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Abstract: We study the modular Hamiltonian associated with a Gaussian state on the
Weyl algebra. We obtain necessary/sufficient criteria for the local equivalence of Gaus-
sian states, independently of the classical results by Araki and Yamagami, Van Daele,
Holevo. We also present a criterion for a Bogoliubov automorphism to be weakly in-
ner in the GNS representation. The main application of our analysis is the description
of the vacuum modular Hamiltonian associated with a time-zero interval in the scalar,
massive, free QFT in two spacetime dimensions, thus complementing the recent results
in higher space dimensions (Longo and Morsella in The massive modular Hamiltonian.
arXiv:2012.00565). In particular, we have the formula for the local entropy of a one-
dimensional Klein–Gordon wave packet and Araki’s vacuum relative entropy of a co-
herent state on a double cone von Neumann algebra. Besides, we derive the type I I I 1
factor property. Incidentally, we run across certain positive selfadjoint extensions of the
Laplacian, with outer boundary conditions, seemingly not considered so far.

1. Introduction

The Heisenberg commutation relations are at the core of QuantumMechanics. From the
mathematical viewpoint, they have amore transparent formulation inWeyl’s exponential
form. If H is a real linear space equipped with a non-degenerate symplectic form β, one
considers the free ∗-algebra A(H) linearly generated by the (unitaries) V (h), h ∈ H ,
that satisfy the commutation relations (CCR)

V (h + k) = eiβ(h,k)V (h)V (k), h, k ∈ H, (1)

V (h)∗ = V (−h). TheWeyl algebra A(H) admits a uniqueC∗ norm, so itsC∗ completion
is a simple C∗-algebra, theWeyl C∗-algebra C∗(H). The representations, and the states,
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of A(H) and of C∗(H) are so in one-to-one correspondence. We refer to [8,14,34] for
the basic theory.

For a finite-dimensional H , von Neumann’s famous uniqueness theorem shows that
all representations of C∗(H), with V (·) weakly continuous, are quasi-equivalent. As is
well known, in Quantum Field Theory (QFT) one deals with infinitely many degrees of
freedom and many inequivalent representations arise, see [20].

Due to the relations (1), a state on C∗(H) is determined by its value on the Weyl
unitaries; a natural class of states is given by the ones with Gaussian kernel. A state ϕα

is called Gaussian, or quasi-free, if

ϕα

(
V (h)

) = e− 1
2α(h,h),

with α a real bilinear form α on H , that has to be compatible with β.
Assuming now that H is separatingwith respect to α, as is the case of a local subspace

in QFT, the GNS vector associated with ϕα is cyclic and separating for the von Neumann
algebra A(H) generated by C∗(H) in the representation. So there is an associated
Tomita–Takesaki modular structure, see [41], that we are going to exploit in this paper.

Modular theory is a deep, fundamental operator algebraic structure that is widely
known and we refrain from explaining it here, giving for granted the reader to be at least
partly familiar with that. We however point out two relevant aspects for our work. The
first one is motivational and concerns the growing interest on the modular Hamiltonian
in nowadays physical literature, especially in connection with entropy aspects (see e.g.
refs in [28]). The other aspect concerns the crucial role taken by the modular theory of
standard subspaces, see [27]; this general framework, where Operator Algebras are not
immediately visible, reveals a surprisingly rich structure and is suitable for applications
of various kind. Most of our paper will deal with standard subspaces.

Our motivation for this paper is the description of the local modular Hamiltonian
associated with the free, massive, scalar QFT in 1 + 1 spacetime dimension, in order to
complement the higher dimensional results, that were obtained after decades of investi-
gations [30]. We give our formula in Sect. 5.2. Although the present formula could be
guessed from the higher dimensional one, its proof is definitely non-trivial because the
deformation arguments from the massless case are not directly available now, due to the
well known infrared singularities; indeed the free, massless, scalar QFT does not exist
in 1 + 1 dimension.

As a consequence, we compute the local entropy of a low dimensional Klein–Gordon
wave packet. This gives alsoAraki’s vacuum relative entropy of a coherent state on a local
vonNeumann algebra the free, massive, scalar QFT, now also in the 1+1 dimension case.
We refer to [9,28–30] for background results and explanation of the context. We also
show the type I I I 1 factor property for the net of local von Neumann algebras associated
with the free, massive, scalar QFT on a low dimensional Minkowski spacetime.

We now briefly describe part of the background of our work. The Canonical Com-
mutation Relations (1) and Anti-Commutation Relations are ubiquitous and intrinsic
in Quantum Physics. The study of the corresponding linear symmetries (symplectic
transformations, CCR case) is a natural problem; the automorphisms of the associated
operator algebras are called Bogoliubov automorphisms, see [14,15]. The classical re-
sult of Shale [39] characterises the Bogoliubov automorphisms that are unitarily imple-
mentable on the Fock representation. Criteria of unitary implementability in a quasi-free
representation were given by Araki and Yamagami [5], van Daele [42] and Holevo [23],
these works are independent of the modular theory, although the last two rely on the
purification construction, that originated in the classical paper by Powers and Størmer
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in the CAR case [36]. Woronowicz partly related the purification map to the modular
theory and reconsidered the CAR case [43]. However, the modular structure of the Weyl
algebra has not been fully exploited so far, although the CCR case is natural to be studied
from this point of view.

We work in the context of the standard form of a von Neumann algebra studied by
Araki, Connes and Haagerup [3,11,21]. If an automorphism of a von Neumann algebra
in standard form is unitarily implementable, then it is canonically implementable; so
we know where to look for a possible implementation. This will provide us with a
criterion for local normality that is independent of the mentioned previous criteria, we
however make use of Shale’s criterion. We shall give necessary/sufficient criteria for the
quasi-equivalence of Gaussian states in terms of the modular data.

A key point in our analysis concerns the cutting projection on a standard subspace
studied in [9]. On one hand, this projection is expressed in terms of the modular data,
on the other hand it has a geometric description in the QFT framework. The cutting
projection is thus a link between geometry and modular theory, so it gives us a powerful
tool.

Amongour results,wehave indeednecessary/sufficient criteria for the quasi-equivalence
of two Gaussian states ϕα1 , ϕα2 on C∗(H), in terms of the difference of certain func-
tions of the modular Hamiltonians, that are related to the cutting projections. However,
our present applications to QFT are based on our general analysis, not directly to the
mentioned criteria.

The following diagram illustrates the interplay among the three equivalent structures
associated with standard subspaces and the geometric way out to QFT:

modular data

subspace geometry QFT

complex structure

cutting projection

geometric

Our paper is organised as follows. We first study the modular structure of stan-
dard subspaces, especially in relations with polarisers and cutting projections. We then
study the local normality/weak innerness of Bogoliubov transformations, and the quasi-
equivalence of Gaussian states, in terms of modular Hamiltonians and other modular
data. Finally, we present our mentioned applications in Quantum Field Theory. We also
includes appendices, in particular concerning inequalities and functional calculus for real
linear operators in the form we shall need. Finally, we point out certain positive selfad-
joint extensions of the Laplacian, naturally arising via the inverse Helmholtz operator,
that might have their own interest.

2. Basic Structure

This section contains the analysis of some general, structural aspects related to closed,
real linear subspaces of a complex Hilbert space, from the point of view of the modular
theory.
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2.1. One-particle structure. Let H be a real vector space. A symplectic form β on H is
a real, bilinear, anti-symmetric form on H . We shall say that β is non-degenerate on H
if

ker β ≡ {h ∈ H : β(h, k) = 0, ∀k ∈ H} = {0} .

We shall say that β is totally degenerate if ker β = H , namely β = 0. A symplectic
space is a real linear space H equipped with a symplectic form β.

Given a symplectic space (H, β), a real scalar product α on H is compatible with β

(or β is compatible with α) if the inequality

β(h, k)2 ≤ α(h, h)α(k, k) , h, k ∈ H, (2)

holds. Given a compatible α, note that ker β is closed (w.r.t. α), β = 0 on ker β and β is
non-degenerate on (ker β)⊥. Clearly, β extends to a symplectic form on the completion
H̄ of H w.r.t. α, compatible with the extension of α. (However β may be degenerate on
H̄ even if β is non-degenerate on H .)

A one-particle structure on H associated with the compatible scalar product α (see
[24]) is a pair (H, κ), where H is a complex Hilbert space and κ : H → H is a real
linear map satisfying

(a) 	(κ(h1), κ(h2)) = α(h1, h2) and 
(κ(h1), κ(h2)) = β(h1, h2), h1, h2 ∈ H ,
(b) κ(H) + iκ(H) is dense inH.

Note that κ is injective because

h ∈ H, κ(h) = 0 ⇒ 	(κ(h), κ(h)) = 0 ⇒ α(h, h) = 0 ⇒ h = 0. (3)

With H̄ the completion of H̄ w.r.t. α, β extends to a compatible symplectic form on H̄ .
Then κ extends to a real linear map κ̄ : H̄ → H with (H, κ̄) a one-particle structure for
H̄ .

In the following proposition, we shall anticipate a couple of facts explained in later
sections. The uniqueness can be found in [24]; the existence is inspired by [34].

Proposition 2.1. Let H be a symplectic space with a compatible scalar product α. There
exists a one-particle structure (H, κ)on H associated withα. It is unique, modulo unitary
equivalence; namely, if (H′, κ ′) is another one-particle structure on H, there exists a
unitary U : H → H′ such that the following diagram commutes:

H
H

H′
U

κ

κ ′

Proof. Uniqueness. The linear map U : κ(h) 
→ κ ′(h) is well defined on κ(H) by (3).
Moreover, it extends to a complex linear map κ(H) + iκ(H) → κ ′(H) + iκ ′(H) and is
isometric because

||κ(h) + iκ(k)||2 = ||κ(h)||2 + ||κ(k)||2 + 2	(κ(h), iκ(k))

= ||κ(h)||2 + ||κ(k)||2 − 2
(κ(h), κ(k))

= α(h, h) + α(k, k) − 2β(h, k) = ||κ ′(h) + iκ ′(k)||2,
so U extends to a unitary operator with the desired property.
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Existence. By replacing H with its completion w.r.t. α, we may assume that H is
complete. Suppose first that β is totally degenerate, i.e. β = 0, and let HC the usual
complexification of H , namely HC = H ⊕ H as real Hilbert space with complex

structure given by the matrix i =
[
0 −1
1 0

]
. Then κ : h ∈ H 
→ h ⊕ 0 ∈ HC is a

one-particle structure on H associated with α.
Suppose now that β is non-degenerate and consider the polariser DH (Sect. 2.2).

If ker(D2
H + 1) = {0}, i.e. H is separating (see Lemma 2.2), the orthogonal dilation

provides a one-particle structure on H associated with α (Sect. 2.4). If D2
H = −1, then

DH is a complex structure on H , so the identity map is a one-particle structure. Taking
the direct sum, we see that a one-particle structure exists if β is non-degenerate.

The existence of a one-particle structure then follows in general because
H = Ha ⊕ H f , where the restriction of β to Ha is totally degenerate and to H f is
non-degenerate. ��

2.2. Polariser. Let H ⊂ H be a closed, real linear subspace of the complex Hilbert
space H. By the Riesz lemma, there exists a unique bounded, real linear operator DH
on H such that

β(h, k) = α(h, DH k), h, k ∈ H, (4)

with α(·, ·) = 	(·, ·), β(·, ·) = 
(·, ·)
We have

||DH || ≤ 1, D∗
H = −DH .

