
computers

Article

A Lightweight BPMN Extension for Business Process-Oriented
Requirements Engineering

Benedetto Intrigila 1, Giuseppe Della Penna 2,* and Andrea D’Ambrogio 1

����������
�������

Citation: Intrigila, B.; Della Penna,

G.; D’Ambrogio, A. A Lightweight

BPMN Extension for Business

Process-Oriented Requirements

Engineering. Computers 2021, 10, 171.

https://doi.org/10.3390/

computers10120171

Academic Editor: Dae-Kyoo Kim

Received: 9 November 2021

Accepted: 14 December 2021

Published: 16 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Enterprise Engineering, University of Rome Tor Vergata, 00133 Rome, Italy;
benedetto.intrigila@uniroma2.it (B.I.); dambro@uniroma2.it (A.D.)

2 Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila,
67100 L’Aquila, Italy

* Correspondence: giuseppe.dellapenna@univaq.it

Abstract: Process-oriented requirements engineering approaches are often required to deal with the
effective adaptation of existing processes in order to easily introduce new or updated requirements.
Such approaches are based on the adoption of widely used notations, such as the one introduced
by the Business Process Model and Notation (BPMN) standard. However, BPMN models do not
convey enough information on the involved entities and how they interact with process activities,
thus leading to ambiguities, as well as to incomplete and inconsistent requirements definitions. This
paper proposes an approach that allows stakeholders and software analysts to easily merge and
integrate behavioral and data properties in a BPMN model, so as to fully exploit the potential of
BPMN without incurring into the aforementioned limitation. The proposed approach introduces a
lightweight BPMN extension that specifically addresses the annotation of data properties in terms of
constraints, i.e., pre- and post-conditions that the different process activities must satisfy. The visual
representation of the annotated model conveys all the information required both by stakeholders, to
understand and validate requirements, and by software analysts and developers, to easily map these
updates to the corresponding software implementation. The presented approach is illustrated by use
of two running examples, which have also been used to carry out a preliminary validation activity.

Keywords: requirements engineering; requirements elicitation; business process management; BPMN

1. Introduction

Requirements engineering is the essential software engineering process for eliciting,
specifying, verifying and maintaining the requirements of a software product throughout
its lifecycle [1]. As stressed by several authors (see, e.g., [2,3]), requirements analysis
is the most critical phase in the software development process, due to the large impact
on costs of fixing requirements faults. Among the various issues that may lead to the
introduction of faulty requirements in terms of, e.g., ambiguity, incompleteness and in-
consistency, the heterogeneity of the different stakeholders and their relevant views is
particularly significant.

This paper addresses such an issue by focusing on the extension of a business process
notation, namely, BPMN (Business Process Management and Notation) [4], which has
proven to be easy to understand for the various stakeholders involved in a software
requirements engineering effort, minimizing the risks of misunderstandings and omissions
(on the omission problem see, e.g., [5]).

The adoption of business process driven approaches to carry out requirements en-
gineering efforts has been widely investigated by several authors, as well as applied to
various application domains [6,7].

The use of notations that provide an effective support to both business process man-
agement and requirements engineering approaches allows business and software analysts
to bridge the gap between them and thus take advantage of both approaches [8].

Computers 2021, 10, 171. https://doi.org/10.3390/computers10120171 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-2327-9393
https://doi.org/10.3390/computers10120171
https://doi.org/10.3390/computers10120171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10120171
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10120171?type=check_update&version=1

Computers 2021, 10, 171 2 of 17

BPMN is now considered as the de facto standard in the business process management
field. However, when applied to the definition and specification of software requirements, it
shows significant limitations in terms of data modeling [9]. This is mainly due to the nature
of BPMN, which has been introduced to provide a clear, concise and flexible language for
the specification and analysis of business processes, thus focusing on process modeling
rather than on data modeling.

The data or entities that flow among the various activities of a given process are only
defined in an abstract way in a BPMN model. In order to overcome such a limitation, this
paper introduces a lightweight extension, which specifically addresses the annotation of
the structural properties that are essential to provide a complete specification of software
requirements. The extension is denoted as lightweight because it does not alter the structure
of a BPMN model. As such, an extended model is still a valid BPMN model.

At the same time, the proposed extension is flexible enough to have direct control
over what to add in terms of data modeling (using ad hoc annotations), in order to enable
an effective requirements definition, which aims to be easy to understand for both stake-
holders and software developers in charge of implementing or updating the underlying
information system.

As a result, BPMN models can be effectively applied to provide an integrated specifi-
cation of both behavioral and data properties, by limiting the annotations of data properties
to those entities that are of interest to fully catch the stakeholders’ needs and make them
clearly understandable for software developers.

Indeed, data properties are annotated as constraints, i.e., the pre- and post-conditions
that the different activities of a business process must satisfy. These constraints are, in turn,
built upon a simplified view of the underlying information system, composed by enti-
ties with attributes that are meaningful for the specific requirement and its related process
activities. Moreover, key attributes involved in the requirement may be highlighted by asso-
ciating a visual hint, such as a specific colour, which is directly edited on the BPMN diagram.

The resulting annotated BPMN model provides the following advantages:

1. Stakeholders can define and use entities and attributes at the desired level of abstrac-
tion, without dealing with the actual implementation details;

2. The entities and their attributes are defined on demand, i.e., when requirements refer
to data properties relevant to the BPMN branching (i.e., when an edge is guarded by a
certain data property or expression), without introducing unnecessary information;

3. The BPMN model clearly specifies where attribute values are used and how they are
changed by the different activities, so to enhance model understandability.

To sum up, the result is a BPMN-centric requirements elicitation and definition process,
where the visual representation of the annotated model conveys all the information required
both by stakeholders, to understand and validate requirements, and by software analysts
and developers, to easily map these updates to the corresponding software implementation.

