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Simple Summary: IDH1/2 mutations are a common event in acute myeloid leukemia (AML) and
represent a therapeutic target. We designed the GIMEMA AML1516 observational protocol to
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examine the prevalence of IDH1/2 mutations and the associations between IDH mutations and clinico-
biological parameters in a cohort of Italian patients affected by AML. By analyzing 284 consecutive
adult AML patients, we confirmed that IDH1 and IDH2 mutations are frequently detected–14% and
18%, respectively–at diagnosis. IDH1/2 mutations were significantly associated with an inferior
performance status and non-complex karyotype when compared to IDH1/2-WT. With regards to the
outcome, in the subset of IDH1/2-mutated patients the rate of complete remission achievement was
60.5% and overall survival at 2 years was 44.5%: these percentages did not significantly differ from
IDH1/2-WT patients. However, given the availability of IDH1/2 inhibitors, it is important to recognize
IDH1/2-mutated cases up-front to offer patients the most appropriate therapeutic strategy.

Abstract: IDH1/2 mutations are common in acute myeloid leukemia (AML) and represent a thera-
peutic target. The GIMEMA AML1516 observational protocol was designed to study the prevalence
of IDH1/2 mutations and associations with clinico-biological parameters in a cohort of Italian AML
patients. We analyzed a cohort of 284 AML consecutive patients at diagnosis, 139 females and
145 males, of a median age of 65 years (range: 19–86). Of these, 38 (14%) harbored IDH1 and
51 (18%) IDH2 mutations. IDH1/2 mutations were significantly associated with WHO PS >2 (p < 0.001)
and non-complex karyotype (p = 0.021) when compared to IDH1/2-WT. Furthermore, patients with
IDH1 mutations were more frequently NPM1-mutated (p = 0.007) and had a higher platelet count
(p = 0.036). At relapse, IDH1/2 mutations were detected in 6 (25%) patients. As per the outcome,
60.5% of IDH1/2-mutated patients achieved complete remission; overall survival and event-free
survival at 2 years were 44.5% and 36.1%, respectively: these rates were similar to IDH1/2-WT. In
IDH1/2-mutated patients, high WBC proved to be an independent prognostic factor for survival.
In conclusion, the GIMEMA AML1516 confirms that IDH1/2 mutations are frequently detected at
diagnosis and underlines the importance of recognizing IDH1/2-mutated cases up-front to offer the
most appropriate therapeutic strategy, given the availability of IDH1/2 inhibitors.

Keywords: AML; DH1; IDH2; prevalence; prognosis

1. Introduction

Progresses in the knowledge of the genetic landscape of AML—accelerated by high
throughput sequencing technologies—led to a better understanding of AML pathogenesis
and enhanced the development of targeted approaches.

Mutations targeting epigenetic regulators emerged as one of the most common
events—accounting for >50% of AML patients—and contribute to the differentiation block
typical of AML [1,2]. Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) belong to the
class of epigenetic modulators and mutations of these genes occur in up to 20% of adult
AML cases [3–6] and 30% of pediatric AML [7]. IDH1 and IDH2 mutations target the
conserved arginine residues, namely R132 of IDH1, and R140 and R172 of IDH2 [8]. They
determine an aberrant production of 2-hydroxyglutarate (2HG) that acts as an antagonist
of α-KG; thus, inhibiting the activity of multiple α-KG-dependent dioxygenases, including
both histones and DNA demethylases involved in epigenetic control of gene expression.
As a consequence, IDH1 and IDH2 mutations determine an aberrant hypermethylated
phenotype and, ultimately, influence cell differentiation [4,9].

IDH1/2 mutations are associated with intermediate-risk cytogenetics and NPM1 mu-
tations [4,10], in particular, in the absence of DNA-damage-related and cohesin gene
mutations [11]. Moreover, Chou et al. reported an association between IDH1/2 mutations
and higher platelet counts, normal karyotype, and isolated trisomy 8 [12–14].

