utility depends on the QoS class of the request and, for some
classes, violating the response time requirement will cause a utility
penalty instead. As such, our goal is to devise a policy to properly
schedule incoming requests on every node so as to maximize the utility
generated over time, while minimizing the penalties. In the following,
we will use the expression net utility to refer to the generated utility
left after subtracting the penalties, which represents our optimization
objective.

Furthermore, according to the cost model introduced above, re-
source usage for function execution causes the payment of a monetary
cost. We consider a maximum hourly budget 𝐶𝑚𝑎𝑥 to be spent for
resource usage.

To devise a policy that addresses this problem, we resort to a two-
level solution. We equip each node in the system with a lightweight
randomized scheduling heuristic, which introduces minimal overhead
in the processing of every request. As described below, the heuristic
approach relies on a set of parameters (i.e., probability vectors) that
are periodically and asynchronously updated through the resolution of
an optimization problem. In the rest of this section, we first present the
5

randomized policy and then illustrate the optimization problem. m
Algorithm 1: Node scheduling policy
Data: (𝑓, 𝜅) ⊳ Request function and QoS class
Data: 𝑛𝑜 ≥ 0 ⊳ Times the request has been offloaded
Data: 𝐩 = [𝑝𝐿𝑓,𝜅 , 𝑝

𝐶
𝑓,𝜅 , 𝑝

𝐸
𝑓,𝜅 , 𝑝

𝐷
𝑓,𝜅 ]

Result: decision ∈ {𝐿,𝐶,𝐸,𝐷}
1 if 𝑛𝑜 > 0 then
2 𝑝𝐶𝑓,𝜅 , 𝑝

𝐸
𝑓,𝜅 ← 0 ⊳ No offloading

3 if CannotExecuteLocally(𝑓) then
4 𝑝𝐿𝑓,𝜅 ← 0 ⊳ No local exec.

5 decision ← RandomizedChoice(𝐩)

5.1. Scheduler policy

We propose the following randomized policy to make a scheduling
and offloading decision for each request. Each node relies on a vector
𝐩𝐟 ,𝜿 = [𝑝𝐿𝑓,𝜅 , 𝑝

𝐶
𝑓,𝜅 , 𝑝

𝐸
𝑓,𝜅 , 𝑝

𝐷
𝑓,𝜅 ] for each function–class pair (𝑓, 𝜅), which is a

discrete probability distribution over the scheduling actions introduced
above. Therefore, the probabilities in 𝐩𝑓,𝜅 denote:

• 𝑝𝐿𝑓,𝜅 : probability of serving a request locally;
• 𝑝𝐶𝑓,𝜅 : probability of offloading a request to the Cloud;
• 𝑝𝐸𝑓,𝜅 : probability of offloading a request to a neighboring Edge

node;
• 𝑝𝐷𝑓,𝜅 : probability of rejecting a request;

According to this probability distribution, the node can make a
randomized decision for every incoming request, possibly accounting
for the ineligibility of some actions. The algorithm first checks whether
the request has already been offloaded (line 1) and, if this is the case, it
prohibits Edge offloading by setting the associated probability to zero
(line 2). Similarly, we prohibit local execution if the node has currently
not enough resources available (line 4). Then, we randomly make a
decision based on the resulting probability vector.3

Budget enforcement. The algorithm can be slightly extended to
introduce a stricter enforcement of the monetary budget for Cloud
usage. For this purpose, an additional check is performed at the end
of the algorithm if Cloud offloading has been selected. Specifically, we
verify whether the current average hourly expense 𝐶𝐻 (𝑡) exceeds the
udget 𝐶𝑚𝑎𝑥 and, if this happens, we do not offload the request and
rop it.

.2. Offloading policy optimization

The randomized policy used by each node is based on the prob-
bility vectors 𝐩𝑓,𝜅 , which must be determined for every function 𝑓
nd class 𝜅. In order to optimize system performance, we assume that
ach node computes its own set of offloading probabilities, by solving
suitable utility-based optimization problem, which takes the form a

inear programming problem.
The decision variables in our problem correspond to the matrix 𝐏,

hich comprises all the probability vectors 𝐩𝑓,𝜅 :

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

— 𝐩𝑓1 ,𝜅1 —
— 𝐩𝑓1 ,𝜅2 —

…
— 𝐩𝑓𝑖 ,𝜅𝑗 —

…

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,∀𝑓 ∈  , 𝜅 ∈ 

It is worth observing that these probabilities are computed sepa-
rately for each FaaS node, as their workload and resource capacity may

3 After updating one or more probabilities, the sum of the elements of 𝐩
ay differ from 1. We assume a normalization to be carried out when needed.
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differ. Hereafter, we will use the symbol 𝑢 to indicate the node for
which we perform the probability computation. For every function and
QoS class, we will have to suitably adjust the probability of executing
requests on 𝑢, offloading to the Cloud 𝛺, or offloading to a neighboring
Edge node. As explained above, the decision of offloading to a neigh-
boring Edge node does not include information about the specific node
where the request is offloaded. Therefore, in our optimization problem
we model Edge nodes as a single ‘‘virtual’’ node, whose resource
capacity equals the sum of the capacity of each Edge peer. Specifically,
we will denote the virtual Edge node as 𝑒. The memory capacity of 𝑒,
denoted as �̃�𝑒, is computed as:

�̃�𝑒 =
∑

𝑤∈𝜋𝑢

𝛼𝐸𝑤�̃�𝑤 (3)

where �̃�𝑤 is the unused memory of each peer node 𝑤 ∈ 𝜋𝑢, and
𝐸
𝑤 ∈ [0, 1] indicates the memory fraction that 𝑤 exposes to peers
e.g., 𝛼𝐸𝑤 = 1 means all the available memory).