The proposed approach is not intended to replace existing requirements engineering
methodologies, e.g., object-oriented analysis methods [10] or agile methodologies [11]. It
is rather intended to support business process management efforts that lead to new or
updated requirements for the underlying information system implementation.

This paper’s proposal is particularly effective in application domains that are char-
acterized by a significant variability in terms of stakeholder needs and constraints [12],
such as in the healthcare domain, where business processes may require frequent updates
in order to address new recommendations given by public authorities (see, e.g., [13]). In
these domains, the use of requirements engineering based on business processes requires
software analysts to quickly react to process changes that have an impact in terms of new
or updated requirements.

The paper is organized as follows. Section 2 summarizes the related work about
requirements engineering exploiting business process models. Section 3 briefly describes
the requirements analysis approach introduced in this paper. Section 4 exemplifies such
approach on a healthcare-related case study, comparing its outcome with that of a conven-

Computers 2021, 10, 171 3 of 17

tional requirement integration process. Then, in Section 5, the proposed contribution is
applied to another real-world case study, in a different application field, in order to better
evaluate its generality, applicability and limitations, which are then discussed in detail in
Section 6. Finally, Section 7 shows the prototypal tool developed to support the presented
approach, and Section 8 outlines the conclusions.

2. Related Work

Business process management (BPM) approaches, which have contributed to bridging
the gap between business and IT sectors in organizations, are often associated with the
adoption of information systems that implement the designed business processes, so to
support process improvement efforts. Typically, these information systems are required to
quickly adapt to business process updates in a frequently changing business scenario [12].
As such, business processes are to be taken into account during the requirements engineer-
ing phase [8].

Business process is defined by the use of notations that must be understandable and
useful to business analysts. As aforementioned, BPMN is currently used as the reference
notation for the definition of business process and for the associated software requirements
engineering activities [9].

The use of BPMN-based approaches to support requirements engineering and infor-
mation systems modeling has been investigated by several authors, mostly covering the
development of methodologies, languages and heuristics to derive software requirements
from business process models, according to various requirements engineering methodolo-
gies, as summarized in [14].

The need to cope with the limitations of BPMN in terms of data modeling is seen
as a common issue to be dealt with by the introduction of proper BPMN extensions.
The contribution in [15] effectively summarizes and reviews all such extensions, which are
provided either by using the native extension mechanisms of BPMN (see, e.g., [16]) or by
formally applying metamodel-based approaches introduced in the field of model-driven
engineering to specify domain-specific modeling languages (see, e.g., [17,18]).

Similarly in terms of data modeling, which is dealt with either by introducing informal
(natural-language-based) annotations to define data requirements at a significantly high
level of abstraction or by using more formal approaches that allow a detailed specification
of domain-specific data structures manipulated by process activities [15].

The contribution proposed in this paper differs from all such previous contributions
in terms of the extension mechanism, which is based on an informal yet precise annotation of
BPMN models, that does not alter the model structure, and versatility, being applicable to
various application domains (as shown by the case studies described in the next sections).

As aforementioned, the proposed contribution is not intended to be applied to spe-
cific requirements engineering methodologies. However, the BPMN-based extension
introduced in this paper provides an effective support for managing requirements in-
tegration tasks through a simple iterative approach, which can be effectively applied to
agile methodologies [8]. Indeed, whilst agile methodologies want to avoid complex documen-
tation, they actually need an effective requirements elicitation and lean documentation. As
an example, the proposed approach could be applied to a SCRUM methodology, in which
BPMN models could be used to convey the stakeholders’ needs, so to properly build
requirements documentation in terms of so-called user stories [19]. In such a case, the pro-
posed approach could be used either by preserving the original SCRUM process, thus
making BPMN models not part of the product backlog (the list of maintained artifacts), or by
adding BPMN models to the product backlog, in order to properly integrate user stories,
as reported in [20].

3. The Requirement Analysis Process

Requirement analysis, assisted by the proposed lightweight BPMN extension, is
accomplished through an iterative review process, whose overall structure can be illustrated

Computers 2021, 10, 171 4 of 17

as in Figure 1. The process has assigned roles and, in particular, a unique owner, which
is typically a manager, and several stakeholders, which are involved in determining the
organizational solution.

Owner/

Manager

Stakeholders and

Field experts

Stakeholders

Comments

Review models

Give feedback

Notify comments

Write/Update Models

Send final models

Review log

Log comments

Ad-Hoc Data

Model

E1

E2

E3

Notify changes

Developers

Process Model

(BPMN fragment)

Constraints

Linked to

Log updates

Requirement description

Figure 1. The overall requirement analysis process.

As shown in Figure 1, the process is started by the owner/manager who first writes a
natural language description of the new or updated requirement and defines the process
model to modify in order to implement it. Here, the process model is a BPMN fragment
commonly extracted from the overall BPMN model of the system under review.

Then, the manager defines the ad hoc data model to be used in the review process.
The design of such data model is at the heart of the proposed methodology: indeed, in gen-
eral, the high level procedural description of requirements often needs to reference details
related to the low level structure of the underlying information system. However, such
details, which may be useful for the IT staff, are hard to understand for most stakeholders,
which should instead focus on the correct integration of the requirements into the high
level process. To mask this (unnecessary) complexity to the requirements analysis process,
we create such a simplified data model, which is then used in the BPMN model. To this
aim, we adopt the following rules, so to obtain the desired simplification while maintaining
traceability to the underlying implementation:

1. For each attribute and entity cited, a description must be given, which clarifies its
intended meaning, so that the IT staff can understand how it can be derived from the
real data model of the information system;

2. Complex expressions can (and should) be synthesized in a single attribute of a suitable
entity. In the definition of such complex attributes, one should choose a bottom-up
approach and build them upon other attributes with lower complexity. This would
not impact the BPMN representation, but it could give some high-level hints to the
developers about how the attribute should be actually derived;

3. By properly building complex attributes, one should try to isolate a small number
of key attributes, which we shall call dominant, that are at the core of the requirement.
These dominant attributes will be given a specific visual representation in the BPMN.