The impact of IDH1/2 mutations on AML prognosis is controversial, and depends
on the specific AML subsets, i.e., normal karyotype or FLT3-WT/NPM1-WT, or treat-
ment groups, i.e., standard intensive chemotherapy [5,6,15,16]. In other cohorts, IDH1/2
mutations do not impact on prognosis [17,18].
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Despite this, IDH1 and IDH2 immediately qualified as promising therapeutic targets,
due to the activating nature of their recurrent mutations: small inhibitory molecules have
been developed and were tested in clinical trials, as monotherapy or in combination with
chemotherapy or azacitidine [19–22]. Two orally bioavailable IDH inhibitors, enasidenib
(IDH2 inhibitor) and ivosidenib (IDH1 inhibitor) are now FDA-approved [19,20]: the
former for the treatment of IDH2-mutated relapsed-refractory AML, and the latter for
both IDH1-mutated relapsed-refractory and newly diagnosed AML unfit for intensive
chemotherapy.

This progress has a substantial impact on the therapeutic algorithm of AML patients
harboring IDH1/2 mutations. Therefore, the assessment of IDH1/2 mutations is pivotal to
identify the population of patients that might benefit from the use of IDH inhibitors, at
diagnosis or at relapse.

We present here the results of the GIMEMA AML1516 protocol, designed to (i) study
the prevalence of IDH1 and IDH2 mutations in patients with AML at the time of initial
diagnosis and at relapse, (ii) evaluate the association between IDH mutations and patient
or disease characteristics, and (iii) assess the impact on response to treatment and survival.

2. Materials and Methods
2.1. GIMEMA AML1516 Study Design

The GIMEMA AML1516 protocol (ClinicalTrials.gov Identifier: NCT02986620) is an
observational study aimed at collecting data on IDH1 and IDH2 mutational status in adult
AML patients in Italy treated as per clinical practice, not including IDH1/2 inhibitors. The
primary objective of the trial was to estimate the prevalence and type of IDH mutations
in AML at initial diagnosis and relapse. The secondary objectives were to evaluate the
associations between IDH mutations and clinico-biological parameters (i.e., age, white
blood cell (WBC), lactate dehydrogenase (LDH), cytogenetics, NPM1, FLT3-ITD, CEBPA
alterations), AML type, treatment response, and survival.

The study was active starting from May 2017 to January 2020 and included a retro-
spective and a prospective cohort.

The analysis of IDH1 and IDH2 mutations was performed either by Sanger sequencing
or NGS technologies at local laboratories [8,23]. The sensitivity of Sanger sequencing
analysis is approximately 15–20% and the presence of chromatograms with a double peak
into wild-type gene sequence identified an IDHs gene mutation. For the assessment of
IDHs status by NGS assay, the detection limit of the variant allele frequency (VAF) was 5%.

Study data were collected and managed using REDCap electronic data capture tools
hosted at GIMEMA Foundation [24,25].

2.2. Statistical Analysis

Characteristics of patients were summarized by means of cross-tabulations or quantiles.
IDH1-IDH2 mutation detection was evaluated in terms of percentage of patients at the

time of initial diagnosis and relapse.
Non-parametric tests were applied, in univariate analysis, for comparisons between

groups, chi-squared and Fisher exact test for difference in terms of categorical variables
or mutation rate, Mann–Whitney and Kruskal–Wallis tests for difference in terms of con-
tinuous variables. All clinical parameters, genetic subtypes, and treatment received were
considered in the univariate analyses. The multivariate models considered all relevant clin-
ical/biologic variables or covariates with a p-value less than 0.15 in the univariate analysis.

Logistic regression models were used in univariate and multivariate analyses to assess
if the clinical and biological parameters are associated to response outcomes (CR and ORR
rate). Odds ratios (OR) and 95% confidence intervals were reported as parameter results of
the logistic regression models.

Survival distributions (e.g., overall survival (OS), event-free survival (EFS)) were
estimated using the Kaplan–Meier product limit estimator. Subgroup comparisons with
clinical and biological parameters were performed for descriptive purposes.



Cancers 2022, 14, 3012 4 of 10

Differences in terms of time to response OS and EFS were evaluated by means of log-
rank test or Cox regression model in univariate and multivariate analyses, after assessment
of proportionality of hazards.

Hazard ratios (HR) and 95% confidence interval were reported as parameter results of
the Cox regression models.