In case of Edge offloading, the choice of the actual peer where the
equest is forwarded is made based on current memory availability
e.g., through randomization or weighted round-robin). For this pur-
ose, we compute the probability 𝑝𝑤 of selecting each peer 𝑤 ∈ 𝜋𝑢 as:

𝑤 =
𝛼𝐸𝑤�̃�𝑤

�̃�𝑒
(4)

To estimate the expected execution time of a function 𝑓 on 𝑒, we
compute it as follows, considering the probability of the request being
actually executed on each peer:

𝑇 𝑒
𝑓 =

∑

𝑤∈𝜋𝑢

𝑝𝑤𝑇
𝑤
𝑓 (5)

By the same reasoning, we estimate the round-trip time to 𝑒, its
monetary usage cost and the other metrics of interest.

As regards the optimization objective, our goal is to maximize the
net generated utility, defined as follows.

𝑈 (𝐏) = 𝑈+(𝐏) − 𝑈−(𝐏) (6)

where 𝑈+(𝐏) is the expected utility generated with the probability
matrix 𝐏, and 𝑈−(𝐏) are the penalties incurred for response time
violations.

The expected utility is formulated as follows:

𝑈+(𝐏) =
∑

𝜅∈
𝑢𝜅

∑

𝑓∈
𝜆𝑓,𝜅

[

𝑝𝑓,𝜅𝐿 𝑃 (𝑅𝑢
𝑓 ≤ 𝑅𝑚𝑎𝑥

𝜅 ) +

+𝑝𝑓,𝜅𝐶 𝑃 (𝑅𝛺
𝑓 ≤ 𝑅𝑚𝑎𝑥

𝜅 ) +

+𝑝𝑓,𝜅𝐸 𝑃 (𝑅𝑒
𝑓 ≤ 𝑅𝑚𝑎𝑥

𝜅 )
]

(7)

where we sum the utility generated by each class, which is computed
multiplying the class utility 𝑢𝜅 and the rate of requests in class 𝜅
satisfying the response time requirement. For this purpose, we need
to compute the fraction of requests of every function that meets their
deadline when executing on the local node, in the Cloud and in an-
other Edge node (see, Section 5.4 for details on cold start probability
estimation).

The expected incurred penalty is formulated in analogous manner:

𝑈−(𝐏) =
∑

𝜅∈
𝜙𝜅

∑

𝑓∈
𝜆𝑓,𝜅

[

𝑝𝑓,𝜅𝐿 𝑃 (𝑅𝑢
𝑓 > 𝑅𝑚𝑎𝑥

𝜅 ) +

+𝑝𝑓,𝜅𝐶 𝑃 (𝑅𝛺
𝑓 > 𝑅𝑚𝑎𝑥

𝜅 ) +

+𝑝𝑓,𝜅𝐸 𝑃 (𝑅𝑒
𝑓 > 𝑅𝑚𝑎𝑥

𝜅 )
]

(8)

5.3. Linear programming formulation

To determine the probability matrix 𝐏 we formulate the following
linear problem:
6

max 𝑈 (𝐏)
𝑐𝛺
∑

𝑓∈

∑

𝜅∈
𝜆𝑓,𝜅𝑝

𝐶
𝑓,𝜅𝑇

𝛺
𝑓 𝑚𝑓 ≤ 𝐶𝑚𝑎𝑥

𝑠 (9)

∑

𝑓∈
𝑚𝑓

∑

𝜅∈
𝑥𝑓,𝜅 ≤ �̃�𝑢 (10)

∑

𝑓∈
𝑚𝑓

∑

𝜅∈
𝑦𝑓,𝜅 ≤ �̃�𝑒 (11)

𝑝𝐿𝑓,𝜅𝜆𝑓,𝜅𝑇
𝑢
𝑓 = 𝑥𝑓,𝜅

∀𝑓 ∈ 
∀𝜅 ∈ 

(12)

𝑝𝐸𝑓,𝜅𝜆𝑓,𝜅𝑇
𝑒
𝑓 = 𝑦𝑓,𝜅

∀𝑓 ∈ 
∀𝜅 ∈ 

(13)

𝑝𝐿𝑓,𝜅 + 𝑝𝐶𝑓,𝜅 + 𝑝𝐷𝑓,𝜅 + 𝑝𝐸𝑓,𝜅 = 1 ∀𝑓 ∈ 
∀𝜅 ∈ 

(14)