The actual meaning of these rules will be clarified in the case studies described in the
following sections.

Once the data model is defined, the manager has an “as is” (fragment of) BPMN to
work on, as well as a set of attributes that should guide its update. He may now add to
the BPMN appropriate new activities and write pre-/post-conditions, based on the above
data model attributes, in order to accomplish the new requirement. In general, this is
accomplished by placing appropriate comments on the ingoing (for preconditions) and
outgoing (for postconditions) arrows of the activities. As a further expedient to simplify
the process analysis, we give special treatment to the dominant attribute: indeed, we do not
place its values on the diagram, but rather we map the possible values to a small number

Computers 2021, 10, 171 5 of 17

of meaningful subsets and associate each subset with a visual hint, i.e., a colour, which will
be actually placed in the BPMN comments. A suitable definition of the domain data model
should allow users to place very simple expressions in these comments, such as single
values or ranges. If more complex expressions (e.g., formulas) are needed, one should
return to the previous step and try to introduce further (complex) attributes to make such
expressions simpler.

All the involved stakeholders review the BPMN model (and the corresponding data
model) and give their feedback. Note that here we assume that the stakeholders are in a
subordinate position with respect to the owner, so they cannot modify the BPMN model;
rather they can suggest to the owner the wanted modifications, but it is of course possible to
create a more cooperative environment where every stakeholder can be enabled to directly
modify such document.

The manager uses the feedback to further refine the BPMN model and/or the data
model, and the process iterates until the manager believes that the stakeholders’ comments
do not require further changes.

Finally, the review artefacts can be sent to the developers in order to update the
software accordingly.

4. Requirement Analysis: The Hip Fracture Treatment Case Study

In order to illustrate our methodology, in this section, we introduce a real-world case
study. In particular, we start by describing a set of requirements that were integrated in
a pre-existing healthcare process related to the treatment of a hip fracture. Originally, such
integration followed an ad hoc approach, supported by several meetings, which produced
informal specification documents that were later implemented in the hospital information
system as well as in the process manuals distributed to the hospital staff. Some of the staff
members involved in the original process have been asked to repeat the integration—this
time following the new methodology proposed in this paper. At the end of the process, they
were asked to report their feedback, comparing the effort spent to integrate the requirement
through the new process with their previous experience.

The new requirements are the following:

1. The entire procedure must be completed within 48 h;
2. If the age of the patient is greater than 60 years, the patient must be subjected to the

osteoporosis test before the surgery takes place;
3. The patient must have a sufficient pain relief before the surgery takes place;
4. When the patient is transferred from the emergency room to the hospital (orthopaedic)

ward, a nurse or a physician must be present in the ward, who speaks a language
spoken by the patient.

We recall that the proposed approach assumes that a BPMN model of the existing
process already exists. Therefore, we first asked the staff to determine the fragment of the
current BPMN that would be actually affected by these new requirements. The result is
shown in Figure 2.

Since Requirement 1 involves a temporal constraint, it can be directly expressed in the
BPMN model using timed activities and timers. On the other hand, Requirements 2–4 have
a more complex structure, which includes several conditions. Therefore, in the following,
we will focus on the analysis of such requirements.

Computers 2021, 10, 171 6 of 17

Operatory room

reserva!on

Reserve

operatory room
Surgery

H
o

sp
it

a
l

w
a

rd
O

p
e

ra
to

ry

ro
o

m
A

n
a

ly
si

s
la

b

Pa!ent

anamnesis
Preliminary visit

Pa!ent with

suspect hip

fracture

E
m

e
rg

e
n

cy
R

o
o

m

Visit
Offer

paracetamol

Assess the

pa!ent’s pain

Figure 2. Hip fracture treatment on patients with more than 60 years: initial BPMN.

4.1. Analysis of Requirement 2
4.1.1. Requirement Processing

Requirement 2 describes a constrained action: we can indeed split it as follows

• The action to perform “perform osteoporosis test before surgery”;
• The preconditions, i.e., the conditions that must hold for the action to be applicable:

“the patient must have a suspected hip fracture” and “the patient must be over
60 year old”.

We may note that, given the assumptions of our case study, the first precondition
always holds. Moreover, the action is clearly unspecified: what is the relation between the
test and the surgery? Actually, the test is needed since surgery cannot be performed if the
patient suffers from osteoporosis (positive test). Thus, our initial action hides another set of
preconditions that actually guard the “surgery” action. The final, expanded requirement
structure can be then formulated as follows:

“If (precondition) the patient has a suspected hip fracture and (precondition) the pa-
tient is over 60 year old then (action) perform osteoporosis test. When (precondition) the
results are available, if (precondition) the osteoporosis test gives negative result then (action)
perform surgery”.

Note that, for sake of simplicity, here we will leave unspecified the case where the test
is positive and mark this issue on the BPMN with an exception.

4.1.2. Domain Data Model Building

The preconditions extracted from Requirement 2 refer to attributes of specific entities
involved in the process. In particular, the requirement refers to the age of the patient, i.e., to
the attribute “age” of the “patient” entity. While it is correct to assume that the “patient”
entity is already defined in the hospital information system, in general, such kind of entity
has a complex structure, consisting of many details that are not relevant for the current
requirement. Moreover, the “age” attribute may not be present, since it is clearly derivable
from the date of birth. Finally, the requirement makes reference to another value, namely,
the osteoporosis test results. In this case, we are not addressing an attribute of a specific
entity: to obtain such a value from the hospital information system, we probably need
to perform several queries on different entities, combine the results and give them an
interpretation (i.e., comparing values with admissible ranges).