3. Results
3.1. Study Population

Between 5/2017 and 1/2020, 393 consecutive patients were diagnosed with AML at
17 Italian Hematology Centers and members of the GIMEMA working group, enrolled in
the AML1516 study. Of them, 388 were deemed eligible. IDH1/2 mutational status was
available for 361 patients (337 at diagnosis and 24 at relapse).

The present analysis is based on 284 patients studied at diagnosis with available
IDH1/2 mutation status, treatment and follow-up data. At diagnosis, 145 (51%) patients
were males and 139 (49%) were females. Median age was 65 (range 19–86) years. In
total, 229 (81%) patients had a de novo, 37 (13%) a secondary, and 16 (5.7%) a therapy-
related AML. Cytogenetics was available for 259 patients, 132 (50.9%) had a normal and
29 (11.2%) a complex karyotype. As per the main chromosomal aberrations, anomalies
of chromosome 5 (del5q, monosomy 5) occurred in 20 patients (7.7%), and aberrations
of chromosome 7 (del7q, monosomy 7) were detected in a total of 20 patients (7.7%); in
23 patients a trisomy 8 was documented. Recurrent rearrangements, including RUNX1T1-
RUNX1 and CBF-MYH11 were detected in 5 (1.9%) and 10 (3.9%) patients. FLT3 mutations
were detected in 60/271 (22.4%), NPM1 in 71/266 (26.7%).

With regards to the treatment received, 201 (71%) patients were treated with conven-
tional chemotherapy, 76 (27%) with hypomethylating agents, and the remaining 7 patients
with other treatment schemes.

Demographic characteristics are summarized in Table 1.

Table 1. Patient characteristics by IDH1/2 mutations.

IDH1-IDH2 Mutated vs. IDH1-IDH2 (Both)WT

Characteristic Overall, n = 284 IDH1-IDH2
WT, n = 195

IDH1-Mut,
n = 38

IDH2-Mut,
n = 51 p-Value 1

Gender, n (%) 0.15
M 145 (51%) 93 (48%) 20 (53%) 32 (63%)
F 139 (49%) 102 (52%) 18 (47%) 19 (37%)

Age starting treatment,
median (range) 65 (19, 86) 65 (19, 85) 66 (22, 86) 65 (32, 85) 0.86

WBC (109/L),
median (range) 7 (0.5, 800) 8 (0.5, 347) 5 (1, 600) 4 (0.4, 800) 0.063

HB (g/dL), median (range) 9.00 (2.50, 14.9) 9.00 (4.50, 14.2) 8.80 (7.20, 13.20) 9.30 (2.50, 14.90) 0.28
PLTS (109/L),

median (range) 56 (4, 789) 53 (4, 664) 110 (6, 742) 56 (10, 789) 0.036

Blasts (% in BM),
median (range) 50 (3, 99) 48 (4, 99) 75 (3, 96) 70 (4, 95) 0.027

WHO PS, n (%) <0.001
0 118 (44%) 79 (43%) 15 (39%) 24 (50%)
I 111 (41%) 89 (48%) 12 (32%) 10 (21%)
II 34 (13%) 16 (8.6%) 7 (18%) 11 (23%)
III 8 (3.0%) 1 (0.5%) 4 (11%) 3 (6.2%)

AML type, n (%) 0.63
de novo 229 (81%) 154 (80%) 31 (82%) 44 (86%)

secondary 37 (13%) 25 (13%) 6 (16%) 6 (12%)
therapy related 16 (5.7%) 14 (7.3%) 1 (2.6%) 1 (2.0%)

AML secondary, n (%) 0.71
MDS 24 (65%) 16 (64%) 4 (67%) 4 (67%)

ET 0 (0%) 0 (0%) 0 (0%) 0 (0%)
PV 3 (8.1%) 3 (12%) 0 (0%) 0 (0%)
MF 5 (14%) 2 (8.0%) 1 (17%) 2 (33%)

FLT3, n (%) 0.177
ITD 48 (18%) 29 (15%) 13 (38%) 6 (14%)
TKD 10 (3.7%) 9 (4.6%) 1 (2.9%) 0 (0%)

ITD and TKD 2 (0.7%) 2 (1.0%) 0 (0%) 0 (0%)
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Table 1. Cont.