𝑝𝑋𝑓,𝜅 ∈ [0, 1]
𝑋 ∈ {𝐿,𝐶,𝐸,𝐷}

∀𝑓∈
∀𝜅∈

𝑥𝑓,𝜅 ∈ R+ ∀𝑓 ∈ 
∀𝜅 ∈ 

𝑦𝑓,𝜅 ∈ R+ ∀𝑓 ∈ 
∀𝜅 ∈ 

where: (1) in addition to the scheduling action probabilities 𝑝𝑋𝑓,𝜅 , 𝑋 ∈
{𝐿,𝐶,𝐸,𝐷}, 𝑓 ∈  , 𝜅 ∈ , we introduce the following auxiliary
variables

• 𝑥𝑓,𝜅 that represent the average number of instances of 𝑓 provi-
sioned on the local node serving requests of class 𝜅, for every
function and class; in other words, they represent the share of
resources on the node allocated to (𝑓, 𝜅). Note that these variables
are not strictly necessary for problem formulation, as they can
expressed in terms of probability variables, but we include them
to improve formulation readability.

• Similarly, 𝑦𝑓,𝜅 that represent the average number of instances of
𝑓 provisioned on the Edge node 𝑒 to serve requests of class 𝜅

and, (2) constraints (9)–(13) captures the resources’ related constraints,
that is,

• Constraint (9) imposes a maximum monetary budget for Cloud
usage. As the budget 𝐶𝑚𝑎𝑥 is defined on an hourly basis, we simply
let 𝐶𝑚𝑎𝑥

𝑠 = 𝐶𝑚𝑎𝑥∕3600 represent the budget per second.
• Constraint (10) models the limited memory capacity of the local

node. Note that the memory capacity bound is given by �̃�𝑢 ≤
𝑀𝑢, indicating that the memory exposed by the node can be
lower than the total capacity (we will better explain this point in
Section 5.5). We also remark that we limit our discussion to mem-
ory capacity, following the approach taken by most public FaaS
offerings, where users can only configure memory allocation and
other resources (e.g., CPU shares) are proportionally assigned.
Nevertheless, our model can be readily extended to account for
other computational resources in addition to memory.

• Constraint (11) models the limited memory capacity of the Edge
node 𝑒, as defined in (3).

• Constraint (12) relates the probability of serving requests locally
𝑝𝐿𝑓,𝜅 to the number of provisioned instances 𝑥𝑓,𝜅 , applying Little’s
Law [37]. Constraint (13) has the same role for variables 𝑝𝐸𝑓,𝜅 and
𝑦𝑓,𝜅 .

Being linear, the problem can be efficiently resolved using standard
techniques and solvers for linear programming. Moreover, it can be
observed that both the number of variables and constraints in the
formulation grow linearly with functions and QoS classes, and are
independent of the number of considered Edge neighbors, as they are
abstracted away by the virtual node 𝑒. The results presented in the
following will confirm that computing the optimal probabilities can be
done with limited computational effort.

5.4. Cold start probability estimation

Formulating the utility expression introduced in (7) requires us to

compute the CDF of function response time on the local node 𝑢, in the
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Cloud and on the Edge node 𝑒. The same computation can be used to
ormulate the penalties in (8), as 𝑃 (𝑋 > 𝑥) = 1 − 𝑃 (𝑋 ≤ 𝑥).

Expressions for the response time of locally served requests and
offloaded requests have been given, respectively, in (1) and (2). We
recall from those equations that response time mostly depends on
(i) function execution time, (ii) initialization time, in case of cold start,
and (iii) probability of cold start occurrence.

As regards (i), the problem of studying the execution time distri-
bution of serverless functions, and tasks in general, has been widely
investigated, via, e.g., profiling, log analysis. As these techniques are
beyond the scope of this paper, we assume that information on the
execution time distribution is provided to the scheduler. Specifically,
we assume function execution time to follow the exponential distribu-
tion. Similarly, we assume estimates of the initialization time of each
function to be available (e.g., after analysis of execution logs).

As regards (iii), we consider different techniques to estimate the
probability of having a cold start for each function on the
local/Cloud/Edge nodes. In particular, the following approaches are
considered:

• Heu1: a naive approach that uses the historical cold start fre-
quency on a given node to estimate the future probability.

• Heu2: an approach similar to Heu1, where historical cold start
frequency per function is used to estimate the future probability.

• SMP: a model based on semi-Markov processes, presented in [38]
and implemented as open-source software,4 to study the steady-
state cold start probability of serverless platforms.

5.5. Dynamic memory constraint

The problem presented in Section 5.3 takes into account the mem-
ory capacity of the local node to determine how many instances of
each function can be concurrently allocated. We observed that con-
straint (10) uses a value �̃�𝑢 ≤ 𝑀𝑢 to bound the memory availability of
the node. The reason we do not simply use the nominal memory capac-
ity 𝑀𝑢 is that the probability optimization possibly leads to complete
allocation of the node resources. While it is desirable in principle, it
is well known from queueing theory that system performance quickly
degrades when resource utilization is closer to 100%.

To address this problem, a common approach is to keep resource
utilization below a pre-defined threshold 𝜃 (e.g., 𝜃 = 75%). However,
determining the optimal value for this threshold a priori, for any
given workload and infrastructure, is not trivial and would require
extensive tuning. In this work we adopt a different approach and let the
system automatically adapt such threshold at run-time, by dynamically
adjusting the fraction of the available memory that can be allocated to
functions, i.e., �̃�𝑢 = 𝜃𝑢𝑀𝑢.