Computers 2021, 10, 171 7 of 17

Therefore, following the methodology described in Section 3, we create an ad hoc
domain data model consisting of a patient entity, containing two attributes: a numerical
age attribute and an osteoporosis_test enumerated attribute, which can assume the values
“not_required”, “required”, “to_assess”, “positive”, and “negative”, and will be our domi-
nant attribute. In particular, we will visually represent such dominant attribute using white
for “required”, grey (with the common meaning of “uncertain”) for “to_assess”, green (“ok,
proceed”) for “not_required” and “negative”, and red (“stop, exception”) for “positive”,
as shown in Figure 3.

Entity Attribute Description Value Color

patient age the age of the patient 0-100

osteoporosis_test not_required if the age is less than or equal to 60,

required if age is more than 60 and the test has not been

performed, to_assess while waiting for the test results,

positive or negative after the interpretation of the test

results.

not_required

green

negative

required white

positive red

to_assess grey

Figure 3. Data model for the “osteoporosis” requirement (2) in the hip fracture treatment.

The rationale behind this choice is that we need the age to first choose if the test
must be performed or not, but then, in the rest of the process, we need only the dominant
osteoporosis_test attribute, which is built also upon the age (i.e., it is set to “not_required” if
the age is less than 60 years old), to determine the BPMN path to follow.

The full description of the attributes and their values is given in Figure 3.

4.1.3. BPMN Mapping

As the next step, we need to add to the BPMN the appropriate new activities, i.e., Os-
teoporosis analysis request and Read results, and write their pre- and/or post-conditions,
based on the attributes above.

The resulting BPMN is shown in Figure 4 where, for sake of clarity, we omitted some
activities (included in the initial BPMN of Figure 2) that are not relevant for the current
requirement analysis. In the figure, the age attribute is used as a first condition and, once
checked, continues to be implicitly considered in the higher-level osteoporosis_test attribute,
which is represented by the coloured squares that act as preconditions for the “operatory
room reservation” and “osteoporosis analysis request” activities and postconditions for the
“osteoporosis analysis” activity.

Osteoporosis

analysis request
Read results

Operatory room

reservation

Positive analysis exception

Osteoporosis

analysis

Timeout exception

Wait for results

Send results

Reserve

operatory room
Surgery

H
o

sp
it

a
l

w
a

rd
O

p
e

ra
to

ry

ro
o

m
A

n
a

ly
si

s
la

b

white

grey

red green

Yes Other tasks

age>60?

Nogreen

Figure 4. Hip fracture treatment: final BPMN for requirement (2).

Compared to the actual implementation of the requirement “manually” derived by
the hospital staff, the solution obtained through our methodology was exactly the same.
Indeed, the requirement and its fulfillment were so clear and straightforward in this

Computers 2021, 10, 171 8 of 17

case that the application of our methodology could not help in finding any ambiguity or
error. However, the formal documentation created as the result of the proposed process
can be seen as a collateral advantage, since it may be used as a solid basis for further
integration steps.

4.2. Analysis of Requirement 3

Requirement 3 says that the patient must have a sufficient pain relief before being
operated. Again, starting from the BPMN in Figure 2, this can be easily seen as a precondi-
tion constraint on the “operatory room reservation” activity involving a pain attribute of
the patient entity, which is dominant for this requirement and has three possible values:
“to_assess”, “no_pain” and “pain”, as shown in Figure 5.

Entity Attribute Description Value Color

patient pain pain if the user complains of a pain to_assess grey

no_pain green

pain red

Figure 5. Data model for the “pain relief” requirement (3) in the hip fracture treatment.

Initially the pain is still to_assess. Then, the required action is to offer different anal-
gesics until the pain precondition evaluates to no_pain.

If we encode the values of our dominant attribute using the grey, green and red colors,
respectively, we obtain the modified BPMN depicted in Figure 6.

Offer

paracetamol

Assess the

patient’s pain

Offer additional

opioids

Consider nerve

blocks

Pain exception

grey

green

H

o

s

p

i

t

a

l

w

a

r

d

O

p

e

r

a

t

o

r

y

r

o

o

m

Operatory room

reservation

Reserve

operatory room

Surgery

Other tasks

red red red

Figure 6. Hip fracture treatment: final BPMN for requirement (3).

Additionally, in this case, the application of our methodology led to no particular
benefit to the integration itself, given the simplicity of the requirement, but helped in
producing a suitable documentation of the overall updated process that could be useful
to both produce the corresponding unambiguous human-readable documentation and,
especially, to instruct the IT staff on the implementation changes required to fulfill the
new requirement.

4.3. Analysis of Requirement 4

Finally, the last requirement “a patient can be transferred to a specific hospital
ward only if there is a staff member that speaks his/her language” presents a more
complex implementation.

Here, we need to include three entities in our analysis: physician, nurse (composing the
hospital staff) and patient. Actually, following the rules described in the previous sections,
we could simply define a dominant attribute has_common_language_with_staff and place it
on the patient entity.

In this case, however, we are facing two problems: first, obtaining the value of the
attribute above, i.e., determining if the patient and the staff share a common language,

Computers 2021, 10, 171 9 of 17

is a complex task that can be achieved in many ways. Second, the “spoken languages”
information is not guaranteed to be present in the hospital information system. Therefore,
we need to carefully define our attributes in order to suggest the IT staff that this infor-
mation should be added to the real data model of the system and then used to derive the
has_common_language_with_staff value by a simple set operation. The resulting attribute
definition is given in Figure 7.