IDH1-IDH2 Mutated vs. IDH1-IDH2 (Both)WT

Characteristic Overall, n = 284 IDH1-IDH2
WT, n = 195

IDH1-Mut,
n = 38

IDH2-Mut,
n = 51 p-Value 1

Mutated NPM1, n (%) 71 (27%) 44 (23%) 17 (50%) 10 (25%) 0.007
Mutated TP53, n (%) 1 (6.2%) 1 (8.3%) 0 (NA%) 0 (0%) >0.99

Mutated CEBPA, n (%) 3 (9.7%) 2 (15%) 1 (10%) 0 (0%) 0.77
Mutated IDH1, n (%) 38 (13%) 0 (0%) 38 (100%) 0 (0%) <0.001
Mutated IDH2, n (%) 51 (18%) 0 (0%) 0 (0%) 51 (100%) <0.001

Complex karyotype, n (%) 29 (11%) 26 (14%) 0 (0%) 3 (6.4%) 0.021
Treatment, n (%) 0.071
Conventional CHT 201 (71%) 136 (70%) 29 (76%) 36 (71%)
Hypomethylating 76 (27%) 57 (29%) 8 (21%) 11 (22%)

1 Significant p-values are indicated in bold.

3.2. Incidence, Type of IDH1/2 Mutations, and Patients’ Clinico-Biological Features

Of 284 patients studied at diagnosis, 38 (14%) carried IDH1 mutations and 51 (18%)
IDH2 mutations (Figure 1A). With regards to the type of IDH1 mutations, the majority
(32, 84.2%) targeted R132, with R132C and R132H being the most common substitutions.
Similarly, R140 was the most commonly involved residue of IDH2 (30, 58.8%)—with R140Q
accounting for the vast majority of substitutions—followed by R172K detected in 19 cases
(37.2%), as depicted in Figure 1B,C.
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(C) mutation subtypes.

IDH1/2 mutations were significantly associated with WHO PS >2 (p < 0.001) and
non-complex karyotype (p = 0.021) when compared to IDH1/2-WT. As per MDS-related
anomalies, a WT status of IDH1/IDH2 was associated with del5q (p = 0.035). Further-
more, patients with IDH1 mutations had higher platelet counts (p = 0.036) and were more
frequently NPM1-mutated (p = 0.007, Table 1).

At relapse, 5 (21%) patients carried IDH1 mutations, all targeting R132 with R132H
being the most common substitution (3 out of 5); 1 patient had a concomitant FLT3-ITD
mutation and another patient a concurrent TP53 mutation. Only 1 patient (4.2%) harbored
a IDH2 mutation, that targeted the R172 residue.

3.3. Treatment Response and Survival According to IDH1/2 Mutations

Out of 284 patients with therapy information, 201 (71%) were treated with a conven-
tional chemotherapy approach (CHT), 76 (27%) with a hypomethylating agent (HMA), and
7 (2.5%) with other regimens.

Overall, 228 patients were evaluable for response and 128 (56%) achieved complete
remission (CR). When considering CHT vs. HMA, 113 of 181 (62.4%) treated with conven-
tional CHT achieved a CR while only 13 of 41 (31.7%) treated with HMA obtained a CR
(p < 0.0001). There were no differences in CR rate when stratifying patients according to
IDH1/2 mutational status (60.5% CR in IDH1/2-mutated vs. 64% in IDH1/2-WT patients).

Indeed, the parameters with an impact on CR, resulting from the logistic regression
model, were younger age (OR 0.96 95% CI 0.94–0.98, p < 0.001), WHO performance status
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(OR 0.2 95% CI 0.07, 0.51, p = 0.001), de novo AML (OR 0.17, 95% CI 0.06–0.39, p < 0.001),
NPM1 mutations (OR 2.26, 95% CI 1.29–4.42, p = 0.013), and conventional CHT treatment
(OR 0.28, 95% CI 0.13–0.57, p < 0.001, Table S1). WHO PS and AML type retained statistical
significance also in the multivariate model.

Overall response was obtained by 167 (73%) patients, at a similar rate in IDH1/2-
mutated (71%) and IDH1/2-WT (68%) patients.