Specifically, we keep a count of how many requests scheduled for
local execution must be re-scheduled due to resource shortage. Dividing
this count by the total number of requests scheduled for local execution,
we obtain an empirical estimate of the ‘‘blocking’’ probability 𝑝𝐵 of the
node. If 𝑝𝐵 > 0 in the reference time window, we update 𝜃 as follows:

𝜃 ← 𝜃(1 −
𝑝𝐵
𝛽
) (15)

Otherwise, we increase 𝜃:

𝜃 ← min {1, 𝜃(1 + 𝛾)} (16)

In this work, we set 𝛽 = 2 and 𝛾 = 0.1.
A similar approach is used by each node to adjust the fraction of its

unused memory to be offered to peers for offloading (see, Eq. (3)). In
this case, we consider as ‘‘blocked’’ requests offloaded from other nodes
that cannot be executed due to resource shortage.

4 https://github.com/pacslab/serverless-performance-modeling
7
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6. Evaluation

We evaluate the proposed offloading policy by simulation. We
implement the simulator in Python, using the PuLP5 library for the LP
formulation and the GLPK6 solver for the resolution. In this section,
we first describe the experimental setup we use and then discuss the
simulation results.

6.1. Experimental setup

Infrastructure. According to the system model presented in Sec-
ion 4, we consider 1 Cloud node 𝛺 and a set 𝑁𝐸 of 10 Edge nodes.

Memory capacity is set as 𝑀𝛺 = 128 GB and 𝑀𝑢 = 4 GB for every
𝑢 ∈ 𝑁𝐸 . For simplicity, we consider an identical speedup value
𝜎𝑢 = 1 for Cloud and Edge nodes, and set the Cloud usage cost as
𝑐𝛺 = 0.00005 $/GB-s. In most the experiments, relying on the same
approach adopted in [9], we associate a cost only with the Cloud
node 𝛺 (e.g., a commercial FaaS platform), and assume that the FaaS
provider owns/rents Edge nodes, and hence the amortized cost per
single request is negligible. To demonstrate that the model is general
enough, we also present a specific experiment where we associate a
cost with Edge nodes too.

For all the pairs of Edge nodes, we set identical network latency
equal to 5 ms; for the latency between Edge and Cloud, we con-
sider different values {50 ms, 100 ms, 200 ms}. As regards the network
bandwidth, we assume 100 Mbps between Edge nodes, and 10 Mpbs
between Edge and Cloud. Each Edge node randomly picks 3 peers for
horizontal offloading.

Functions and invocations. In each experiment, we consider invo-
cation requests targeting 5 functions with different resource demands.
To avoid the results being affected by an arbitrary choice of request
inter-arrival time and service time distribution, in the experiments we
randomly mix different distributions. In particular, for the execution
time of each function we randomly pick a distribution among Expo-
nential, Erlang-2 and Erlang-4, with the mean value uniformly sampled
from (100, 500) ms. Similarly, the memory demand of each function is
uniformly sampled from (128, 1024) MB, and the initialization time from
(250, 750) ms. The input data size for each function is sampled from a
truncated normal distribution, with mean and standard deviation equal
to 1 KB, and supports (100B, 5MB).

Invocation requests to each function are modeled as independent
arrival processes, with mean arrival rate 𝜆 = 10req/s. While the mean
arrival rate is fixed, in each experiment we randomly associate each
function with a different inter-arrival time distribution, choosing from:
Exponential, Erlang-2, Hyperexponential, a 2-state Markov Modulated
Poisson Process (MMPP). These distributions lead to arrival processes
with different levels of variability. Moreover, MMPP differ from the
other ones as they model bursty arrivals.

We assume that all invocation requests are directed to Edge nodes.7
Moreover, except for an experiment where it is differently stated, we
consider request arrivals to a single Edge node in the infrastructure,
to simplify configuration and analysis. We will also consider an ex-
periment where arrival rates change over time, increasing/decreasing
workload intensity.

QoS classes. We consider the 4 service classes specified in Ta-
ble 1. Invocation requests are randomly tagged with one of the classes,
according to the probabilities reported in the last column of the table.

Offloading policies. We compare different offloading policies in
the experiments, including the one presented in this work and various
baselines. Specifically, we consider the following approaches:

5 https://coin-or.github.io/pulp/
6 https://www.gnu.org/software/glpk/
7 In practice, we can expect some requests to directly reach Cloud nodes.

owever, as the Cloud has abundant computing resources to accommodate

ncoming requests, this additional traffic has negligible impact on our problem.

https://github.com/pacslab/serverless-performance-modeling
https://coin-or.github.io/pulp/
https://www.gnu.org/software/glpk/
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Table 1
Service classes used in the experiments.

Class 𝜅 𝑅𝑚𝑎𝑥
𝜅 𝑢𝜅 𝜙𝜅 Class prob.