The operator DH is called the polariser of H . As


(h, k) = −	(h, ik) = −	(h, EH ik), h, k ∈ H,

we have one of our basic relations

DH = −EH i |H , (5)

where EH is the orthogonal projection onto H .
Let H ′ = (i H)⊥R be the symplectic complement of H .We shall say that H is factorial

if H ∩ H ′ = {0}.
Lemma 2.2. We have

ker(D2
H + 1) = H ∩ i H, (6)

thus H is separating iff ker(D2
H + 1) = {0}. Furthermore,

ker(DH ) = ker β = H ∩ H ′. (7)

thus H is factorial iff ker(DH ) = {0}.
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Proof. As DH = −EH i |H , with EH the orthogonal projection of H onto H (5), we
have

D2
H = EH i EH i |H = −EH Ei H |H (8)

so, if h ∈ H ,

(D2
H + 1)h = 0 ⇔ EH Ei H h = h ⇔ h ∈ H ∩ i H,

showing the first part of the lemma.
Last assertion follows as

ker β = ran(DH )⊥ = ker(D∗
H ) = ker(DH )

and clearly ker β = H ∩ H ′. ��
Proposition 2.3. h ∈ ker(D2

H + 1) ⇔ ||DH h|| = ||h|| ⇔ DH h = −ih.

Proof. Let h ∈ ker(D2
H + 1), thus D2

H h = −h, so ||D2
H h|| = ||h|| and this implies

||DH h|| = ||h|| because ||DH || ≤ 1. Thus ||EH ih|| = ||h|| = ||ih||, so h ∈ i H ; hence
h ∈ H ∩ i H . So DH h = −EH ih = −ih.

Conversely, assume that DH h = −ih; then ih ∈ H , so ||DH h|| = ||EH ih|| =
||h||. Finally, assume the equality ||DH h|| = ||h|| to hold. Then ||EH ih|| = ||ih||,
so EH ih = ih, hence DH h = −EH ih = −ih, so D2

H = −h, namely h ∈
ker(D2

H + 1). ��

2.3. Standard subspaces. LetH be a complex Hilbert space and H a closed, real linear
subspace. We say that H is cyclic if H + i H is dense inH, separating if H ∩ i H = {0},
standard if it is both cyclic and separating.

Let H ⊂ H be a closed, real linear subspace ofH and β = 
(·, ·) on H , where (·, ·)
is the complex scalar product on H; then β is a symplectic form on H that makes it a
symplectic space. Moreover, α = 	(·, ·) is a compatible real scalar product on H .

An abstract standard subspace is a triple (H, α, β), where H is a real Hilbert space,
α is the real scalar product on H and β is a symplectic form on H compatible with α, so
that H separating, that is ker(D2

H + 1) = {0}, with DH the polariser of H , see Lemma
2.2.

By Proposition 2.1, an abstract standard subspace can be uniquely identified, up to
unitary equivalence, with a standard subspace of a complex Hilbert space as above.

We shall say that the abstract standard subspace (H, α, β) is factorial if ker(DH ) =
{0}, namely β is non-degenerate.

In viewof the above explanations,we shall often directly dealwith standard subspaces
of a complex Hilbert space H.

Given a standard subspace H of H, we shall denote by JH and �H the modular
conjugation and themodular operator of H ; they are defined by the polar decomposition
SH = JH �

1/2
H of the closed, densely defined, anti-linear involution on H

SH : h + ik 
→ h − ik, h, k ∈ H.

�H is a non-singular, positive selfadjoint operator, JH is an anti-unitary involution and
we have

JH �H JH = �−1
H . (9)
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The fundamental relations are

�is
H H = H, JH H = H ′, s ∈ R,

see [25,27,37]. We denote by

L H = log�H

the modular Hamiltonian of H . We often simplify the notation setting L = L H and
similarly for other operators.

Assume now H to be standard and factorial. Let EH be the real orthogonal projection
fromH onto H as above and PH the cutting projection

PH : h + h′ 
→ h, h ∈ H, h′ ∈ H ′. (10)

PH : D(PH ) ⊂ H → H is a closed, densely defined, real linear operator with domain
D(PH ) = H + H ′.

Recall two formulas respectively in [17] and in [9]:

EH = (1 + �H )−1 + JH �
1/2
H (1 + �H )−1, (11)

PH = (1 − �H )−1 + JH �
1/2
H (1 − �H )−1; (12)

more precisely, PH is the closure of the right hand side of (12).
These formulas can be written as

EH = (1 + SH )(1 + �H )−1, (13)

PH = (1 + SH )(1 − �H )−1, (14)

so give

PH = EH (1 + �H )(1 − �H )−1 = −EH coth(L H /2). (15)

In the following, if T : D(T ) ⊂ H → H is a real linear operator, T |H is the restriction
of T to D(T |H ) ≡ D(T ) ∩ H , that we may consider also as operator H → H if
ran(T |H ) ⊂ H , as it will be clear from the context.

Proposition 2.4. Let H ⊂ H be a factorial standard subspace. The polariser DH of H
and its inverse D−1

H are given by

DH = −EH i |H = i(�H − 1)(�H + 1)−1|H = i tanh(L H /2)|H , (16)

D−1
H = PH i |H = −i(�H + 1)(�H − 1)−1|H = −i coth(L H /2)|H . (17)

As a consequence, PH i |H is a skew-selfadjoint real linear operator on H.

Proof. As JH �H JH = �−1
H , Eq. (11) gives

EH = (1 + �H )−1 + �H (1 + �H )−1 J�
1/2
H ,

therefore

EH ih =
(
(1 + �H )−1 + �H (1 + �H )−1SH

)
ih = (1 + �H )−1ih − �H (1 + �H )−1ih

= (1 − �H )(1 + �H )−1ih, (18)
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h ∈ H , thus

EH i |H = (1 − �H )(1 + �H )−1i |H . (19)

As DH = −EH i |H (5), Eq. (16) is proved.
Concerning formula (17), since H is left invariant by (�H + 1)(�H − 1)−1i , from

(15) we get

PH i |H = −EH coth(L H /2)i |H = −i coth(L H /2)|H = −i(�H + 1)(�H − 1)−1|H .

So PH i |H is skew-selfadjoint because H is globally �is
H -invariant, s ∈ R [30, Prop.

2.2]. ��
Corollary 2.5. We have

√
1 + D2

H = 2(�1/2
H + �

−1/2
H )−1|H = 1

cosh(L H /2)

∣∣∣
H

. (20)

D−1
H

√
1 + D2

H = −2i(�1/2
H − �

−1/2
H )−1|H = −i

1

sinh(L H /2)

∣∣∣
H

; (21)

Proof. By Proposition 2.4 DH = i tanh(L H /2)|H , thus

D2
H = − tanh2(L H /2)|H , (22)

so D2
H is a bounded selfadjoint operator on H (as real linear operator). Therefore

1 + D2
H = (

1 − tanh2(L H /2)|H
)∣∣

H = 1

cosh2(L H /2)

∣∣∣
H

, (23)

thus (20) holds.
By Proposition 2.4 we then have

D−1
H

√
1 + D2

H = −i
coth(L H /2)

cosh(L H /2)

∣∣∣
H

= −i
1

sinh(L H /2)

∣∣∣
H

.

��
The following corollary follows at once from [31]. The type of a subspace refers to the
second quantisation von Neumann algebra.

Corollary 2.6. We have

EH EH ′ |H = 1 + D2
H . (24)

Therefore, H is a type I subspace iff 1 + D2
H is a trace class operator.

Proof. By [31, Lemma 2.4], we have EH EH ′ |H = 4�H (1 + �H )−2|H ; by (23), we
have

4�H (1 + �H )−2|H = 1

cosh2(L H /2)

∣∣∣
H

= 1 + D2
H .

The corollary thus follows by [31, Cor. 2.6]. ��
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By (24) and (8), we have the nice identity

EH EH ′ |H + EH Ei H |H = 1. (25)

Let (H, αk, β) be abstract standard subspaces, k = 1, 2, and suppose thatα1 is equivalent
to α2, thus there exists a bounded, positive linear map T : H → H with bounded inverse
such that α2(h, k) = α1(h, T k). Then

α1(h, D1k) = β(h, k) = α2(h, D2k) = α1(h, T D2k),

thus D1 = T D2.

2.4. Orthogonal dilation. Let H be a real Hilbert space, with real scalar product α, and
consider the doubling

H̃ = H ⊕ H

(direct sum of real Hilbert spaces). We consider a symplectic form β on H , that we
assume to be non-degenerate and compatible with α. Let D be the polariser of β on
H given by (4). So ker(D) = {0}. We also assume that ker(1 + D2) = {0}, namely
(H, α, β) is a factorial abstract subspace (6). Set

ι =
[

D V
√
1 + D2

V
√
1 + D2 −D

]

, (26)

with V the phase of D in the polar decomposition, D = V |D|; note that V commutes
with D, because D is skew-selfadjoint, and V 2 = −1 (see [7,34]). Then ι is a unitary
on H̃ and ι2 = −1, namely ι is a complex structure on H̃ .

Let H be the complex Hilbert space given by H̃ and ι. The scalar product of H is
given by

(h1 ⊕ h2, k1 ⊕ k2) = α̃(h1 ⊕ h2, k1 ⊕ k2) + i β̃(h1 ⊕ h2, k1 ⊕ k2)

with α̃ ≡ α ⊕ α and β̃(h1 ⊕ h2, k1 ⊕ k2) = α̃(h1 ⊕ h2, ι(k1 ⊕ k2)).
The embedding κ : H → H

κ : h 
→ κ(h) ≡ h ⊕ 0

satisfies the condition b) in Sect. 2.1, that is α̃(κ(h), κ(k)) = α(h, k) and

β̃(κ(h), κ(k)) = α̃(h ⊕ 0, ι(k ⊕ 0)) = α̃(h ⊕ 0, Dk ⊕ V
√
1 + D2 k))

= α(h, Dk) = β(h, k),

h, k ∈ H .

Lemma 2.7. κ(H) cyclic and separating in H̃ , so κ is a one-particle structure for H
with respect to α and κ(H) is a factorial subspace.

Proof. κ(H) cyclic means that the linear span of H ⊕0 and {ι(h ⊕0) : h ∈ H} is dense
inH. As

ι(h ⊕ 0) = Dh ⊕ −V
√
1 + D2 h,

κ(H) is cyclic iff ran(V
√
1 + D2) is dense, thus iff ker(1+ D2) = {0}. The proof is then

complete by Lemma 2.2. ��
By the above discussion H ⊂ H is a factorial standard subspace. We call H ⊂ H the
orthogonal dilation of (H, β) with respect to α.
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2.5. Symplectic dilation. Let (H, α, β) be an abstract factorial standard subspace. Con-
sider the doubled symplectic space (H ⊕ H, β̂), where β̂ = β ⊕ −β.

With D the polariser of α, let H0 = ran(D) and set

ι =
[

D−1 D−1
√
1 + D2

−D−1
√
1 + D2 −D−1

]

, (27)

where the matrix entries are defined as real linear operators (H, α) → (H, α) with
domain H0. Then

ι2 = −1

on H0 ⊕ H0. A direct calculation shows that

β̂(ιξ, ιη) ≡ β̂(ξ, η) , ξ, η ∈ H0 ⊕ H0; (28)

setting

α̂(ξ, η) ≡ β̂(ξ, ιη), ξ, η ∈ H0 ⊕ H0, (29)

we have a real scalar product α̂ on H0 ⊕ H0 which is compatible with β̂. Let Ĥ be the
completion of H0 ⊕ H0 with respect to α̂; then Ĥ is a real Hilbert space with scalar
product still denoted by α̂.

By (28), (29), ι preserves α̂, so the closure of ι is a complex structure on H , and ι is
the polariser of α̂ w.r.t. β̂. Then β̂ extends to a symplectic form on H compatible with
α̂. So Ĥ is indeed a complex Hilbert space and H ⊂ Ĥ is a real linear subspace, where
H is identified with H ⊕ 0.

We call H ⊂ Ĥ the symplectic dilation of (H, β) with respect to α.

Proposition 2.8. H is a factorial standard subspace of the symplectic dilation Ĥ. There-
fore the symplectic and the orthogonal dilations are unitarily equivalent.