Entity Attribute Description Value Color

physician languages languages spoken by the physician List of

languages

nurse languages languages spoken by the nurse List of

languages

patient languages languages spoken by the patient List of

languages

has_common_language_with_staff true if the patient

languages share a common value with

the ones of physicians or

nurses

to_assess grey

yes green

no red

not_at_moment yellow

Figure 7. Data model for the “common language” requirement (4) in the hip fracture treatment.

We can then define the four possible values for our dominant attribute has_common_
language_with_staff, that are “to_assess”, “yes”, “no” and “not_at_moment” (i.e., a staff
member exists who speaks a common language with the patient, but he/she is not currently
available), which we map to the grey, green, red and yellow colours, respectively. Figure 8
shows how these colours are placed on the BPMN.

Patient with

suspect hip

fracture

Preliminary visit

Visit

H

o

s

p

i

t

a

l

w

a

r

d

grey

E

m

e

r

g

e

n

c

y

R

o

o

m

Language exception

Wait for staff member

yellow

red

green

Operatory room

reservation

Reserve

operatory room

Surgery

O

p

e

r

a

t

o

r

y

r

o

o

m

Other tasks

Patient

anamnesis

Figure 8. Hip fracture treatment: final BPMN for requirement (4).

Note that the patient enters in the hospital emergency room with a common language
to_assess (precondition) and exits with a yes or no value (postcondition). This also implicitly
tells that the place to verify this new requirement is the emergency room.

In this case, the application of our methodology quickly converged to a correct solution
for the integration of the requirement, whereas the “manual” approach actually employed
by the hospital staff initially led to a restrictive solution, which proved to be faulty in
many cases. Indeed, the initial solution exploited the patient nationality, deducible from his
documents, to look for physicians/nurses who could communicate with him. However,
the nationality does not directly imply the languages spoken by a patient: often a person
knows other languages, e.g., English, that can be easily used to communicate even if
nobody knows his native language.

Computers 2021, 10, 171 10 of 17

5. Requirement Analysis: The Vending Machine Case Study

To show how the proposed methodology can be generalized, and the fields of appli-
cation where it achieves the best results, we applied it to another case study belonging
to a completely different field: indeed, we consider a company working with vending
machines and, in particular, we focus on the machine refill process, which is at the core of the
company business.

In this context, the company wants to add a new, faster and automated channel for
the refill requests. Currently, such requests are placed via phone to the company contact
center, whose staff compiles a paper form based on the customer requests and manually
transmits it to the backoffice staff, which finally creates the corresponding refill order,
possibly contacting the customer to ask for further information to uniquely identify the
machine to be refilled, and enqueues it in the company sales management system. This
process is sketched in Figure 9.

C

u

s

t

o

m

e

r

Refill request

Read refill

request form

B

a

c

k

o

f

f

i

c

e

Identify the

machine to be

refilled

C

a

l

l

C

e

n

t

e

r

Send refill

request form

Compile refill

request form

Receive refill

request

Enqueue refill

order

Ask customer

for more

information

Machine found?

No

Yes

Figure 9. Vending machine refill request: initial BPMN.

Now the company wants the orders to be directly managed by the sales account
manager (SAM in the following), which should be able to receive the requests (by email,
phone, etc.) and input them in an electronic request form, where the backoffice staff can
read it, check it and finally create the order as usual, without any further contact with the
customer. In particular, we will focus only on two of the requirements involved by this
new process, i.e.,

(A) In order to submit the request, the SAM must identify the specific vending machine
to be refilled;

(B) If the customer has no pending payments of up to 100 euros, then the backoffice
staff adds the refill request to the order queue.

As in the previous case study, the company IT staff implemented these new require-
ments following a custom, unstructured integration process, and in both cases there were
problems in the requirement analysis phase that led to implementation errors. Thus, we
performed a simulation, asking the staff to repeat the requirement integration with the help
of our methodology and evaluate the possible advantages deriving from its application.

Computers 2021, 10, 171 11 of 17

5.1. Analysis of Requirement A

This requirement tells that the SAM must uniquely identify the vending machine to be
refilled (precondition) in order to submit the corresponding request (action). This is needed
to avoid the backoffice contacting the customer, as in the previous process.

Modeling such a (apparently simple) requirement through our iterative methodology
allowed us to quickly identify and fix a problem that previously, following the standard
analysis process, was caught only during the testing phase.

Indeed the SAM, which was the only stakeholder involved in the previous requirement
analysis, initially supposed that the customer name and location were enough to identify a
vending machine. However, the backoffice staff, during the first iteration of our process,
highlighted that if the customer has more than one machine at the same location, to uniquely
identify which machine has to be refilled, it is necessary to specify its sales point code.
However, the SAM has no direct access to the company software where this information
is stored: thus, he may remember it (from a previous request) or ask it to the customer (if
possible) or, as the last resort, issue a request to the company headquarters to extract the
code from the system.

To model this situation, the next iteration of the process defined a domain model con-
taining a machine entity with customerName, customerLocation and salesPointCode attributes,
as shown in Figure 10. Here salesPointCode is the dominant attribute, which can be set to
“asked” (yellow), “unknown” (red) or to any real code (green). The corresponding BPMN
is shown in Figure 11.

Entity Attribute Description Value Color

customerName the name of the customer this

machine belongs to

customerLocation the location where this machine is

installed

unknown red

asked yellow

<code> green

machine

salesPointCode the sales point code identifying this

machine

Figure 10. Data model for the “refill request” requirement (A).