Standard 0.5 s 0.01 – 70%
Critical-1 0.5 s 1.00 – 10%
Critical-2 0.5 s 1.00 0.75 10%
Batch ∞ 1.00 – 10%

Table 2
Considered policies and associated labels. (*): our contribution.

Label Policy

Rand Random
Bc Basic: local execution when possible, otherwise Cloud
Be Basic with Edge offloading
Bc+ Basic with budget enforcement
minR Local/Cloud to minimize resp. time
minR+ minR + budget enforcement
minC Local/Cloud to minimize cost, given a maximum response time

* QoSc QoS-aware, without Edge offloading
* QoSc+ QoS-aware, without Edge offloading + budget enforcement
* QoS QoS-aware
* QoS+ QoS-aware + budget enforcement

• Our QoS-aware policy (denoted below as QoS, for short). We also
consider a variant where offloading is only allowed to the Cloud
(QoSc), and two additional variants where the monetary budget
is strictly enforced (see the last part of Section 5.1), denoted as
QoS+ and QoSc+.

• A baseline policy (Rand) that randomly makes decisions for every
request.

• A basic heuristic policy (Bc), inspired by the one used in [8],
that greedily executes all requests on the local node if enough
resources are available, and offloads to the Cloud otherwise.
We also consider a variant Bc+ where the availability of Cloud
offloading is subject to the budget constraint; and a variant Be
that offloads requests to Edge peers when necessary rather than
to the Cloud.

• A heuristic policy (minR), adapted from the one presented in [9],
that for each request estimates the response time (i) if the request
is executed on the node, and (ii) if it is offloaded to the Cloud, ac-
counting for cold start probability, network latency, and function
execution time. The option leading to the minimum response time
is selected. Similarly to the other policies above, we also define
a variant minR+ where Cloud offloading is disabled when the
average hourly expenses exceed the budget 𝐶𝑚𝑎𝑥.
Moreover, we consider a variant policy minC that, after estimat-
ing the local and remote (i.e., in the Cloud) response time, picks
the least-costing option whose expected response time is below
the deadline (i.e., the maximum response time for the service
class). In other words, Cloud offloading is only selected if it allows
us to meet the QoS requirement and the local node does not.

For convenience, Table 2 provides a summary of the policies con-
sidered and associated short labels.

Other parameters. We simulate the execution of the system for one
hour, replicating every experiment 10 times using different seeds for
random number generation. We consider different values for the Cloud
usage budget 𝐶𝑚𝑎𝑥 ∈ {0.25, 0.5, 1, 10} $/h. For our policy, probabilities
are computed every 120 s by resolving the LP model. To estimate the
arrival rate 𝜆𝑓,𝜅 for all functions and classes, FaaS nodes measure the
arrival rate during each time window between successive LP resolutions
and use an exponential moving average to update 𝜆𝑓,𝜅 . Being 𝜆′𝑓,𝜅 the
arrival rate measured in the last time window, we get 𝜆𝑓,𝜅 ← 𝛼𝜆′𝑓,𝜅 +
(1 − 𝛼)𝜆𝑓,𝜅 . In the experiments, we set 𝛼 = 1

3 .
For cold start estimation, we performed preliminary experiments to

dentify the best strategy to use among those mentioned in Section 5.4.
8
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Although we did not observe significant performance difference among
them, we eventually chose the following configuration: the heuristic
Heu1 is used to estimate cold start probability on the local node,
while the model-based SMP is used for Cloud and Edge nodes. The
minR policy also relies on cold start estimation and uses the same
configuration except for the local node, where it relies on real-time
knowledge of container availability to predict cold starts.

6.2. Results

Overall policy comparison. In Fig. 2 we compare the performance
f the various offloading policies in terms of (i) net generated utility,
nd (ii) cost-to-budget percentage, across the considered budget and
etwork latency configurations. In the figure, the area shaded in red
hows the budget violation. Utility and cost measures are also reported
n Table 3 for a single latency scenario.

As expected, the random policy leads to very low utility, compared
o the other policies, and occasional budget violations. The basic policy
c from [8] achieves much higher utility, but, not taking costs into
ccount, it violates the budget constraint in half the considered runs.
his cost issue is solved by Bc+, which prohibits Cloud offloading if the

budget is being violated. This policy manages to keep the cost within
the given budget, with an utility reduction compared to the baseline Bc.
As regards the variant Be, which only relies on Edge offloading, clearly
in this case there are no budget violations, as we associated monetary
expenses only with Cloud usage. However, the generated utility is the
lowest among all the policies. These results suggest that Cloud and Edge
offloading should be jointly exploited to optimize both utility and cost,
as our QoS-aware approach does.

The minR heuristic policy leads to the highest utility, both in terms
of median and 95th percentile. However, similarly to B, it neglects

loud usage costs and violates the budget in most the considered
onfigurations (up to 4 times higher than the budget). The policy
inR+ addresses this issue enforcing the budget constraint, with about
0% reduction of the median utility. The variant minC only opts for
loud offloading if local execution does not meet the response time re-
uirements. Unfortunately, the results show that this policy eventually
ehaves similarly to minR, resorting to Cloud too often and violating
he budget constraint, while achieving a high utility though.