Proof. H is complete, thus closed in Ĥ. Since the polariser of H in Ĥ is equal to D, the
proposition follows by Lemma 2.2. ��

3. Bogoliubov Automorphisms

In this section we study symplectic maps that promote to unitarily implementable auto-
morphisms on the Fock space.

Given a symplectic space (H, β), we consider the Weyl algebra A(H) associated
with H , namely the free ∗-algebra complex linearly generated by the Weyl unitaries
V (h), h ∈ H , that satisfy the commutation relations

V (h + k) = eiβ(h,k)V (h)V (k), V (h)∗ = V (−h), h, k ∈ H.

The C∗ envelop of A(H) is the Weyl C∗-algebra C∗(H). If β non-degenerate, there
exists a unique C∗ norm on A(H) and C∗(H) is a simple C∗-algebra.

Let H be a complex Hilbert space and eH be the Bosonic Fock Hilbert space over
H. Then we have the Fock representation of C∗(HR) on eH, where HR is H as a real
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linear space, equipped with the symplectic form β ≡ 
(·, ·). In the Fock representation,
the Weyl unitaries are determined by their action on the vacuum vector e0

V (h)e0 = e− 1
2 (h,h)eh, h ∈ H, (30)

where eh is the coherent vector associatedwith h. So theFock vacuum state ϕ = (e0, · e0)
of C∗(HR) is given by

ϕ
(
V (h)

) = e− 1
2 ||h||2 , h ∈ H. (31)

With H any real linear subspace ofH, the Fock representation determines a representa-
tion of C∗(H) on eH, which is cyclic on eH iff H is a cyclic subspace ofH. We denote
by A(H) the von Neumann algebra on eH generated by the image of C∗(H) in this
representation. We refer to [8,26,27,32] for details.

3.1. Global automorphisms. LetH be a complexHilbert space and eH the Fock space as
above.A symplectic map T : D(T ) ⊂ H → H is a real linearmapwith D(T ) and ran(T )

dense, that preserves the imaginary part of the scalar product, thus
(T ξ, T η) = 
(ξ, η),
ξ, η ∈ D(T ).

Let T : D(T ) ⊂ H → H be a symplectic map. Then

	(iT ξ, T η) = 	(iξ, η), ξ, η ∈ D(T ),

thus iT ξ ∈ D(T ∗) and T ∗iT ξ = iξ for all ξ ∈ D(T ), namely

T ∗iT = i |D(T ), (32)

therefore ker(T ) = {0}, T is closable because T ∗ is densely defined, and T −1 =
−iT ∗i |ran(T ), so T ∗|i ran(T ) is a symplectic map too. It also follows that

T bounded ⇐⇒ T ∗ bounded ⇐⇒ T −1 bounded. (33)

We thenhave the associatedBogoliubov homomorphismϑT of theWeyl algebra A
(
D(T )

)

onto A
(
ran(T )

)
:

ϑT : V (ξ) 
→ V (T ξ), ξ ∈ D(T ).

Let T : H → H be a bounded, everywhere defined symplecticmap; the criterion of Shale
[39] gives a necessary and sufficient condition in order that ϑT be unitary implementable
on eH, under the assumption that T has a bounded inverse:

ϑT unitary implementable ⇐⇒ T ∗T − 1 ∈ L2(H) ⇐⇒ [T, i] ∈ L2(H), (34)

where [T, i] = T i − iT = T i(1 − T ∗T ) is the commutator and L2(H) are the real
linear, Hilbert–Schmidt operator on H.

Due to the equivalence (33), the assumption T −1 bounded in (34) can be dropped (as
we assume that ran(T ) is dense).

We shall deal with symplectic maps that, a priori, are not everywhere defined. How-
ever the following holds.
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Lemma 3.1. Let T : D(T ) ⊂ H → H be a symplectic map. Then ϑT is unitarily
implementable iff ϑT is unitarily implementable, where T is the closure of T . In this
case, T is bounded.

Proof. First we show that, ifϑT is implemented by a unitaryU on eH, then T is bounded.
Indeed, if ξn ∈ D(T ) is a sequence of vectors with ξn → 0, then V (ξn) → 1 strongly,
thus V (T ξn) = U V (ξn)U∗ → 1, so

ϕ
(
(V (T ξn)

) = e− 1
2 ||T ξn ||2 → 1,

with ϕ the Fock vacuum state, therefore ||T ξn|| → 0 and T is bounded.
If ϑT is implemented, then ϑT is obviously implementable by the same unitary.

Conversely, assume that ϑT is implementable by a unitary U on H. So T is bounded.
Hence T is a bounded, everywhere defined symplectic map. Let ξ ∈ H and choose a
sequence of elements ξn ∈ D(T ) such that ξn → ξ . Then

ϑT

(
V (ξ)

) = V (T ξ) = lim
n

V (T ξn) = lim
n

U V (ξn)U
∗ = U V (ξ)U∗,

so ϑT is implemented by U . ��

3.2. Hilbert–Schmidt perturbations. MotivatedbyShale’s criterion,we studyhereHilbert–
Schmidt conditions related to the symplectic dilation of a symplectic map.

We use the following notations: If H is a complex Hilbert space, Lp(H) denotes
the space of real linear, densely defined operators T on H that are bounded and the
closure T̄ belongs to the Schatten p-ideal with respect to the real part of the scalar
product, 1 ≤ p < ∞. If H1,H2 are complex Hilbert spaces, T ∈ Lp(H1,H2) means
T ∗T ∈ L p

2 (H1). If H ⊂ H is a standard subspace, T ∈ Lp(H) means that T is a real
linear, everywhere defined operator on H in the Schatten p-ideal with respect to the real
part of the scalar product. Similarly, T ∈ Lp(H1, H2) means T ∈ L p

2 (H).
Let now H ⊂ H be a factorial standard subspace of the Hilbert space H and C :

H + H ′ → H + H ′ a real linear operator. As H + H ′ is the linear direct sum of H and
H ′, we may write C as a matrix of operators

C =
[

C11 C12
C21 C22

]
(35)

(the symplectic matrix decomposition). Thus

C11 = PH C |H , C12 = PH C |H ′ , . . .

and C11 is an operator H → H , C12 is an operator H ′ → H , etc.
We want to study the Hilbert–Schmidt condition for C . Note that

C ∈ L2(H) ⇐⇒ EH C EH ∈ L2(H), EH C EH⊥ ∈ L2(H) . . .

With D = DH the polariser and J = JH themodular conjugation, the symplectic matrix
decomposition of the complex structure is

i =
[

D−1 D−1
√
1 + D2 J

−J D−1
√
1 + D2 −J D−1 J

]

, (36)
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as follows from (27) and the uniqueness of the dilation. Note, in particular, the identity

PH ′ i |H = −J D−1
√
1 + D2. (37)

Lemma 3.2. The following symplectic matrix representations hold:

EH =
[
1

√
1 + D2 J

0 0

]
, EH⊥ =

[
0 −√

1 + D2 J
0 1

]
, EH ′ =

[
0 0

J
√
1 + D2 1

]
.

Proof. We have

EH i =
[−D 0

0 0

]
(38)

because EH i is equal to−D on H and zero on H ′ = i H⊥. As EH = −(EH i)i , the first
equality in the lemma follows by matrix multiplication with (36). The second equality
is then simply obtained as

EH⊥ = 1 − EH =
[
0 −√

1 + D2 J
0 1

]
.

Last equality follows as

EH ′ = J EH J

and the symplectic matrix decomposition of J is

[
0 J
J 0

]
. ��

Lemma 3.3. Let C : H + H ′ → H + H ′ be a real linear map such that iCi = C, with
symplectic matrix decomposition (35). We have

EH C |H = C11 +
√
1 + D2 JC21, (39)

EH Ci |H ′ = DC12, (40)

EH ′ iC |H = J D JC21, (41)

EH ′C |H ′ = J
√
1 + D2 C12 + C22. (42)

Proof. We have

EH C =
[

C11 +
√
1 + D2 JC21 C12 +

√
1 + D2 JC22

0 0

]
, (43)

thus

EH C |H = C11 +
√
1 + D2 JC21 ,

namely, (39) holds.
Since Ci = −iC , we have

EH Ci = −EH iC =
[

D 0
0 0

]
C,
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so

EH Ci =
[

DC11 DC12
0 0

]
,

thus

EH Ci |H ′ = DC12

and (40) holds.
With C j = JC J , we then get

EH ′ iC |H = J EH JiC |H = −J EH JCi |H = −J EH C j J i |H = J EH C j i J |H

= J (EH C j i)|H ′ J = J DC j
12 J = J D J JC j

12 J = J D JC21,

so (41) holds.
Similarly, from (39) we get (42). ��

With H a standard subspace, a symplectic map of the standard subspace H is a real
linear map T : H → H such that


(T h, T k) = 
(h, k), h, k ∈ H,

equivalently

	(T h, DT k) = 	(h, Dk), h, k ∈ H,

so

T symplectic ⇔ T ∗ DT = D;
if T is invertible, we shall say that T is a symplectic bijection of H .

Now, let H be a factorial standard subspace and T : H → H a symplectic bijection.
Denote by T̃ the symplectic map T ⊕ J T J : H + H ′ → H + H ′, namely T̃ =
T PH + J T J PH ′ , i.e.

T̃ =
[

T 0
0 J T J

]

in the symplectic matrix description. We have

T̃ i =
[

T D−1 T D−1
√
1 + D2 J

−J T D−1
√
1 + D2 −J T D−1 J

]

,

i T̃ =
[

D−1T D−1
√
1 + D2 T J

−J D−1
√
1 + D2 T −J D−1T J

]

,

[T̃ , i] =
[

[T, D−1] [
T, D−1

√
1 + D2

]
J

−J
[
T, D−1

√
1 + D2

] −J [T, D−1]J

]

.

Note that

i[T̃ , i]i = i(T̃ i − i T̃ )i = −i T̃ + T̃ i = [T̃ , i].
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Corollary 3.4. We have

EH [T̃ , i]|H = [T, D−1] −
√
1 + D2

[
T, D−1

√
1 + D2

]
, (44)

EH
[
T̃ , i

]
i |H ′ = D

[
T, D−1

√
1 + D2

]
J, (45)

EH ′ i
[
T̃ , i

]|H = −J D
[
T, D−1

√
1 + D2

]
, (46)

EH ′
[
T̃ , i

]|H ′ = J
(√

1 + D2
[
T, D−1

√
1 + D2

] − [T, D−1])J. (47)

Proof. We apply Lemma 3.3 with C = [
T̃ , i

]
. By (39), we get (44). By (40), we get

(45). By (41), we get (46). By (42), we get (47). ��
Proposition 3.5. [T̃ , i] ∈ L2(H) iff both the following conditions hold:

(a) [T, D−1] −
√
1 + D2

[
T, D−1

√
1 + D2

] ∈ L2(H),

(b) D
[
T, D−1

√
1 + D2

] ∈ L2(H).

Proof. Assume [T̃ , i] ∈ L2(H). Then the operators (44), (45) are Hilbert–Schmidt, and
this implies that the operators in the statement are in L2(H).

Conversely, assume that the operators in the statement are in L2(H). Then the oper-
ators in Lemma 3.4 are in L2(H).

Now,

EH⊥C EH⊥ = i EH ′ iCi EH ′ i = −i EH ′C EH ′ i,

thus

EH⊥C |H⊥ ∈ L2(H⊥) ⇐⇒ EH ′C |H ′ ∈ L2(H ′);
moreover,

EH C |H⊥ ∈ L2(H⊥, H) ⇐⇒ EH Ci |H ′ ∈ L2(H ′, H). (48)

We conclude that all the four matrix elements in the orthogonal decomposition of
[
T̃ , i

]

are in L2(H), thus [T̃ , i] ∈ L2(H). ��
Corollary 3.6. Assume [T, D−1] ∈ L2(H) and

[
T, D−1

√
1 + D2

] ∈ L2(H). Then
[T̃ , i] ∈ L2(H).