���������������

	�
���

������������

�������

������	

�����	������

	�
���

�
�
��
�
��
��
�

	
�

�
��

��
�
�
�
��
�
�
�
�
�
�
�

���������������������

������

�	���

��
�����	������

�	��	

���������	�

������������

����������

����������

	��

�����	������

	�
���

	��

	��

�	��� �	���

������

Figure 11. Vending machine refill request: final BPMN for requirement (A).

Computers 2021, 10, 171 12 of 17

5.2. Analysis of Requirement B

This requirement tells that a refill request can be placed in the order queue (ac-
tion) by the backoffice staff only if the customer has no more than 100 euros of pending
payments (precondition).

The precondition refers to the customer entity, and in particular to a pendingPayments
attribute, which is clearly not directly available but is actually the result of a complex query.
Therefore, the data model used for this requirement is the one shown in Figure 12, and the
resulting BPMN is shown in Figure 13.

Entity Attribute Description Value Color

>100 red

<=100 green

the amount of payments still duecustomer pendingPayments

Figure 12. Data model for the “enqueue refill order” requirement (B).

���������		�

��
���

�
�
�
�
�
��
��
�

��������������

���

���

��
���������		�

�����

�����

Figure 13. Vending machine refill request: final BPMN for requirement (B).

Here, however, our process turned out to be not detailed enough to achieve a correct
implementation, and it encountered the same difficulties as the standard requirement
integration methodology previously applied by the company staff. Indeed, the solution
above contains a concurrency problem: it is possible for the same request to be handled
more than once. Looking at the BPMN and at the data model, it is clear that they do not
model the cardinality constraint telling that a request can be managed only once by the
staff and, therefore, submitted only once to the order queue. Clearly this problem was not
present in the previous paper-based request management process, since paper forms could
not be accessed concurrently.

This issue was later fixed by revising the requirement with a new formulation, i.e., “a
refill request can be placed in the orders queue by the backoffice staff if and only if the
customer has no more than 100 euros in pending payments and the request has not been
already assigned”.

The new part of the requirement precondition refers to a status attribute of the request
entity, which can be “waiting” or “assigned”, and is again the result of a query executed on
the company management system. Being clearly dominant for the process, the attribute is
associated with the yellow (assigned) and blue (waiting) colours as detailed in Figure 14.
The corresponding revised BPMN is shown in Figure 15.

Even if our methodology could model the correct solution, it is clear that here it
failed, since it did not convey enough information to immediately disclose the concur-
rency/cardinality issue to the stakeholders involved in the process. In this case, a more
detailed data model or class diagram, including constraints and cardinalities, would be
helpful, but obviously it would make the requirement definition understandable only to
expert stakeholders.

Computers 2021, 10, 171 13 of 17

Entity Attribute Description Value Color

assigned yellow

waiting blue

the refill request stausrequest status

Figure 14. Further data model for the “enqueue refill order” requirement (B).

Read refill

request

Change request

status to

assigned

B
a

ck
o

ff
ic

e

Check customer

data

red

Enqueue refill

order

green

yellow
blue

Figure 15. Vending machine refill request: revised BPMN for requirement (B).

6. Discussion

In this section, we discuss key points of the proposed approach, in particular the
introduction of the domain data model and the applicability of the methodology to real-
world business processes, so to identify the categories of processes that can benefit from
its application.

The proposed approach is based on a domain data model that is generated “on
demand” from the entities and attributes needed by new or updated requirements being
addressed; it aims to eliminate the ambiguity arising from the different terminology
used by project stakeholders. The proposed annotation provides a common glossary
and introduces a clear separation between the concepts (with their semantics) and their
technical implementation, in terms of the details of the underlying data storage and
retrieval. Attributes are, in turn, used to create simple conditions on the BMPN model,
which are then mapped to visual hints like colored icons, so to easily specify data-driven
decision points.

The resulting BPMN model proves to be easier to understand when compared to
the use of natural language annotations, which may be ambiguous, too concise (omitting
essential details) or too detailed (giving unnecessary information), and/or not easy to read
due to excessive text annotations.

A preliminary validation of the proposed approach has been carried out by applying
it to real-world case studies, so to evaluate its effectiveness with respect to conventional
approaches not using this paper’s proposal. The case studies reported in this paper
show that, in terms of applicability, this paper’s contribution achieves the best results on the
integration of requirements that introduce small, noncritical, local updates, which are actually
the most common in the practice. In this case, the implementation of new or updated
requirements is carried out by applying several small changes and updates to a specific
fragment of the original BPMN model.

On the other hand, when complex, structural modifications to the system are involved,
it is often useful to “restart from scratch” and define completely new models for the overall
process and for the involved entities. Indeed, in this case, the methodology may not convey
enough information to fully model the new requirement and its integration points.

In order to better identify the processes that can be profitably addressed by the pro-
posed methodology, we adopt the process matrix shown Figure 16, based on an original
design by [21]. The table classifies processes according to two variables, “process environ-

Computers 2021, 10, 171 14 of 17

ment variability” and “output-variation value to customers”, thus identifying the following
four categories:

���������	
���	��	�����������

���

�
�
�
�
��
�
�

�
	

�
��
�
�

����

�
�
�
�
��
�
�
��
�
��
	
�
��
�
��
�
��
	
��
�

�
	
�
�
�

�������

����������	
���

���������

�������

�����
������������

�������

��������������

�������

�����������������

Figure 16. Matrix for process classification (based on Hall and Johnson (2009)).

• A. Mass processes, i.e., standardized processes characterized by no variations of
the output;

• B. Mass-customized processes, i.e., standard processes following a protocol to reduce
variations in the output;

• C. Nascent processes, i.e., processes involving innovative use of materials, technolo-
gies, or designs;

• D. Creative processes, i.e., processes with customer’s value variations in the output.