Our QoS-aware policy achieves good, consistent performance across
he considered configurations, with minimal differences among the
our variants. Specifically, the QoS policy leads to a 1.5% median
tility increase with respect to QoSc (where only Cloud offloading is
dmitted), with a 2% median cost reduction. The variant with the
udget enforcement mechanism QoS+ reduces the percentage of runs
here the budget is exceeded from 47% to 9%. However, it is worth

emarking that the average excess cost is less than 1.5% for QoS and less
han 0.001% for QoS+, compared to 400% violations observed for the
pproaches above. Overall, QoS+ achieves 40% higher median utility
ompared to minR+, with almost identical costs.
Impact of network latency and budget. Fig. 3 provides insight

bout the impact of network latency on function offloading (we report
he results only for a relevant subset of the policies discussed above).
s expected, the maximum utility achieved by the policies decreases as
etwork latency increases, making Cloud offloading less and less conve-
ient. The only exception to this trend is represented by Be, which only
elies on Edge offloading and is not impacted by the latency variation,
ut its performance is never competitive. Interestingly, compared to the
c and minR heuristics, our QoS-aware policy is way less impacted by

the increase of latency, as it also exploits Edge offloading and request
dropping to efficiently use the available resources.

Similarly, Fig. 4 shows what happens when we change the monetary
budget 𝐶𝑚𝑎𝑥. Increasing the budget allows the scheduler to offload a
arger number of requests to the Cloud, leading to higher utility in
eneral. The highest utility is achieved by the minR policy, but – as

lready observed – this policy also leads to evident budget violations,
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Table 3
Paid cost and generated utility with different budget values and Edge-Cloud latency
set to 100 ms. Darker background colors indicate higher budget violations in the
cost columns, and higher utility in the utility columns.

Budget ($/h) Policy Cost ($/h) Net utility

P50 P90 P95 P50 P90 P95
0.25 Rand 0.56 0.73 0.81 2.14 2.62 2.75

Bc 0.91 1.67 1.71 3.30 3.61 3.65
Bc+ 0.25 0.25 0.25 1.21 1.70 1.89
Be 0.00 0.00 0.00 1.59 2.16 2.18
minR 1.30 1.63 1.69 3.74 4.08 4.42
minR+ 0.25 0.25 0.25 1.20 2.11 2.11
minC 1.13 1.54 1.54 3.93 4.52 4.55
QoSc 0.27 0.27 0.27 3.54 3.96 4.08
QoSc+ 0.25 0.25 0.25 3.39 3.59 3.60
QoS 0.27 0.28 0.28 3.62 3.95 4.08
QoS+ 0.25 0.25 0.25 3.64 3.96 4.00

0.50 Rand 0.46 0.74 0.74 2.31 2.45 2.61
Bc 1.09 1.57 1.65 3.36 3.67 3.80
Bc+ 0.50 0.50 0.50 1.86 2.39 2.69
Be 0.00 0.00 0.00 1.29 1.50 1.84
minR 1.21 1.88 2.00 3.66 4.44 4.63
minR+ 0.50 0.50 0.50 3.06 3.70 3.73
minC 0.93 1.45 1.47 3.78 4.35 4.67
QoSc 0.51 0.52 0.53 3.56 4.45 4.62
QoSc+ 0.50 0.50 0.50 3.61 4.33 4.52
QoS 0.51 0.51 0.52 3.75 4.14 4.30
QoS+ 0.50 0.50 0.50 3.77 4.17 4.25

1.00 Rand 0.51 0.62 0.68 2.17 2.39 2.40
Bc 1.06 1.62 1.64 3.38 3.78 3.87
Bc+ 0.94 1.00 1.00 3.19 3.63 3.72
Be 0.00 0.00 0.00 1.38 2.62 2.65
minR 1.31 1.61 1.73 3.69 4.52 4.55
minR+ 0.86 1.00 1.00 3.69 4.12 4.20
minC 0.90 1.08 1.17 3.90 4.20 4.23
QoSc 1.00 1.00 1.01 3.32 4.51 4.51
QoSc+ 1.00 1.00 1.00 3.89 4.12 4.13
QoS 1.00 1.00 1.00 3.71 4.18 4.24
QoS+ 1.00 1.00 1.00 3.87 4.15 4.16
Fig. 2. Comparison of our QoS-aware policies against baselines. See legend in Table 2.
especially for 𝐶𝑚𝑎𝑥 = 0.25$/h and 𝐶𝑚𝑎𝑥 = 0.5$/h. The minR+ policy
voids this issue and matches the utility of minR with the highest
udget 𝐶𝑚𝑎𝑥 = 1$/h. In turn, our approach QoS+ outperforms minR+
and the other policies), especially with the stricter budget constraints,
e.g., achieving more than 100% utility increase for 𝐶𝑚𝑎𝑥 = 0.25$∕h).

We do not report the results with higher budget configurations, as
they are not significantly different from the case 𝐶𝑚𝑎𝑥 = 1$∕h. These
9

results show that the benefits of our QoS-aware policy are particularly
evident when the scheduler has to carefully allocate Cloud resources,
while the minR+ heuristic performs well with ‘‘unconstrained’’ Cloud
usage.