Proof. If the assumptions are satisfied, then a) and b) of Proposition 3.5 clearly hold
because D and

√
1 + D2 are bounded. ��

3.2.1. Finite codimensional subspaces of standard subspaces Let H be a standard sub-
space of the complex Hilbert space H and Ḣ ⊂ H a finite-codimensional closed sub-
space of H .

With D and Ḋ the polarisers of H and Ḣ , we clearly have

Ḋ = F D|Ḣ , (49)

where F : H → Ḣ is the orthogonal projection.
Let Ḣ⊥ ⊂ H be the real orthogonal complement of Ḣ in H . We have the matrix

decomposition of D w.r.t. H = Ḣ + Ḣ⊥

D =
[

Ḋ ∗
∗ ∗

]
, (50)

where the starred entries have finite rank or co-rank.



160 R. Longo

Lemma 3.7. 1+D2
H ∈ Lp(H) (resp. is compact) iff 1+D2

Ḣ
∈ Lp(Ḣ) (resp. is compact).

Proof. We have

(1 + D2
H )|Ḣ = 1|Ḣ + D2

H |Ḣ = 1|Ḣ + F DH F DH |Ḣ

= F1Ḣ + F D2
H |Ḣ +

(
F DH (1 − F)DH |Ḣ

)

= 1 + D2
Ḣ
+

(
F DH (1 − F)DH |Ḣ

)

and we may apply next lemma because F DH (1− F)DH |Ḣ is a finite rank operator. ��
Lemma 3.8. Let Ḣ ⊂ H be a finite codimensional inclusion of Hilbert spaces, Fk :
H → Ḣ bounded projections and Dk bounded linear operators on H, k = 1, 2.

Then F1D1|Ḣ − F2D2|Ḣ ∈ Lp(Ḣ) (resp. is compact) iff D1 − D2 ∈ Lp(H) (resp.
is compact), p ≥ 1.

Proof. Suppose that F1D1|Ḣ − F2D2|Ḣ is compact (resp. Lp). Similarly as in (50), we
have

Dk = Fk Dk Fk + finite rank operator,

thus

D1 − D2 = F1D1F1 − F2D2F2 + finite rank operator,

hence

(D1 − D2)|Ḣ = F1D1|Ḣ − F2D2|Ḣ + finite rank operator

is compact (resp. Lp) by the assumption. Therefore (D1 − D2)F1 is compact (resp. Lp)
because F1 is bounded, so

D1 − D2 = (D1 − D2)F1 + (D1 − D2)(1 − F1)

is compact (resp. Lp) because 1 − F1 has finite rank.
The converse holds too by reversing the implications. ��

3.3. Local automorphisms. Let now Hk be standard factorial subspaces of the Hilbert
spaces Hk , k = 1, 2 and T : H1 → H2 a symplectic bijection, namely T is real linear,
invertible and β2(T h, T k) = β1(h, k), h, k ∈ H1, with βk the symplectic form on Hk
(the restriction of 
(·, ·)k to Hk , with (·, ·)k the scalar product onHk). Then T promotes
to a ∗-isomorphism ϑT between the Weyl C∗-algebras C∗(H1) and C∗(H2)

ϑT
(
V1(h)

) = V2(T h).

With Ak(Hk) the von Neumann algebra associated with Hk on the Bose Fock space
eHk , we want to study when ϑT extends to a normal isomorphism betweenA1(H1) and
A2(H2).

Let T̃ : H1 → H2 be the real linear operator, with domain D(T̃ ) = H1 + H ′
1 and

range ran(T̃ ) = H2 + H ′
2,

T̃ : h + J1k 
→ T h + J2T k, h, k ∈ H1,

where H ′
k is the symplectic complement of Hk inHk and Jk = JHk . Then T̃ is a densely

defined, real linear, symplectic map with dense range fromH1 toH2.
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Lemma 3.9. If T̃ i1 − i2T̃ is bounded and densely defined, then T̃ is bounded.

Proof. T̃ is closable by Lemma 3.1 so T̃ i1 and i2T̃ are closable too. By assumptions,
there is a bounded, everywhere defined operator C : H1 → H2 such that T̃ i1 = i2T̃ +C
onD ≡ D(T̃ i1− i2T̃ ), so the closures of T̃ i1|D and i2T̃ |D have the same domain. Now

D = D(T̃ ) ∩ i1D(T̃ ) = D(PH1) ∩ i1D(PH1)

is a core for PH1 , as follows by Eq. (12). Indeed, �i1H1 = �H1 and Ji1H1 = −JH1 , so
the spectral subspaces of �H1 relative to finite closed intervals [a, b] ⊂ (0, 1) ∪ (1,∞)

are in the domain of D(PH1) ∩ D(Pi1H1) (see [9]).
Now,

T̃ = T PH1 + J2T J1(1 − PH1)

and one easily checks that D is a core for T̃ , similarly as above. It follows that ¯̃T i1 =
i2

¯̃T + C , with ¯̃T the closure of T̃ . Therefore, D( ¯̃T i1) = D(i2
¯̃T ), so i1D( ¯̃T ) = D( ¯̃T ).

We conclude that

D( ¯̃T ) ⊃ (H1 + H ′
1) + i1(H1 + H ′

1) ⊃ H1 + i1H ′
1 = H1 + H⊥

1 = H1,

so T̃ is bounded by the closed graph theorem. ��
Proposition 3.10. The following are equivalent:

(i) There exists a unitary U : eH1 → eH2 such that U V1(h)U∗ = V2(T h), h ∈ H1;
(ii) ϑT extends to a normal isomorphism A1(H1) → A2(H2);
(iii) T̃ ∗T̃ − 1 ∈ L2(H1);
(iv) T̃ i1 − i2T̃ ∈ L2(H1,H2).

Proof. (i) ⇔ (ii): Clearly (ii) follows from (i); we show that (ii) ⇒ (i). Let Vk(·) be the
Weyl unitary on eHk . By assumptions, the linear extension of themap V1(h) 
→ V2(T h),
h ∈ H1, extends to a normal isomorphism ϑ̄T : A1(H1) → A2(H2). Since the vacuum
vector is cyclic and separating for Ak(Hk), we have the associated unitary standard
implementation UT : eH1 → eH2 of ϑ̄T w.r.t. the vacuum vectors [3,11,21].

(i) ⇔ (iii): Assume (i) and let UT be the vacuum unitary standard implementation
ϑ̄T as above. eJk , the second quantisation of the modular conjugation Jk of Hk , is the
modular conjugation of the von Neumann algebra Ak(H) w.r.t. the vacuum vector e0,
so we have

UT V1(h)U∗
T = V2(T h), UT eJ1 = eJ2UT , , h ∈ H1,

therefore

UT V1(h)V1(J1k)U∗
T = V2(h)V2(J2k), h, k ∈ H1,

namely

UT V1(h + J1k)U∗
T = V2(T h + J2T k),

that is

UT V1(η)U∗
T = V2(T̃ η), (51)

for all η in the domain of T̃ . Then (iii) holds by Lemma 3.1 and Shale’s criterion [39].
Conversely, assuming (iii), by Lemma 3.9 and again by Lemma 3.1 and Shale’s criterion,
we can find a unitary U such that (51) holds.

(iii) and (iv) are equivalent, by using Lemmas 3.1 and 3.9, see e.g. [30]. ��
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Corollary 3.11. Let T : H1 → H2 be a symplectic bijection. Then the Bogoliubov
isomorphism ϑT : A(H1) → A(H2) is implemented by a unitary U : eH1 → eH2 iff
the following conditions hold:

(a)
(

T D−1
1 − D−1

2 T
)

−
√
1 + D2

2

(
T D−1

1

√
1 + D2

1 − D−1
2

√
1 + D2

2 T
)

∈ L2(H1, H2)

(b) D2

(
T D−1

1

√
1 + D2

1 − D−1
2

√
1 + D2

2 T
)

∈ L2(H1, H2).

Proof. The above conditions are the straightforward generalisations of the conditions
a) and b) in Proposition 3.5, so the corollary follows by Proposition 3.10. ��
Recall that a real linear map T : H1 → H2 is symplectic iff T ∗ D2 = D1T −1, so the
conditions in the above corollary take a different form by inserting this relation.

4. Gaussian States, Modular Hamiltonian, Quasi-equivalence

Let (H, β) be a symplectic space. With α a real scalar product on H compatible with β,
let κα : H → Hα be the one-particle structure associated with α (Proposition 2.1).

Let eHα be the Bose Fock Hilbert space over Hα and denote by Vα(·) the Weyl
unitaries acting on eHα and by e0 the vacuum vector of eHα , thus V (h) 
→ Vα(h) gives
a representation of C∗(H) on eHα (see for example [26]). By (31), we have

(e0, Vα(κα(h))e0) = e− 1
2 ||κα(h)||2 = e− 1

2α(h,h), h ∈ H. (52)

Proposition 4.1. There exists a unique state ϕα on C∗(H) such that

ϕα

(
V (h)

) = e− 1
2α(h,h). (53)

With {Hϕα , πϕα , ξϕα } the GNS triple associated with ϕα , the vector ξϕα is separating
for the von Neumann algebra A(H) = πϕα

(
C∗(H)

)′′
iff the completion H̄ of H is a

separating subspace, namely ker(D2
H̄
+ 1) = {0}.

Proof. Equation (52) shows that there exists a state ϕa such that (53) holds. Moreover
(53) determines ϕα because the linear span of the Weyl unitaries is a dense subalgebra
of C∗(H).

As κα(H) is cyclic inHα , κα(H) is a standard subspace ofHα iff κα(H) is separating.
On the other hand, e0 is cyclic and separating for the von Neumann algebra generated
by the Vα(h)’s, h ∈ H , iff κα(H) is a standard subspace ofH, see [26]. The proposition
then follows by the uniqueness of the GNS representation. ��
The state ϕα determined by (53) is well known and is called the Gaussian, or quasi-
free, state associated with α, see [14,34]. It is usually defined by showing directly, by
positivity, that the Gaussian kernel (53) defines a state.
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We summarise in the following diagram the two above considered, unitarily equiva-
lent constructions with the GNS representation of a Gaussian state:

(H, α, β) C∗(H) Hϕα , ξϕα

h ∈ H

(H, α, β) Hα eHα , e0

Weyl

β

GNS
ϕα

πϕα (V (h))

Vα(h)

1-p. str.
κα

Fock

As a consequence, if H is a standard subspace, the modular group σϕα of ϕα on C∗(H)

is given by

σϕα
s

(
V (h)

) = V
(
�is

H h
)
, h ∈ H, s ∈ R,

therefore the study of the modular structure ofA(H) can be reduced to the study of the
modular structure of H .

The following quasi-equivalence criterion is related to the analysis in [5,23,42],
although we do not rely on their work.

In the following, we shall always deal with factorial standard subspaces.

Theorem 4.2. Let (H, αk, β) be factorial, abstract standard subspaces, k = 1, 2. The
Gaussian states ϕα1 and ϕα2 are quasi-equivalent iff both

(D−1
1 − D−1

2 ) −
√
1 + D2

2

(
D−1
1

√
1 + D2

1 − D−1
2

√
1 + D2

2

)
∈ L2(H) (54)

and

D2

(
D−1
1

√
1 + D2

1 − D−1
2

√
1 + D2

2

)
∈ L2(H), (55)

hold, where Dk is the polariser of (H, αk, β).