The methodology presented in this paper can be applied to mass processes (type A) since

• The process has low variability, so the system complexity is not high;
• There is multi-actor involvement, which can take advantage of a good requirements

engineering approach.

Moreover, the methodology is also suitable for mass-customized processes (type B) since

• The process has, again, low variability;
• Requirements engineering allows us to easily model scenarios with limited customiza-

tions with respect to the standard.

On the other hand, nascent processes (type C) and creative processes (type D) are not
addressable by the proposed approach, since they involve prototyping and/or complex
interaction with stakeholders and even final users.

The two case studies illustrated in Sections 4 and 5 allow one to have a clear impression
of the benefits introduced by the proposed approach in terms of effectiveness and versatility,
when applied to appropriate processes (i.e., types A and B).

7. The Process and Support Tool

The requirement analysis process described in Section 3 and illustrated in Sections 4 and 5
is supported by a web application.

In particular, to support the process manager in the definition of the initial BPMN
fragment, in the web application we adopt the XML interchange format for the BPMN
(which can be exported by all of the most used BPMN editing tools) to allow the manager
to import an existing BPMN and extract the fragment(s) of interest. In particular, the tool
employs the bpmn-js [22] library, which allows one to easily import, modify and display
BPMN models on the web (see Figure 17).

Then, the manager has to define the ad hoc data model to be used in the review
process. In the web application, this is realized through a simple interface (see Figure 18)
that allows us to declare entities and their attributes as key-value pairs. Such attributes

Computers 2021, 10, 171 15 of 17

may have only basic types, i.e., string, integer, integer range, float, float range, Boolean,
date and time. We also support lists and enumerations on the above types. Each entity,
attribute and enumeration value has a mandatory description field where the manager must
enter a clear description of its intended meaning. A “dominant” checkbox allows us to
mark the dominant attributes: in this case, the manager will be able to define a number of
subsets of the attribute domain and associate them with a color.

green

red

green

red

red

grey

green

Figure 17. The support tool: BPMN editing.

Figure 18. The support tool: domain editing.

Finally, to assist the manager in the formulation of the requirement as a set of pre- and
post-conditions placed on the BPMN, the web application exploits the bpmn-js extensibility
to allow for the creation of “coloured comments” used to map dominant attributes on the
diagram, as described in the previous sections (see again Figure 17). The tool also allows
us to enter further comments in natural language in the overall BPMN.

At this point, the tool sends a notification to all the involved stakeholders (defined by
the manager), which describes the requirement to integrate and presents a link to enter the
review process. After clicking the link, the stakeholder is authenticated and he/she can
review the artefacts generated by the manager in the previous steps (BPMN, data model,
comments, etc.).

Computers 2021, 10, 171 16 of 17

To give feedback, the stakeholders can leave their comments, possibly linking them
with specific elements such as process activities or attributes of the data model.

The manager is notified by the system of the stakeholders’ feedback and uses it to
further refine the artefacts, e.g., updating the BPMN according to the comments.

The process iterates until the manager believes that the stakeholders’ comments do not
require further changes and/or a specified amount of time is passed without comments.

At the end of the process, the stakeholders’ access is disabled and the manager sends
all the review artefacts to the developers.

All the process steps above are logged by the web application to a suitable review log
that, in particular, keeps track of the comments and of the updates, so the responsibilities
of each step are clear.

Note that, given the formal and well-defined structure of the artefacts produced
and exploited in the process (i.e, BPMN models, domain data models, etc.), standard
model transformation techniques could also be applied to derive other views and artefacts,
in order to simplify both the stakeholders’ reviews and the developers’ implementation
tasks (see, e.g., [5]). In particular, thanks to the (mandatory) natural language descriptions
attached to all the data model elements, a simple transformation could be exploited to
export a textual documentation of the overall process starting from the BPMN, with its
annotations suitably linked to the data model, as illustrated above. In this way, a human-
readable, non-technical explanation of the revised business process could be produced,
which would be useful for explaining it to the actual process actors.

8. Conclusions

This paper has introduced a BPMN-based approach to requirements integration.
Specifically, the presented approach introduces a BPMN extension that allows stakeholders
and software analysts to easily merge and integrate behavioral and data properties in a
BPMN model. The proposed extension is shown to facilitate the interaction among various
stakeholders, by offering a common vocabulary of terms and an effective representation of
data-driven constraints.

The preliminary validation campaign reported in the paper shows that the methodol-
ogy can be profitably exploited in contexts characterized by low variability and multi-actor
involvement. Future work is going to address a massive experimentation in different
application domains, so to further evaluate the approach effectiveness and to consider the
opportunity to propose a corresponding ”official” BPMN extension.

Author Contributions: Conceptualization, B.I., G.D.P. and A.D.; methodology, B.I.; software, G.D.P.;
writing—original draft preparation, B.I., G.D.P. and A.D.; supervision, B.I. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data has been presented in main text.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sommerville, I. Software Engineering, 10th ed.; Pearson Education: London, UK, 2016.
2. Pressman, R. Software Engineering: A Practitioner’s Approach; McGraw-Hill: New York, NY, USA, 2009.
3. Maciaszek, L.A. Requirements Analysis and Systems Design, 3rd ed.; Addison-Wesley: Boston, MA, USA, 2007.
4. OMG. Business Process Model And Notation (BPMN) Version 2.0. Available online: http://www.omg.org/spec/BPMN/2.0/

(accessed on 15 December 2021).

http://www.omg.org/spec/BPMN/2.0/

Computers 2021, 10, 171 17 of 17

5. Wei, B.; Delugach, H.S. Transforming UML Models to and from Conceptual Graphs to Identify Missing Requirements. In
Graph-Based Representation and Reasoning, Proceedings of the 22nd International Conference on Conceptual Structures, ICCS 2016, Annecy,
France, 5–7 July 2016; Haemmerlé, O., Stapleton, G., Faron Zucker, C., Eds.; Springer International Publishing: Cham, Switzerland,
2016; pp. 72–79. [CrossRef]