Different workloads. We relax the assumption of having all the
requests directed to a single Edge node to verify that the performance of
the policies is not impacted. Specifically, in this experiment we evenly
split the incoming traffic across the available Edge nodes. Fig. 5 shows

the results of this experiment, where we can note that the different
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Fig. 3. Results with different Edge-Cloud network latency configurations.
Fig. 4. Results with different budget configurations.
Fig. 5. Results with incoming request flows split across Edge nodes.

orkload configurations does not significantly affect the relative per-
ormance of the considered policies. Moreover, we run an experiment
10
Fig. 6. Results with varying arrival rates.

where the arrival rates are not constant. In particular, we introduce
random rate variations every 𝑇 = 60 s. Being 𝜆𝑖 the arrival rate of
a function at time 𝑖 ⋅ 𝑇 , we sample the arrival rate 𝜆𝑖+1 as a uniform
random variable taking values in (𝜆𝑖∕5, 5𝜆𝑖). Fig. 6 shows the results
of this experiment, which demonstrates that our QoS-aware policies

outperform the baselines even in this scenario.
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Fig. 7. Results with increasing Edge resources.
Fig. 8. Comparison of offloading policies in a scenario where a monetary usage cost is associated both with edge and cloud nodes. See legend in Table 2.
Different cost model. So far, we relied on the assumption of
having a monetary cost associated with cloud usage only, to empha-
size the diverse impact of offloading decisions. To demonstrate that
the proposed approach is general enough, we consider an additional
scenario where the same cost applies to edge node usage as well.
Comparing the results in Fig. 8 to the analogous Fig. 2, we observe
that introducing a cost for edge usage causes the monetary budget to
be violated more, especially by baselines. Our proposed policies QoSc+
and QoS+ still manage to meet the imposed budget constraint and
generate high utility.

Varying number of Edge nodes. To further explore the potential
benefits of Edge offloading, we run experiments increasing the number
of Edge nodes in the infrastructure. Clearly, in these experiments we
do not limit the number of peers selected for offloading, which was set
to 3 in the default configuration. Fig. 7 confirms that increasing the
number of Edge neighbors has no impact for the Bc and QoSc policies,

hich only rely on Cloud offloading, and instead significantly boosts
he utility generated by Be, which relies on Edge offloading. As regards
he complete QoS-aware policy QoS, we observe that the utility gain
ith more Edge nodes is not significant. Conversely, the policy manages

o largely reduce costs as Edge offloading can increasingly be exploited
o avoid Cloud usage.
Scalability. To verify the scalability of our solution, we measure

he time it takes to resolve the optimization problem presented in
11

R

Section 5.3 and, hence, update the offloading probabilities. We execute
the experiment increasing the number of different functions in the
system and considering 4 and 8 service classes. We run it on a Intel(R)
Xeon(R) Silver 4310, relying on GLPK for LP resolution. Fig. 9 shows
the results of this test. We observe that, with 4 service classes, the
execution time does not reach 400 ms with up to 150 functions, and it
does not reach 800 ms with 8 service classes.

We consider the lightweight computational demand of our solution
to enable its adoption even in large-scale FaaS systems, especially as
we remark that LP resolution can be performed asynchronously and
not necessarily on the Edge nodes. Moreover, as each node has its own
probabilities, the scale of the LP problem does not change with larger
infrastructures. As a final note, we observe that, if necessary, resolution
times can be further reduced resorting to commercial LP solvers.8

7. Proof-of-concept prototype experiment

To demonstrate the functionality of our QoS-aware policy in a real
FaaS prototype, we implement it in Serverledge [8], an open-source
FaaS framework developed within our research group and written in

8 The issue is discussed, e.g., here: https://en.wikibooks.org/wiki/GLPK/
eviews_and_benchmarks

https://en.wikibooks.org/wiki/GLPK/Reviews_and_benchmarks
https://en.wikibooks.org/wiki/GLPK/Reviews_and_benchmarks
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Fig. 9. Scalability to the number of functions.
Fig. 10. Architecture of a Serverledge node, with the newly introduced components.

Go. Serverledge targets Edge and Cloud infrastructures and has built-
in support for function offloading, so it represents an ideal choice to
implement our policy.

Each Serverledge node comprises a few key components, as depicted
in Fig. 10: API Server, Scheduler, Local Registry, Offloader, and Con-
tainer Pool. The API Server acts as a front-end for requests from clients.
The Scheduler manages function invocation requests, possibly deciding
to offload some of them. Functions executed locally rely on a Container
Pool, that is maintained by the node. To offload a request, the Offloader
component is activated, which communicates with remote Serverledge
nodes. Metrics collection and neighborhood monitoring is performed by
the Local Registry, which also acts as a cache for function data stored
in the etcd9-based Global Registry.

Specifically, the Local Registry runs the Vivaldi algorithm [36] to
estimate the network delay towards all of its edge neighboring nodes.
Serverledge also exploits the UDP messages exchanged by edge nodes
within the Vivaldi algorithm to piggyback status information about the
nodes (e.g., currently available memory), as needed by offloading target
selection (see Section 5.2).