With a median follow-up of 22.5 months (13.5–35.7), overall survival (OS) at 24 months
was 43.7% (95% CI 37.5–50.9) and event-free survival (EFS) was 30% (95% CI 24.5–36.6).

Overall, there were no differences in OS or EFS in patients with IDH1/2-mutated vs.
WT AML (44.5% vs. 43.3% Figure 2A, and 36.1% vs. 26.6%, Figure 2B, respectively).
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Additionally, we did not document any difference in OS and EFS grouping patients
according to the IDH mutation type (IDH1-R132 vs. IDH2-R140 vs. IDH2-R172 vs. IDH-WT,
Figure 2C,D).

Analyzing the clinico-biological parameters that impact on survival outcomes, the
univariate analyses showed that patients treated with CHT when compared to HMT, had a
significantly longer OS (49.5% vs. 21%, p < 0.001) and EFS (34.4% vs. 15.3%, p = 0.0013).
Furthermore, in the univariate model, age (HR 1.04, 95% CI 1.02–1.05, p < 0.001), high WBC
(HR 1.0, 95% CI 1.0–1.0, p = 0.004), WHO PS (1 vs. 0: HR 1.9, 95% CI 1.3–2.9, p < 0.0001;
2 vs. 0: HR 2.7, 95% CI 1.6–4.5, p < 0.0001), complex karyotype (HR 2.83, 95% CI 1.79–4.45,
p < 0.001), and HMA treatment (HR 2.2, 95% CI 1.56–3.10, p < 0.001) negatively impacted
on OS and EFS. Age, WHO PS, and complex karyotype proved independent prognostic
factors for OS and EFS in the multivariable model, as detailed in Table 2.

When restricting the analysis to IDH1/2-mutated patients, the univariate analyses
for OS and EFS confirmed also in this AML subset that age (HR 1.03, 95% CI 1.00–1.06,
p = 0.019), WBC (HR 1.0, 95% CI 1.00–1.00, p = 0.007), and HMA (HR 2.03, 95% CI 1.07–3.83,
p = 0.030) were associated with inferior survival. In the multivariate analysis, only WBC
was confirmed as an independent prognostic factor (Table 2).
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Table 2. Multivariate models for OS in the whole population of study and in the subset of IDH1/2
mutated patients.

AML

Univariate Multivariate

Characteristic HR 1 95% CI 1 p-Value HR 1 95% CI 1 p-Value

Age 1.04 1.02, 1.05 <0.001 1.03 1.01, 1.05 0.002
WBC 1.00 1.00, 1.00 0.004 1.00 1.00, 1.00 0.026

WHO PS
0 – —
I 1.96 1.34, 2.88 <0.001 1.65 1.09, 2.49 0.018
II 2.70 1.63, 4.47 <0.001 2.45 1.32, 4.53 0.005
III 0.70 0.17, 2.88 0.62 0.54 0.07, 3.99 0.55

Complex karyotype vs. other
other karyotype - - - -

complex karyotype 2.83 1.79, 4.45 <0.001 3.17 1.91, 5.26 <0.001
Treatment

Standard CHT — —
Hypomethylating 2.20 1.56, 3.10 <0.001 1.07 0.66, 1.76 0.78

IDH1/2-mutated AML
Univariate Multivariate

Characteristic HR 1 95% CI 1 p-Value HR 1 95% CI 1 p-Value 2

Age 1.03 1.00, 1.06 0.019
WBC 1.00 1.00, 1.00 0.007 1.00 1.00, 1.01 0.005
Hb 0.84 0.70, 1.00 0.049

Treatment
Standard CHT — —

Hypomethylating 2.03 1.07, 3.83 0.03 1.09 0.48, 2.48 0.84
1 HR = hazard ratio; CI = confidence interval; 2 Significant p-values are indicated in bold.

4. Discussion

The GIMEMA AML1516 study illustrates the prevalence of IDH1/2 mutations in
AML in Italy and adds further evidence on the value of screening these aberrations for
therapeutic purposes.