Proof. LetHk be the symplectic dilation of (H, βk) with respect to αk ; so H ⊂ Hk is a
factorial standard subspace. We have spelled out the conditions for the symplectic map
I : Ĥ → Ĥ to promote a unitary between the Fock spaces over H1 and H2 (I is the
identity on H ⊕ H as vector spaces). Shale’s criterion gives

I i1 − i2 I ∈ L2(H1,H2),

that entails the statement of the theorem by Proposition 3.5. ��
We now consider the property

P1i1|H − P2i2|H ∈ L2(H), (56)

that is

D−1
1 − D−1

2 ∈ L2(H), (57)

that is

i1 coth(L1/2)|H − i2 coth(L2/2)|H ∈ L2(H). (58)

We write α1 ≈ α2 if Property (56) holds.
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Corollary 4.3. Assume α1 ≈ α2. The Gaussian states ϕα1 and ϕα2 are quasi-equivalent
iff

D−1
2

√
1 + D2

2

(√
1 + D2

1 −
√
1 + D2

2

)
∈ L2(H) (59)

and
(√

1 + D2
1 −

√
1 + D2

2

)
∈ L2(H). (60)

Proof. As α1 ≈ α2, i.e. D−1
1 − D−1

2 ∈ L2(H), clearly (54) is equivalent to

√
1 + D2

2

(
D−1
1

√
1 + D2

1 − D−1
2

√
1 + D2

2

)
∈ L2(H), (61)

which is equivalent to (59).
On the other hand, (55) is equivalent to (60), again because D−1

1 − D−1
2 ∈ L2(H).

So the corollary follows by Thm. 4.2. ��
Corollary 4.4. Assume α1 ≈ α2. The Gaussian states ϕα1 and ϕα2 are quasi-equivalent
iff

(
D−1
1

√
1 + D2

1 − D−1
2

√
1 + D2

2

)
∈ L2(H) (62)

and
(√

1 + D2
1 −

√
1 + D2

2

)
∈ L2(H). (63)

Proof. Note first that, by (20), (63) is the same as

1

cosh(L1/2)

∣∣∣
H

− 1

cosh(L2/2)

∣∣∣
H

∈ L2(H). (64)

Let us now assume that α1 ≈ α2 and that (64) holds. By Cor. 4.3, we have to prove that
(59) is equivalent to (62).

By (37), (59) is equivalent to

P ′
2i2

( 1

cosh(L1/2)

∣∣∣
H

− 1

cosh(L2/2)

∣∣∣
H

)
∈ L2(H,H2),

with P ′
2 the cutting projectionH2 → H . As P ′

2 = 1− P2, Eq. (59) is thus equivalent to

P2i2
( 1

cosh(L1/2)

∣
∣∣

H
− 1

cosh(L2/2)

∣
∣∣

H

)
∈ L2(H), (65)

namely

(
D−1
2

√
1 + D2

1 − D−1
2

√
1 + D2

2

)
∈ L2(H). (66)

Since
√
1 + D2

1 is bounded, and α1 ≈ α2, the above equation is equivalent to (62). ��
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Corollary 4.5. The Gaussian states ϕα1 and ϕα2 are quasi-equivalent if

i1
1

sinh(L1/2)

∣∣∣
H

− i2
1

sinh(L2/2)

∣∣∣
H

∈ L2(H). (67)

Proof. Assume first that α1 ≈ α2. Then (67), i.e. (62), is equivalent to (66), and (66) im-
plies (63) since D2 is bounded. So Cor. 4.4 applies and ϕα1 and ϕα2 are quasi-equivalent.

To end our proof,we now show that (67) impliesα1 ≈ α2. Let F be defined by f (x) =
F

(
g(x)

)
, with f (x) = coth(x), g(x) = 1/ sinh(x). Then f ′(x) = F ′(y)g′(x), with y =

g(x), so F ′(y) = f ′(x)/g′(x) = (1/ sinh2(x))
/
(cosh(x)/ sinh2(x)) = 1/ cosh(x),

therefore F is uniformly Lipschitz. Since 0 is not in the point spectrum of Lk , it follows
by Cor. 6.5 that (67) implies (58), namely α1 ≈ α2. ��
Now, if A1, A2 are bounded, real linear operators on H with trivial kernel, we have

A1 − A2 = A1(A−1
2 − A−1

1 )A2

on the domain of the right hand side operator, thus

A−1
1 − A−1

2 ∈ Lp(H) ⇒ A1 − A2 ∈ Lp(H), p ≥ 1. (68)

We then have:

Corollary 4.6. If

i1 coth(L1/4)|H − i2 coth(L2/4)|H ∈ L2(H), (69)

then the Gaussian states ϕα1 and ϕα2 on C∗(H) are quasi-equivalent.

Proof. By assumption (69) holds, so also

i1 tanh(L1/4)i1|H − i2 tanh(L4/2)i2|H ∈ L2(H), (70)

holds by (68); therefore

i1
(
coth(L1/4)|H − tanh(L1/4)|H

) − i2
(
coth(L2/4)|H − tanh(L2/4)|H

) ∈ L2(H).

Since coth(x/2) − tanh(x/2) = 2/ sinh(x), we have

i1
1

sinh(L1/2)

∣∣∣
H

− i2
1

sinh(L2/2)

∣∣∣
H

∈ L2(H). (71)

So our corollary follows by Cor. 4.5. ��
The above corollary suggests that ϕα1 and ϕα2 are quasi-equivalent if P1i1|H − P2i2|H
is compact with proper values decaying sufficiently fast.
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4.1. Weakly inner Bogoliubov automorphisms. In this section, we study the condition
for a real linear, symplectic bijection of a standard space to give rise to a weakly inner
automorphism in the representation associated with a given Gaussian state.

Let H ⊂ H be a factorial standard subspace of the complex Hilbert space H, T :
H → H a symplectic bijection and ϑT the associated Bogoliubov automorphism of the
Weyl algebra A(H). Denote by A(H) the weak closure of A(H) on eH as in previous
sections.

We consider the real linear map on H given by

T̂ (h + h′) = T h + h′, h ∈ H, h′ ∈ H ′,

thus D(T̂ ) = ran(T̂ ) = H + H ′. One immediately sees that T̂ is a symplectic map on
H.

Note that D([T̂ , i]) = D(T̂ ) ∩ i D(T̂ ) = D(PH ) ∩ D(Pi H ) is dense in H, indeed a
core for PH , as in the proof of Lemma 3.9.

Lemma 4.7. Let T be a symplectic bijection on H. The following are equivalent:

(i) ϑT extends to an inner automorphism of A(H);
(ii) T̂ ∗T̂ − 1 ∈ L2(H);
(iii) [T̂ , i] ∈ L2(H).

Proof. Since A(H ′) is the commutant of A(H), ϑT extends to an inner automorphism
of A(H) if and only if the Bogoliubov automorphism associated with T̂ is unitarily
implementable on eH. Therefore the equivalence (i) ⇔ (ii) follows by Shale’s criterion
and Lemma 3.1.

(ii) ⇔ (iii) follows again by Shale’s criterion, Lemma 3.1 and the obvious adaptation
of Lemma 3.9. ��
Set now T = 1+ X and X̂ = X ⊕0 on H + H ′. In the symplectic matrix decomposition,
we have

X̂ i =
[

X D−1 X D−1
√
1 + D2 J

0 0

]
,

i X̂ =
[

D−1X 0
−J D−1

√
1 + D2 X 0

]
,

[T̂ , i] = [X̂ , i] =
[

[X, D−1] X D−1
√
1 + D2 J

J D−1
√
1 + D2X 0

]

,

With C = [X̂ , i], we apply Lemma 3.3. Then

EH C |H = C11 +
√
1 + D2 JC21 = [X, D−1] + (D−1 + D)X, (72)

EH Ci |H ′ = DC12 = DX D−1
√
1 + D2 J, (73)

EH ′ iC |H = J D JC21 = J
√
1 + D2X, (74)

EH ′C |H ′ = J
√
1 + D2 C12 + C22 = J

√
1 + D2 X D−1

√
1 + D2 J. (75)
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Note that

D−1 + D = −i
(
coth(L/2) − tanh(L/2)

)∣∣
H

= −i/ cosh(L/2) sinh(L/2)
∣∣

H = −2i/ sinh(L)
∣∣

H ,

D−1
√
1 + D2 = −i

1

sinh(L/2)

∣∣∣
H

.

Proposition 4.8. [T̂ , i] ∈ L2(H) iff all the operators

[X, D−1] + (D−1 + D)X = X D−1 + DX,

DX D−1
√
1 + D2,√

1 + D2X,√
1 + D2 X D−1

√
1 + D2,

are in L2(H).
In particular, this is the case if X D−1 ∈ L2(H).

Proof. [T̂ , i] ∈ L2(H) iff all the operators in (72), (73), (74), (75) are Hilbert–Schmidt,
so the first part of the statement holds. Now, X D−1 ∈ L2(H) implies that all the
operators in the statement are Hilbert–Schmidt too as they are obtained by left/right
multiplication of X D−1 by bounded operators, X D−1 ∈ L2(H) is a sufficient condition
for [T̂ , i] ∈ L2(H). ��
Theorem 4.9. Let (H, α, β) be an abstract factorial standard subspace and T : H → H
a bijective symplectic map. Then ϑT extends to an inner automorphism of the von
Neumann algebraA(H), in the GNS representation of ϕα iff the conditions in Proposition
4.8 hold.

Proof. The theorem follows now by Lemma (4.7). ��

5. QFT and the Modular Hamiltonian

We now work out the studied abstract structure, within the context of Quantum Field
Theory. We then provide a couple of applications of our results.

5.1. One-particle space of the free scalar QFT. This section concerns the one-particle
space of the free scalar QFT, especially in the low dimensional case. Although we are
primarily interested in the low dimensional case in this paper, we start by describing the
higher dimensional case in order to clarify the general picture. In the following, d is the
space dimension, so R

d is the time-zero space of the Minkowski spacetime R
d+1, cf.

[30].
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5.1.1. Case d ≥ 2, m ≥ 0 Let S denote the real linear space of smooth, compactly
supported real functions on R

d , d ≥ 2.

Let H±1/2
m be the real Hilbert space of real tempered distributions f ∈ S′(Rd) such

that the Fourier transform f̂ is a Borel function and

|| f ||2±1/2 =
∫

Rd
(|p|2 + m2)

±1/2| f̂ (p)|2dp < +∞. (76)

S is dense in H±1/2
m and μm : H1/2

m → H−1/2
m , with

μ̂m f (p) =
√

|p|2 + m2 f̂ (p), (77)

is a unitary operator. Then

ım =
[

0 μ−1
m−μm 0

]
(78)

is a unitary operator ım on Hm = H1/2
m ⊕ H−1/2

m with ı2m = −1, namely a complex
structure on Hm that so becomes a complex Hilbert space Hm with the imaginary part
of the scalar product given by


(〈 f, g〉, 〈h, k〉)m = 1

2

(
(h, g) − ( f, k)

)
, (79)

which is independent of m ≥ 0 (where (·, ·) is the L2 scalar product).

With B the unit ball of Rd , we shall denote by H±1/2
m (B) the subspace of H±1/2

m
associated with B consisting of the distributions f ∈ S′(Rd) as above that are supported
in B. We have

H±1/2
m (B) = closure of C∞

0 (B) in H±1/2
m ,

and the standard subspace of Hm associated with B is

Hm(B) ≡ H1/2
m (B) ⊕ H−1/2

m (B).

Here C∞
0 (B) denotes the space of real C∞ function on R

d with compact support in B.
The Hm(B)’s,m ≥ 0, are the same linear spacewith the sameHilbert space topologies

(see e.g. [30]). We shall often identify these spaces as topological vector spaces.
In the following, we consider the abstract standard spaces (H, αm, β) where H =

Hm(B), β is the symplectic form on H given by (79) and αm is the real scalar product
on H as a real subspace of Hm .

Denote by Pm the cutting projection on Hm relative to Hm(B). Then Pmım |Hm (B) is
a real linear, densely defined operator on H .