6. Arao, T.; Goto, E.; Nagata, T. “Business process” oriented requirements engineering process. In Proceedings of the 13th IEEE
International Conference on Requirements Engineering (RE’05), Paris, France, 29 August 2005; pp. 395–399. [CrossRef]

7. Cardoso, E.C.S.; Almeida, J.P.A.; Guizzardi, G. Requirements engineering based on business process models: A case study. In
Proceedings of the 2009 13th Enterprise Distributed Object Computing Conference Workshops, Auckland, New Zealand, 1–4
September 2009; pp. 320–327. [CrossRef]

8. Aysolmaz, B.; Gürsul, M.; Kirchner, K.; Laue, R.; Mertens, R.; Reher, F.; Schönreiter, I.; Turban, B.; Weißbach, R. A reflection on the
interrelations between business process management and requirements engineering with an agility perspective. In Proceedings
of the 15th International Conference on Business Process Management (BPM 2017), Barcelona, Spain, 10–15 September 2017;
pp. 669–680. [CrossRef]

9. Odeh, Y. BPMN in Engineering Software Requirements: An Introductory Brief Guide. In Proceedings of the 9th International
Conference on Information Management and Engineering; Association for Computing Machinery, New York, NY, USA, 1 July
2017; pp. 11–16. [CrossRef]

10. Wazlawick, R.S. Object-Oriented Analysis and Design for Information Systems; Morgan Kaufmann: Boston, MA, USA, 2014.
11. Highsmith, J. Agile Software Development Ecosystems; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 2002.
12. Weber, B.; Sadiq, S.; Reichert, M. Beyond rigidity – dynamic process lifecycle support. Comput. Sci. Res. Dev. 2009, 23, 47–65.

[CrossRef]
13. Council of Europe. Developing a Methodology for Drawing up Guidelines on Best Medical Practice. Recommendation Rec(2001)13 and

Explanatory Memorandum; Council of Europe Publishing: Strasbourg, France, 2002.
14. Unger, A.; Spinola, M.; Pessôa, M. Requirements Engineering approaches to derive Enterprise Information Systems from Business

Process Management: A systematic literature review. In Proceedings of the Requirements Engineering und Business Process
Management (REBPM) Workshop at Modellierung 2018, Braunschweig, Germany, 21 February 2018.

15. Zarour, K.; Benmerzoug, D.; Guermouche, N.; Drira, K. A systematic literature review on BPMN extensions. Bus. Process Manag.
J. 2019, 26, 1473–1503. [CrossRef]

16. Cardoso, P.; Respício, A.; Domingos, D. riskaBPMN - a BPMN extension for risk assessment. Procedia Comput. Sci. 2021,
181, 1247–1254. [CrossRef]

17. D’Ambrogio, A.; Paglia, E.; Bocciarelli, P.; Giglio, A. Towards performance-oriented perfective evolution of BPMN models. In 6th
International Workshop on Model-Driven Approaches for Simulation Engineering; Barros, F., Hu, X., Prahofer, H., Denil, J., Eds.; Society
for Computer Simulation International: San Diego, CA, USA, 2016; pp. 15:1–15:8.

18. Bocciarelli, P.; D’Ambrogio, A.; Giglio, A.; Paglia, E. A BPMN Extension to Enable the Explicit Modeling of Task Resources. In
Proceedings of the 2nd INCOSE Italia Conference on Systems Engineering, Turin, Italy, 14–16 November 2016; pp. 40–47.

19. Scrum Alliance. The Scrum Guide. Available online: http://www.scrumalliance.org/why-scrum/scrum-guide (accessed on 15
December 2021).

20. Pastrana, M.; Ordóñez, H.; Ordóñez, A.; Merchan, L., Requirements Elicitation Based on Inception Deck and Business Processes
Models in Scrum. In Advances in Computing, Proceedings of the 12th Colombian Conference, CCC 2017, Cali, Colombia, 19–22 September
2017; Solano, A., Ordoñez, H., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 327–339. [CrossRef]

21. Hall, J.M.; Johnson, M. When should a process be art, not science? Harv. Bus. Rev. 2009, 87, 58–65.
22. Camunda Services GmbH. bpmn-js. Available online: http://bpmn.io/toolkit/bpmn-js/ (accessed on 15 December 2021).

http://doi.org/10.1007/978-3-319-40985-6_6
http://dx.doi.org/10.1109/RE.2005.1
http://dx.doi.org/10.1109/EDOCW.2009.5331974
http://dx.doi.org/10.1007/978-3-319-74030-0_54
http://dx.doi.org/10.1145/3149572.3149584
http://dx.doi.org/10.1007/s00450-009-0069-5
http://dx.doi.org/10.1108/BPMJ-01-2019-0040
http://dx.doi.org/10.1016/j.procs.2021.01.324
http://www.scrumalliance.org/why-scrum/scrum-guide
http://dx.doi.org/10.1007/978-3-319-66562-7_24
http://bpmn.io/toolkit/bpmn-js/

	Introduction
	Related Work
	The Requirement Analysis Process
	Requirement Analysis: The Hip Fracture Treatment Case Study
	Analysis of Requirement 2
	Requirement Processing
	Domain Data Model Building
	BPMN Mapping

	Analysis of Requirement 3
	Analysis of Requirement 4

	Requirement Analysis: The Vending Machine Case Study
	Analysis of Requirement A
	Analysis of Requirement B

	Discussion
	The Process and Support Tool
	Conclusions
	References