By analyzing a cohort of 284 adult AML mainly de novo, we found that 32% of
patients carried either a IDH1 or IDH2 mutation at diagnosis. Compared to the literature,
this incidence is higher than reported in other patient cohorts (30% vs. 20%) and this may
be due to the observational nature of the study, and to a selection bias [3–6]. As already
reported, the most common IDH1 changes were R132C and R132H, while R140Q and
R172K were the most frequent substitutions in IDH2 [8]. As per the association with clinico-
biological parameters, we documented that IDH1/2-mutated AML had more frequently a
WHO PS >2. We did not document any association with a specific cytogenetic subset, but
we found that IDH1/2-mutated AML more frequently display a non-complex karyotype.
Additionally, IDH1 mutation was associated with higher platelet counts and with NPM1
mutations, in agreement with Chou et al. [12].

Next, we analyzed the outcome of patients with IDH1/2-mutated AML in comparison
with IDH1/2-WT. We did not document any difference neither in terms of CR achievement,
nor of survival. In our cohort, the CR rate was 60% in IDH1/2-mutated cases, while OS and
EFS at 24 months were 44% and 36%, respectively. Additionally, there was no impact on
outcome when grouping patients according to common IDH1/2 mutations (i.e., IDH1-R132,
IDH2-R140, and IDH2-R172).

Therefore, our data reinforce the notion that IDH1/2 mutational status does not im-
pact on prognosis, in line with the reports by Di Nardo and Chotirat [17,18]. Accordingly,
Middeke et al. recently reported on the prognostic role of IDH1/2 mutations in the largest
AML cohort treated with intensive chemotherapy [26]. They did not find any difference in
response rates, nor in survival for patients carrying IDH1/2 mutations when compared to
IDH1/2-WT patients. However, when the most common IDH1/2 substitutions were ana-
lyzed, they found that IDH1-R132C is associated with a lower rate of complete remission
and a trend towards shorter OS compared to other IDH1 mutations and IDH1/2-WT. On the
contrary, patients with IDH2-R172K-mutated AML had a better OS within the ELN2017 in-
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termediate/adverse risk groups, compared to IDH1/2-WT. Most likely, we failed to detect
this difference because of the low number of cases included in these subgroups.

Other parameters, such as age and WBC count, had an impact on survival, indepen-
dent of IDH mutations.

Lastly, we evaluated the incidence of IDH1/2 mutations at relapse and we found
that 25% of cases were IDH1/2 mutated. However, this data relies on the analysis of only
24 patients; thus, representing a limitation of the present study. To this regard, Chou and
colleagues reported that IDH mutations are stable during disease course and even detected
at CR [12,27].

As discussed above, the prognostic relevance of IDH1/2 mutations is not straight-
forward. Notwithstanding, IDH1 and IDH2 display a prominent therapeutic role since
they can be pharmacologically targeted. In the past few years, clinical trials showed that
IDH1/2 inhibitors are well-tolerated and efficacious as monotherapy. In particular, the
first IDH inhibitors approved by FDA were enasidenib, a selective allosteric inhibitor of
IDH2-mutated, and ivosidenib that competes with magnesium for binding to mutated
IDH1 enzyme.

Both were approved for the treatment of relapsed/refractory AML and induced
a CR/CRh rate of approximately 30% [19,20], and a median OS of roughly 9 months.
Subsequently, ivosidenib was approved also for newly diagnosed patients ineligible for
chemotherapy. In this subset, the CR/CRh rate was 42% and OS 12% [28]. In newly diag-
nosed AML, further improvements were obtained with the use of combination approaches.
Indeed, in combination with azacytidine and with the standard 7 + 3 intensive chemother-
apy approach, IDH1/2 inhibitors induced CR/CRh rates exceeding 60% [21,22,29–31].
Another option is the combination with venetoclax that is highly effective in NPM1/IDH-
mutated AML [32].

Second generation and “pan” IDH inhibitors are currently under development.
This progress broadens the therapeutic armamentarium of IDH1/2-mutated AML;

thus, contributing to the shift to targeted regimens alone or in combination or in sequence.
Therefore, the possible use of these strategies makes the screening of IDH1/2 mutations of
utmost importance.

5. Conclusions

The GIMEMA AML1516 confirms that IDH1/2 mutations are frequently detected at
diagnosis in an Italian AML cohort of patients and underlines the importance of recognizing
IDH1/2-mutated cases up-front to offer patients the most appropriate therapeutic strategy.
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