Proposition 5.1. Pmım |
H1/2

m (B)
− P0ı0|H1/2

0 (B)
is Lp(H1/2

m (B), H−1/2
m (B)) if p > d/2.
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Proof. The cutting projection Pm is given by thematrix

[
P+ 0
0 P−

]
, with P± : D(P±) ⊂

H±1/2
m → H±1/2

m the operator of multiplication by the characteristic function χB of B
in H±1/2

m [9,30]. Thus we have

Pmım =
[

0 P+μ
−1
m−P−μm 0

]

and we have to show that P−μm − P−μ0 : H1/2
m (B) → H−1/2

m (B) is inLp iff p > d/2,
namely that

f ∈ H1/2
m (B) 
→ (μm − μ0) f |B ∈ H−1/2

m (B)

is Lp iff p > d/2. Note that, in Fourier transform,

(
(μm − μ0) f

)̂
(p) = (√|p|2 + m2 −

√
|p|2) f̂ (p) = m2

√|p|2 + m2 +
√|p|2 f̂ (p). (80)

We have the following commutative diagram

H1/2
m (B) H−1/2

m (B)

L2(B) L2(Rd) L2(B)

P−μm − P−μ0

ι1

μm−μ0 χB

ι2 (81)

where χB is the multiplication operator by the characteristic function of B in L2(Rd),
i.e. the orthogonal projection L2(Rd) → L2(B), and ι1, ι2 are natural embeddings.

We need a couple of lemmas in order to conclude our proof.

Lemma 5.2. The operator (μm − μ0) : L2(B) → L2(Rd) is in Lp iff p > d.

Proof. By (80) we have
(
(μm − μ0) f

)̂
(p) = a(|p|)(|p|2 + m2)−1/2

f̂ (p) (82)

with a(s) = m2
√

s2 + m2/(
√

s2 + m2+s), so and 1/a are bounded continuous functions
on R

d . Therefore

μm − μ0 = A
(∇2 − m2)−1/2

, (83)

with A the multiplication operator by a, a bounded linear operator with bounded inverse.
So

(∇2 − m2)−1/2|L2(B) ∈ Lp ⇔ (μm − μ0)|L2(B) ∈ Lp

as operator L2(B) → L2(Rd). Let us show that μ−1
m |L2(B) = (∇2 − m2

)−1/2|L2(B) ∈
Lp(L2(B), L2(Rd)), namely that T = μ−1

m E ∈ Lp(L2(Rd)), with E the orthogonal
projection L2(Rd) → L2(B). As μ−1

m : L2(Rd) → L2(Rd) is selfadjoint, we have

T ∗ = Eμ−1
m , so we have to show that T ∗T = Eμ−2

m E ∈ L p
2 , namely that

E(∇2 − m2)−1|
H1/2

m (B)
∈ L p

2 (L2(B)).
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Now, E(∇2−m2)−1 is equal to (∇2
m −m2)−1, with∇2

m the Laplacian on B with external
boundary condition (6.3). We conclude that

E
(∇2 − m2)−1|L2(B) ∈ L p

2 (L2(B)) ⇔ (∇2
m − m2)−1 ∈ L p

2 (L2(B)) ⇔ p > d

by Corollary 6.7. ��
Lemma 5.3. Both embeddings ι1 : H1/2

m (B) ↪→ L2(B) and ι2 : L2(B) ↪→ H−1/2
m (B)

are in Lp if p > 2d. (Also if d = 1, m > 0 in this lemma.)

Proof. By Gramsch’s result [18], the embedding Hk
m(B) ↪→ Hl

m(B) is in Lp iff k − l >
d
p . In particular, ι1 and ι2 are in Lp iff p > 2d. ��
Recall the generalised Hölder inequality for operators in the Schatten ideals: if p ≥ 1,
pk ≥ 1,

T1 ∈ Lp1 , T2 ∈ Lp2 . . . Tn ∈ Lpn ⇒ T1T2 · · · Tn ∈ Lp if
1

p
= 1

p1
+

1

p2
+ · · · 1

pn
,

(84)

see [40, Thm. 2.8].

End of proof of Proposition 5.1. We first show that P−μm − P−μ0 : H1/2
m (B) →

H−1/2
m (B) isLp iff p > d/2. This operator is the product of three operators ι2[(χB(μm −

μ0)]ι1, see the commutative diagram (81). By Lemmas 5.2, 5.3, and by formula (84),
we then get that P−μm − P−μ0 : H1/2

m (B) → H−1/2
m (B) is Lp if

1

p
= 1

p1
+

1

p2
+

1

p3
, p1 > d, p2 > 2d, p3 > 2d,

thus if p > d/2. ��

5.1.2. Case d = 1

• Case m > 0. In this case the one-particle Hilbert space is defined exactly as in
the higher dimensional case. In particular H±1/2

m is defined by (76) and ım (78) is
a complex structure on Hm = H1/2

m ⊕ H−1/2
m ; so we have a complex Hilbert space

Hm , m > 0. The subspace H±1/2
m (B) of H±1/2

m is again defined as in the higher
dimensional case, with B = (−1, 1).

We now set

Ḣ−1/2
m (B) = closure of Ċ∞

0 (B) in H−1/2
m ,

with

Ṡ =
{

f ∈ S : f̂ (0) =
∫

R

f (x)dx = 0
}
, (85)

Ċ∞
0 (B) = C∞

0 (B) ∩ Ṡ , and

Ḣm(B) ≡ H1/2
m (B) ⊕ Ḣ−1/2

m (B). (86)
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Proposition 5.4. Ḣm(B) is a standard subspace of Hm of

Ḣm ≡ Ḣm(B) + ım Ḣm(B). (87)

Proof. As Ḣm(B) ⊂ Hm(B), clearly Ḣm(B) is separating, so the statement is
obvious. ��

• Case m = 0. H1/2
0 is defined as in the higher dimensional case (76):

H1/2
0 =

{
f ∈ S′(R) : f̂ Borel function &

∫

R

|p|| f̂ (p)|2dp < +∞
}
.

We now set

Ḣ−1/2
0 =

{
f ∈ S′(R) : f̂ Borel function &

∫

R

|p−1|| f̂ (p)|2dp < +∞
}
.

Note that

S ⊂ H±1/2
m , m > 0; S ⊂ H1/2

0 ; Ṡ ⊂ Ḣ−1/2
0 ,

Then ı0 (defined by (78) with m = 0) is a complex structure on Ḣ0 = H1/2
0 ⊕ Ḣ−1/2

0
and we get a complex Hilbert space Ḣ0 with underlying real Hilbert space Ḣ0.

The subspace H1/2
0 (B) of H1/2

0 is defined as in the higher dimensional case. We also
set

Ḣ−1/2
0 (B) = closure of Ċ∞

0 (B) in Ḣ−1/2
0 ,

and

Ḣ0(B) ≡ H1/2
0 (B) ⊕ Ḣ−1/2

0 (B). (88)

Ḣ0(B) is a standard subspace of Ḣ0. Note that, in the massless case, our notation is
unconventional: Ḣ0 is the usual one-particle space andH0 has not been defined yet. See
also [6,12] for related structures.

5.2. The modular Hamiltonian, d = 1. We now describe the modular Hamiltonian
associated with the unit double cone in the free, scalar QFT on the 1 + 1 dimensional
Minkowski spacetime. Recall that the modular Hamiltonian on the Fock space is the
second quantisation of the modular Hamiltonian on the one-particle space, that will
therefore be the subject of our analysis. In this subsection B = (−1, 1).

Lemma 5.5. The Ḣm(B)’s, m ≥ 0, are the same linear space with the same Hilbert
space topologies. Moreover, Ḣm(B) is a factorial standard subspace of Ḣm.

Proof. The proof that the natural, real linear identifications of the Ḣm(B)’s preserve the
Hilbert space topology is a simple adaptation of the one given in the higher dimensional
case, see [30].

We have seen in Proposition 5.4 that Ḣm(B) is a standard subspace of Ḣm . The
factoriality of Ḣ0(B) follows, for example, by [22]. Now, the identification of Ḣm(B)

with Ḣ0(B) preserves the symplectic form. Since the factoriality is equivalent to the
non-degeneracy of the symplectic form, also Ḣm(B) is factorial. ��
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Lemma 5.6. Ḣm(B)′, the symplectic complement of Ḣm(B) in Ḣm, is equal to Hm(B)′∩
Ḣm.

Proof. The inclusion Hm(B)′ ∩ Ḣm ⊂ Ḣm(B)′ is immediate. We prove the opposite
inclusion. Let f ⊕ g ∈ Ḣm = H1/2

m ⊕ Ḣ−1/2
m belong to Ḣm(B)′. By (79),

(h, g) − ( f, k) = 0 (89)

for all h ⊕ k ∈ Ḣm(B) = H1/2
m (B) ⊕ Ḣ−1/2

m (B).
Setting k = 0, we see that (h, g) = 0 for all h ∈ C∞

0 (B), so g is supported in the

complement Bc of B, so g ∈ H−1/2
m (Bc) (for example by Haag duality).

Set now h = 0. Then ( f, k) = 0 for all k ∈ Ḣ−1/2
m (B). Let F be the bounded linear

functional on H−1/2
m (B)

F(k) ≡ ( f, k) =
∫

f k, k ∈ H−1/2
m (B);

as Ḣ−1/2
m (B) has codimension one in H−1/2

m (B), there exists f0 ∈ H1/2
m (B) such that,

in particular,

F(k) =
∫

f0k, k ∈ L2(B),

therefore f0 = 0. So ( f, k) = 0 for all k ∈ C∞
0 (B) and this implies f ∈ H1/2(Bc) by

Haag duality. ��
Denote by Ṗm the cutting projection on Ḣm relative to Ḣm(B).

Lemma 5.7. We have

Ṗm =
[

P+ 0
0 Ṗ−

]
(90)

with P+ (resp. Ṗ−) the operator of multiplication by χB on H1/2
m (resp. on Ḣ−1/2

m ).

Proof. Let f ⊕ g ∈ Ḣm = H1/2
m ⊕ Ḣ−1/2

m be in the domain of Ṗm and set Ṗm( f ⊕ g) =
f0 ⊕ g0 ∈ Ḣm(B). Thus ( f − f0) ⊕ (g − g0) belongs to Ḣm(B)′, the symplectic
complement of Ḣm(B) in Ḣm ; so, by Lemma 5.6,

( f − f0) ⊕ (g − g0) ∈ H1/2
m (Bc) ⊕ Ḣ−1/2

m (Bc)

and this shows that Ṗm is a diagonal matrix of the form (90).
We then have

P−g = g0 = χB g0 = χB
(
(g − g0) + g0

) = χB g.

The equation P+ f = χB f , with f in the domain of P+, follows by similar
arguments. ��
Proposition 5.8. (Ṗmım − Ṗ0ı0)|Ḣ−1/2

m (B)
belongs to L1(Ḣ−1/2

m (B), H1/2
m (B)).
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Proof. By Lemma 5.7, we have

Ṗmım =
[

0 P+μ
−1
m

−Ṗ−μm 0

]
.

We have to show that Ṗ−μm − Ṗ−μ0 : Ḣ1/2
m (B) → Ḣ−1/2

m (B) is inL1, namely, namely
that

f ∈ Ḣ1/2
m (B) 
→ (μm − μ0) f |B ∈ Ḣ−1/2

m (B)

is L1. Similarly as above, we have the following commutative diagram

Ḣ1/2
m (B) Ḣ−1/2

m (B) ⊂ H−1/2
m (B)

L2(B) L2(R) L2(B)

Ṗ−μm − Ṗ−μ0

ι1

μm−μ0 χB

ι2 (91)

Here ι1 is the restriction to Ḣ1/2
m (B) of the embedding of H1/2

m (B) into L2(R). Then
Ṗ−μm − Ṗ−μ0 : Ḣ1/2

m (B) → Ḣ−1/2
m (B) is L1 by the same argument as in the proof of

Proposition 5.1. ��

5.2.1. m = 0 In the massless case, the modular group associated with the unit, time-
zero interval B acts geometrically on the spacetime double cone spanned by B [22]. We
have:

Theorem 5.9. In the free scalar, massless, quantum field theory in 1 + 1 spacetime
dimension, the modular Hamiltonian log �̇B,0 associated with the unit interval B, that
is with the standard subspace Ḣ0(B) ⊂ Ḣ0, is given by

log �̇B,0 = 2π ı0

[
0 1

2 (1 − x2)
1
2 (1 − x2)∂2x − x∂x 0

]
; (92)

Setting log �̇B,0 = −2π Ȧ0 and Ȧ0 ≡ −ı0 K̇0, we have that K̇0 is essentially skew-
selfadjoint onS×Ṡ . K̇ B

0 = K̇0|Ḣ0(B) is skew-selfadjoint on Ḣ0(B)and C∞
0 (B)×Ċ∞

0 (B)

is a core for K̇ B
0 .