To integrate our offloading policy, we extended Serverledge as
follows:

• We extended the metrics system to collect more data about func-
tion execution and offloading, as needed by our optimization

9 https://etcd.io
12
problem. In this regard, we used InfluxDB10 to collect monitoring
data and ease their analysis.

• We implemented the randomized scheduling algorithm within the
Scheduler component of Serverledge, relying on the interfaces
provided by the framework that ease the integration of custom
policies.

• We introduced a new Offloading Optimizer component that assists
Edge nodes by solving the optimization problem and computing
their offloading probabilities, on demand. Edge nodes periodically
contact the Offloading Optimizer to request new probabilities via
gRPC.11 The Offloading Optimizer retrieves the required metrics
from InfluxDB.

7.1. Experimental setup

We run some proof-of-concept experiments with a Serverledge in-
stallation consisting of 4 Linux-based VMs: three of them act as Edge
nodes, while the fourth represents a Cloud node and also hosts the
centralized components required by Serverledge (i.e., etcd, InfluxDB,
and the Optimizer component). Each Edge VM is equipped with 4 CPU
cores and 3 GB of memory. The Cloud node is configured with 20 CPU
cores and 20 GB of memory. Network latency between Edge and Cloud
is emulated using Linux Traffic Control tc. An additional VM is used
to generate the workload through Apache JMeter.12

We consider two functions in the experiments: Fibonacci, a CPU-
intensive function that computes the Fibonacci sequence (up to 25,000
in our setup); and ImageClassifier, which uses a convolutional neural
network to solve a ‘‘cat vs. dog’’ image classification task.13

We consider two service classes, namely a time-sensitive one for
‘‘Premium’’ users, with a given maximum response time requirement
(default value: 800 ms) and utility per request equal to 1; a best-effort
one, with no response time requirements and utility per request set
to 0.01. Incoming requests are randomly associated to one of the two
classes.

We compare our QoSc+ and QoS+ policy to the basic Bc policy,
already provided by Serverledge, as well as minR. We run two experi-
ments in which, respectively, we consider (i) different monetary budget
configurations, and (ii) different response time requirements for the
premium class.

10 https://www.influxdata.com
11 https://grpc.io
12 https://jmeter.apache.org
13 The model is small version of Xception, trained as explained here:

https://keras.io/examples/vision/image_classification_from_scratch/#image-
classification-from-scratch

https://etcd.io
https://www.influxdata.com
https://grpc.io
https://jmeter.apache.org
https://keras.io/examples/vision/image_classification_from_scratch/#image-classification-from-scratch
https://keras.io/examples/vision/image_classification_from_scratch/#image-classification-from-scratch
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Fig. 11. Results with the prototype implementation with different monetary budget configurations.
Fig. 12. Response time distribution in a prototype experiment.
Fig. 13. Results with the prototype implementation with different maximum response time configurations for the premium class of users.
7.2. Results

Fig. 11 reports the generated utility and paid cost for the different
policies when setting different monetary budget constraints. These
results confirm what we already observed in simulated experiments.
The baseline Bc and minR achieve very high utility values, but largely
violate the budget constraint, especially when considering stricter lim-
its. Fig. 12 shows the response time distribution in the scenario with
13
budget 0.15 $/h, demonstrating how our QoS-aware policies are supe-
rior in minimizing response times, while also keeping costs within the
budget.

Fig. 13 shows the generated utility for the different policies when
setting different maximum response time requirements for the premium
users. The experiment confirms that – as expected – looser response
time requirements allow all the policies to increase the generated util-
ity. It is interesting to observe that our QoS-aware approaches clearly
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outperform the baselines when stricter requirements are considered
and, thus, resource allocation plays a more important role. In these
scenarios, QoS+ enjoys an advantage over QoSc+, by exploiting Edge
nodes for offloading along with Cloud.

8. Conclusion

In this paper, we proposed an efficient approach to compute QoS-
aware offloading policies for serverless functions. Our solution consid-
ers a FaaS system deployed in the Cloud-to-Edge continuum, serving
users associated with multiple service classes and heterogeneous QoS
requirements.

We presented a two-level approach aiming for scalability and re-
duced computational demand. A simple heuristic algorithm allows FaaS
nodes to schedule every incoming request with minimal overhead.
Periodically, a linear programming model is solved to determine the
best parameters to use in the heuristic, so as to maximize the generated
utility over time, given a monetary budget for resource usage. The
simulation results we presented show that our approach outperforms
all the considered baselines in terms of generated utility across different
scenarios and scales well as the size of the problem grows. These results
are also confirmed by a proof-of-concept implementation of our policy
in a FaaS framework, Serverledge.

For future work, we plan to consider multiple directions to extend
our approach. First, while our solution is currently reactive, we intend
to consider forecasting techniques to predict, e.g., future workloads
as well as varying resource prices, and devise a proactive approach.
Furthermore, as sustainability and energy-awareness are increasingly
important, we plan to extend our optimization problem to include
energy consumption measures. We observe that, in general, introducing
additional QoS metrics in the proposed approach is straightforward,
only requiring to formulate new constraints or objective terms in the LP
problem. However, properly estimating energy consumption of differ-
ent functions on heterogeneous devices is a major challenge deserving
further investigations.
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