Proof. The formula is obtained as in [30], with obvious modifications. ��

5.2.2. m > 0 The following analysis, done in [30] in the case d ≥ 2, extends verbatim
to the case d = 1. Let K B

m : D(K B
m ) ⊂ Hm(B) → Hm(B) be the real linear operator on

Hm(B) given by

K B
m =

[
0 1

2 (1 − r2)
1
2 (1 − r2)(∇2 − m2) − r∂r − 1

2m2G B
m 0

]
(93)

(m > 0); the domain D(K B
m ) is defined in [30], K B

m is Hermitian on C∞
0 (B)2 (proved

to be essentially skew-selfadjoint in the case d ≥ 2 in [30]).
Here, G B

m : H1/2
m (B) → H−1/2

m (B) is the inverse Helmholtz operator on B, namely

G B
m = E(−∇2 + m2)−1|

H1/2
m (B)

, (94)
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with E : H1/2 → H1/2
m (B) the orthogonal projection.

Then Km : D(Km) ⊂ Hm → Hm is defined as the closure of the complex linear
extension of K B

m to D(Km) ≡ D(K B
m ) + ım D(K B

m ), and

Am ≡ −ım Km

is a Hermitian operator on Hm . Our aim is to show that

log�B,m = −2π Am, m > 0,

also in the d = 1 case. We note that G B
m is given by the following commutative diagram

H1/2
m (B) H−1/2

m (B)

L2(B) L2(B)

G B
m

ι1

(−∇2
m +m2)−1

ι2

where ∇2
m is the Laplacian on B with external boundary conditions in Appendix 6.3.

5.2.3. m ≥ 0 We now set

H0(B) ≡ Ḣ0(B) ⊕ R ⊂ H0 ≡ Ḣ0 ⊕ C.

H0(B) is a real Hilbert space with the direct sum scalar product. We choose a vector
u ∈ Hm(B), u /∈ Ḣm(B). Clearly, the real linear identification İ : Ḣ0(B) → Ḣm(B)

extends to a real linear, topological identification I : H0(B) → Hm(B) mapping 0 ⊕ 1
to u. Namely I is a bounded, invertible real linear map H0(B) → Hm(B). When we
compare operators acting on H0(B) and on Hm(B), we identify these two spaces and
consider the operators acting on the same topological linear space H0(B) = Hm(B).

Let log�B,m and log �̇B,m be the modular Hamiltonian of Hm(B) ⊂ Hm and of
Ḣm(B) ⊂ Hm respectively, m > 0. In the massless case, let log �̇B,0 be the modular
Hamiltonian of Ḣ0(B) ⊂ Ḣ0 and set

log�B,0 ≡ log �̇B,0 ⊕ 0 on H0.

Similarly, let Dm be the polariser of Hm(B), Ḋm the polariser of Ḣm(B), m > 0. With
Ḋ0 the polariser of Ḣ0(B), set

D0 ≡ Ḋ0 ⊕ 0 on H0(B).

Lemma 5.10.

ım tanh
(1
2
log�B,m

)|
H1/2

m (B)
− ı0 tanh

(1
2
log�B,0

)|
H1/2
0 (B)

(95)

is in L1(H1/2
m (B), H−1/2

m (B)). (With the identification Hm(B) = H0(B).)

Proof. By Proposition 5.8, (Ḋ−1
m − Ḋ−1

0 )|
H−1/2

m (B)
is in L1, so Ḋm − Ḋ0 is in L1. By

Lemma 3.8, (Dm − D0)|H1/2
m (B)

is in L1 too. This is equivalent to requirement that the

operator (95) is in L1(H1/2
m (B), H−1/2

m (B)). ��



Modular Structure of the Weyl Algebra 175

Lemma 5.11. The operator
( − 2π ım Am |Hm(B) − ı0 log�B,0|H0(B)

)
is in Lp, p > 1,

m > 0. Moreover, K B
m = ım Am |Hm (B) is skew-selfadjoint on Hm(B).

Proof. Since Ḣm(B) is closed and finite codimensional in Hm(B), it suffices to show
that

− 2π ım Am |Ḣm (B) − ı0 log �̇B,0|Ḣ0(B) (96)

is in Lp, p > 1. By (93) and (92), the operator (96) is equal to the sum of two operators

m2
[

0 0
1
2 (1 − x2) 0

]
+
1

2
m2

[
0 0

G B
m 0

]

that are both in Lp, p > 1, see [30].
The skew-selfadjointness of K B

m then follows by [30, Prop. 2.1]. ��
Theorem 5.12. The modular Hamiltonian log�B,m associated with the unit, time-zero
interval B in the free scalar, massive, quantum field theory in 1 + 1 dimension is given
by

ım log�B,m = −2π

[
0 1

2 (1 − x2)
1
2 (1 − x2)

(
∂2x − m2

) − x∂x − 1
2m2G B

m 0

]
(97)

on Hm(B), with G B
m : H1/2

m (B) → H−1/2
m (B) the inverse Helmholtz operator on B

(94).

Proof. By Lemma 5.11,

−2π ım Am |Hm (B) − ı0 log�B,0|H0(B)

is in L1, thus

ım tanh(π Am)|Hm (B) − ı0 tanh
(1
2
log�B,0

)|H0(B) (98)

is in Lp, p > 1, by Corollary 6.5, so it is compact.
By Lemma 5.10, also

ım tanh
(1
2
log�B,m

)|
H1/2

m (B)
− ı0 tanh

(1
2
log�B,0

)|
H1/2
0 (B)

(99)

is compact. Set

T ≡ ım tanh
(1
2
log�B,m

)|Hm(B) − ım tanh(π Am)|Hm(B);

by (98) and (99), T |
H1/2

m (B)
is compact. As �is

B,m commutes with T , thus with T ∗T ,
we infer that so T |

H1/2
m (B)

is equal to zero because �B,m has empty point spectrum
[16]. This implies −ım2π Am |

H1/2
m (B)

= ım log�B,m |
H1/2

m (B)
. As both these operators

are skew-selfadjoint on Hm(B), we have −ım2π Am |
H1/2

m (B)
= ım log�B,m |

H1/2
m (B)

on
Hm(B), thus on the intersection of Hm(B)+ ım Hm(B) with the domain of log�B,m is a
core for log�B,m , being a dense �is

B,m-invariant subspace; and it is also a core for Am
by the same argument. Thus

−ım2π Am = ım log�B,m,

namely (97) holds. ��
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5.3. Local entropy of a Klein–Gordon wave packet, d = 1. Although this section con-
tains a main application of our paper, we shall be very short on its background as this is
explained in details in [9,30].

Let � be Klein–Gordon wave, d = 1, m > 0, with compactly supported, smooth
Cauchy data f, g. Thus ∂2t � − ∂2x � = −m2� and f = �|t=0, g = ∂t�|t=0. The
entropy S� of � is given by

S� = 
(�, PH i log�H �).

Here, H = Hm(B), �H is the modular operator and PH is the cutting projection
associated with H . � is the vector f ⊕ g ∈ Hm = H1/2

m ⊕ H−1/2
m . Recall that the

time-zero energy density of � is given by 〈T (m)
00 〉� = 1

2

(
g2 + (∂x f )2 + m2 f 2

)
.

Theorem 5.13. The entropy S� of the Klein–Gordon wave � in the unit interval (−1, 1)
at time t = 0 is given by

S� = 2π
∫ 1

−1

1 − x2

2
〈T (m)

00 〉� dx + πm2
∫ 1

−1

∫ 1

−1
Gm(x − y) f (y) f (x)dxdy

(100)

where Gm is the Green function for the Helmholtz operator, Gm(x) = 1
2m e−m|x |.

Proof. The proof follows the one in the higher dimensional case; this is possible as we
now have the formula for the local modular Hamiltonian. ��
Note that the above results have a straightforward version with B replaced by any other
interval, same as [30].

5.4. Further consequences in QFT. In this section, we provide a few direct conse-
quences in second quantisation of our results.

5.4.1. Local entropy of coherent states By the analysis in [9,29,30], we have an imme-
diate corollary in Quantum Field Theory concerning the local vacuum relative entropy
of a coherent state.

Let Am(B) be the von Neumann algebra associated with the unit space ball B (thus
to the causal envelope O of B) by the free, neutral QFT on the Minkowski spacetime,
d ≥ 1, m > 0.

Corollary 5.14. Araki’s relative entropy S(ϕ�||ϕ) on Am(O) (see [4]) between the vac-
uum state ϕ and the coherent state ϕ� associated with the one-particle wave � ∈ Hm
is given by (100).

Proof. The case d ≥ 2 is proved in [30]. By applying Theorem 5.13, the corollary
follows now in the d = 1 case too as in [9,29]. ��
The formula for S� is the same in the massless case, provided one deals with restricted
Cauchy data as above, in order that � ∈ H0, see [28, Sect. 4]. See also [10] for a
discussion on relative entropy in a curved spacetime setting.
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5.4.2. Type I I I 1 property We show here the type I I I 1 factor property (see [41]) for
the local von Neumann algebras associated with free, scalar QFT. In the massless case,
this follows from [22]; in the massive case from [16], if d > 1.

Proposition 5.15. Am(B) is a factor of type I I I 1, d = 1, m > 0.

Proof. Am(B) is a factor because the symplectic form on Hm(B) is non-degenerate.
Concerning the type I I I 1 property, by [17] it suffices to show that the additive subgroup
of R generated by spe(log�B,m) is equal to R, with spe denoting the essential spec-
trum. Due to the relation (9), spe(log�B,m) is symmetric, so it is enough to show that
spe(tanh

2( 12 log�B,m)) ⊃ R+.

Now, tanh2( 12 log�B,m) is bounded, selfadjoint and leaves Hm(B) invariant, so its
essential spectrum is equal to spe

(
tanh2( 12 log�B,m)|Hm(B)

)
as real linear operator. By

(16), we then have to show that spe(−D2
m) ⊃ [0, 1]. Similarly as in Lemma 3.8, we

have spe(D2
m) = spe(Ḋ2

m). On the other hand, spe(Ḋ2
m) = spe(Ḋ2

0) because Ḋ2
m − Ḋ2

0
is compact by Thm. 5.12 and Thm. 6.3. We then conclude or proof by noticing that
spe(−Ḋ2

0) ⊃ [0, 1], because spe(log�B,0) = R, see [27]. ��
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6. Appendixes

6.1. Functional calculus for real linear operators. The following proposition is part of
Prop. 2.2 of [30]. Let B be the real algebra of complex, bounded Borel functions on R

such that f (−t) = f̄ (t)

Proposition 6.1. Let H be a Hilbert space, H ⊂ H a closed, real linear subspace and
A : D(A) ⊂ H → H a selfadjoint operator. With K = i A, the following are equivalent:

(i) eis A H = H, s ∈ R,
(ii) f (A)H ⊂ H, f ∈ B,
(iii) D(K ) ∩ H is dense in H, K (D(K ) ∩ H) ⊂ H and K : (D(K ) ∩ H) ⊂ H → H

is skew-selfadjoint on H.

If A and H are as in Proposition 6.1, we shall say that H is i A-invariant.

http://creativecommons.org/licenses/by/4.0/
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Let now H be a real Hilbert space and HC the complexified Hilbert space, namely

HC = H ⊕ H with complex structure ι =
[
0 −1
1 0

]
. We write elements x ∈ HC as

x = ξ + ιη, ξ, η ∈ H . We have

(ξ + ιη, ξ ′ + ιη′) = (ξ, ξ ′) + (η, η′) + i(ξ, η′) − i(η, ξ ′),
||ξ + ιη||2 = ||ξ ||2 + ||η||2.

Let T be a real linear, bounded operator on H . We denote by Ť its promotion to HC:

Ť : ξ + ιη 
→ T ξ + ιT η,

namely Ť is the unique complex linear operator on HC that restricts to T on H . Then
||Ť || = ||T || because

||Ť (ξ + ιη)||2 = ||T ξ ||2 + ||T η||2 ≤ ||T ||2(||ξ ||2 + ||η||2) = ||T ||2 ||ξ + ιη||2.
Note that

T ∈ L2(H) ⇔ Ť ∈ L2(HC),

indeed ||Ť ||22 = ||T ||22 because a real orthonormal basis {ek} for H is also a complex
orthonormal basis for HC and

||Ť ||22 = ||T ||22 =
∑

k

||T ek ||2.

Assume that T is skew-selfadjoint on H , namely T ∗ = −T . Then Ť is skew-selfadjoint
as complex linear operator on HC, so ιŤ is a bounded selfadjoint operator on HC. With f
a continuous complex function on R, we may define the complex linear operator f (ιŤ )

on HC by the usual continuous functional calculus. Let then f ∈ B; by Proposition 6.1
we have

f (ιŤ )H ⊂ H.

Proposition 6.2. Let H ⊂ H be a standard subspace and T a skew selfadjoint operator
on H as above. Suppose that

T = i X |H (101)

with X a selfadjoint operator on H. With A = −ιŤ the selfadjoint operator on HC as
above, we have

f (A)|H = f (X)|H , (102)

for every f ∈ B.
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Proof. The statement holds if f (x) = eix because T is the infinitesimal skew-selfadjoint
generator of eis A|H = eis X |H . So it holds if f is the Fourier transform of a real L1-
function g as

f (A)|H =
∫

g(s)e−is A|H ds =
∫

g(s)e−is X |H ds = f (X)|H

Then (102) holds for every continuous function with compact support f ∈ B, as it can
be uniformly approximated by functions as above by the Stone-Weierstrass theorem.

Let now f be any function in B and fix two vectors ξ, η ∈ H . There exists a uniformly
bounded sequence of continuous functions fn ∈ B with compact support such that
fn → f almost everywhere with respect to the spectral measures of A and X associated
with ξ, η. Then

(ξ, f (A)η) = lim
n

(ξ, fn(A)η) = lim
n

(ξ, fn(X)η) = (ξ, f (X)η)

by the Lebesgue dominated convergence theorem, that concludes our proof because ξ, η

are arbitrary.

6.2. Operator Lipschitz perturbations. Thenext theorem is due to Potatov andSukochev
[35].

Theorem 6.3. Let A1, A2 be selfadjoint operators on a Hilbert space H and f a
uniformly Lipschitz function on R. If A1 − A2 ∈ Lp(H), with p > 1, then also
f (A1) − f (A2) ∈ Lp(H).

Note that, in Thm. 6.3, it suffices to assume that (A1 − A2)|D ∈ Lp(H) with D a core
for A1 or A2, since then D is a core for both A1 or A2 and D(A1) = D(A2) because
A1 − A2 is bounded.
The following corollary was communicated to us by F. Sukochev.

Corollary 6.4. Let Ak be a selfadjoint operator on the Hilbert space Hk , k = 1, 2, and
suppose that H1 and H2 are the same topological vector space, that we call H. Then

A1 − A2 ∈ Lp(H) !⇒ f (A1) − f (A2) ∈ Lp(H),

p > 1, for every uniformly Lipschitz function f on R.

Proof. Let C : H1 → H2 be the complex linear identification of H1 and H2 as topo-
logical vector spaces. So C is a bounded operator with bounded inverse C−1. Then we
have to show that

A1 − C−1A2C ∈ Lp(H1) !⇒ f (A1) − C−1 f (A2)C ∈ Lp(H1),

or, equivalently, that

C A1 − A2C ∈ Lp(H1,H2) !⇒ C f (A1) − f (A2)C ∈ Lp(H1,H2).

With K = H1 ⊕ H2, the operator A = A1 ⊕ A2 is selfadjoint on K. Set V =
[
0 0
C 0

]
;

then

V A − AV =
[

0 0
C A1 − A2C 0

]
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and

V f (A) − f (A)V =
[

0 0
C f (A1) − f (A2)C 0

]
,

so we have to show that

V A − AV ∈ Lp(K) !⇒ V f (A) − f (A)V ∈ Lp(K),

that follows by [35, Eq. (14)]. ��
We need a certain real version of Corollary 6.4.

Corollary 6.5. Let Hk ⊂ Hk be a standard subspace and Xk a selfadjoint operator on
Hk such that Hk is ik Xk-invariant, k = 1, 2. Suppose that H1 and H2 are the same real
linear space H with equivalent scalar products. Then

i1X1|H − i2X2|H ∈ Lp(H) !⇒ i1 f (X1)|H − i2 f (X2)|H ∈ Lp(H),

p > 1, for every uniformly Lipschitz function f on R such that f (−x) = − f (x).

Proof. Let HkC be the usual complexification of the real Hilbert space Hk . Then H1C
and H2C are equivalent complex Hilbert spaces.
Let Ak be the selfadjoint extension of Xk to HkC as above; by Proposition 6.2, we have

i1X1|H − i2X2|H ∈ Lp(H) !⇒ A1 − A2 ∈ Lp(HC)

!⇒ ι f (A1) − ι f (A2) ∈ Lp(HC)

!⇒ ι f (A1)|H − ι f (A2)|H ∈ Lp(H) !⇒ i1 f (X1)|H − i2 f (X2)|H ∈ Lp(H).

��

6.3. Extensions of the Laplacian via Helmholtz operator. Let H be a Hilbert space, K
a closed subspace and A : D(A) ⊂ H → H a positive selfadjoint linear operator.

D0 = {
ξ ∈ D(A) ∩ K : Aξ ∈ K}

is dense in K and denote by A0 the restriction of A to D0, as operator K → K. Clearly
A0 is a positive Hermitian operator on K. We want to study the selfadjoint extensions
of A0.
Choose m > 0, then (A + m2)−1 is a bounded selfadjoint operator onH whose norm is
||(A + m2)−1|| ≤ 1/m2. With E the orthogonal projection of H onto K, set

T = E(A + m2)−1|K. (103)

Then T is a bounded, selfadjoint operator on K and ||T || ≤ 1/m2. We have

T (A0 + m2)ξ = ξ, ξ ∈ D0. (104)

We note the following.
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• ker(T ) = {0}. Let ξ ∈ K; since T ξ = 0 implies

(ξ, T ξ) = (ξ, E(A + m2)−1ξ) = (ξ, (A + m2)−1ξ)

= ((A + m2)−1/2ξ, (A + m2)−1/2ξ) = 0,

we have

T ξ = 0 !⇒ (A + m2)−1/2ξ = 0 !⇒ ξ = 0.

• Let Am be defined by (Am+m2) ≡ T −1. Then Am is a positive, selfadjoint extension
of A0 on K and Am ≥ m2. Indeed, Eq. (104) implies

T −1ξ = (A0 + m2)ξ, ξ ∈ D0.

• By theorems of von Neumann, Krein, Friedrichs et al. (see [1,2,38]), every positive
selfadjoint extension of A0 lies between Amin and Amax, where where Amin and Amax
are respectively the Krein and the Friedrichs extension of A0 on K. In particular,

Amin ≤ Am ≤ Amax, (105)

in the quadratic form sense.

Consider now the case of K = L2(B) ⊂ H = L2(Rd). If f ∈ C∞(∂ B), consider the
exterior Dirichlet problem for the Helmholtz operator: find a smooth function f c on the
complement Bc of B such that:

f c|∂ B = f, (∇2 − m2) f c = 0 on the complement of B̄;
this problem is studied e.g. [33].
Denote by Cm the space of all f ∈ C∞(∂ B) such that f c exists with f c and partial
derivatives of all order tending to zero as r = |x | → +∞ faster than any inverse power
of r . In this case the solution f c is unique by the maximum principle.
For completeness, we sketch the following proposition, although it is not needed in this
form in the paper (we need Corollary 6.7).

Proposition 6.6. Let H = L2(Rd), K = L2(B), and A = −∇2 be the Laplacian on
L2(Rd); then

Am = −∇2
m,

where ∇2
m is the Laplacian on L2(B) with boundary condition

∂−
r f = −∂+r f c on ∂ B,

more precisely, Dm ≡ {
f ∈ C∞(B̄) : f |∂ B ∈ Cm, ∂−

r f = −∂+r f c on ∂ B
}

is a core
for Am, with ∂±

r denoting the outer/inner normal derivative.

Proof. Let g ∈ C∞
0 (B) and f = (A + m2)−1g. Then f ∈ D(∇2) and f is a solution

of the equation (−∇2 + m2) f = g on R
d . In particular (−∇2 + m2) f = 0 on Bc,

namely f |Bc = ( f |∂ B)c. As g ∈ C∞
0 (B), f belongs to the Schwarz space S(Rd), thus

f |Bc ∈ Cm .
With T given by (103), we have T g = f |B̄ ; as T is a bounded operator on L2(B)

and C∞
0 (B) is dense in L2(B), the domain T C∞

0 (B) is a core for Am = T −1. Since
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T C∞
0 (B) ⊂ Dm , we have that Am is essentially selfadjoint on Dm . Clearly, Am = −∇2

m
on Dm .
Now −∇2

m is Hermitian on Dm by the Green identity (consider the integration on the
boundary of a corona 1 ≤ r ≤ R and then let R → ∞), so we conclude that Am = −∇2

m
because selfdajoint operators are maximal Hermitian. ��
The requirement f c ∈ L2(Bc) in the definition of Dm is probably automatic. Let us be
more explicit in the d = 1 case. In this case, B = (−1, 1). If f is a smooth solution
of (−∇2 + m2) f = 0, with ∇ = d

dx in [1,∞), then f (x) = C+emx + C−e−mx , with
C± constant. Thus f (x) = C−e−mx if f ∈ L2(1,∞). Similarly, f (x) = C+emx in the
(−∞,−1] case. Therefore ∇∓ f (±1) = m f (±1) and

Dm ≡ {
f ∈ C∞([−1, 1]) : ∇∓ f (±1) = m f (±1)

}
.

Corollary 6.7. E(∇2 − m2)−1|L2(B) ∈ Lp(L2(B)) iff p > d/2, with E the orthogonal
projection onto L2(B).

Proof. Let A0 = −∇2+m2 onC∞
0 (B); then Amin = −∇2

D+m2 and Amax = −∇2
K +m2,

where ∇2
D and ∇2

K are the Dirichlet and the Krein Laplacian. Now ∇2
D satisfies the Weyl

asymptotic, so (∇2
D −m2)−1 ∈ Lp iff p > d/2, see [13].Moreover, the same asymptotic

hold for (∇2
K −m2)−1, see [19]. By themin-max principle (see [38, Sect. 12.1]), the same

asymptotic holds for every positive, selfadjoint extension of the Laplacian on C∞
0 (B),

in particular for ∇m = E(∇2 − m2)−1|L2(B), so our statement holds. ��
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1. Alonso, A., Simon, B.: The Birman–Kreǐn–Vishik theory of selfadjoint extensions of semibounded op-
erators. J. Oper. Theory 4, 251–270 (1980)
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